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Abstract
In this paper, we study the uniqueness of a positive solution for the singular nonlinear
fractional differential equation boundary value problem Dα

0+u(t) + f (t,u(t)) = 0,

0 < t < 1, u(0) = 0, u(1) = aD
α–1
2 u(t)|t=ξ , where 1 < α ≤ 2 is a real number, Dα

0+ is the
standard Riemann-Liouville differentiation and f : (0, 1]× [0, +∞) → [0, +∞), with
limt→0+ f (t, ·) = +∞. Our analysis relies on a fixed-point theorem in partially ordered
set. As an application, an example is presented to illustrate the main result.
MSC: 26A33; 34B15; 34K37
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1 Introduction
Fractional differential equations have gained considerable importance due to their appli-
cation in various sciences, such as physics, mechanics, chemistry, engineering, etc. In re-
cent years, there has been a significant development in ordinary and partial differential
equations involving fractional derivatives; see the monographs of Kilbas et al. [], Miller
and Ross [], Oldham and Spanier [], Podlubny [], Samko [], and the papers [–] and
the references therein.
However, there are fewpapers, which have considered the singular boundary value prob-

lems of fractional differential equations; see [–]. In particular, Delbosco and Rodino
[] considered the existence of a solution for the nonlinear fractional differential equation
Dα

+u = f (t,u), where  < α <  and f : [,a] × R → R,  < a ≤ +∞ is a given continuous
function in (,a) × R. They obtained some results for solutions by using the Schauder
fixed-point theorem and the Banach contraction principle.
Qiu and Bai [] considered the existence of a positive solution to boundary value prob-

lems of the nonlinear fractional differential equation

cDα
+u(t) + f

(
t,u(t)

)
= ,  < t < ,  < α ≤ ,

u() = u′() = u′′() = ,
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where cDα
+ is the Caputo fractional derivative, and f : (, ] × [, +∞) → [, +∞), with

limt→+ f (t, ·) = +∞ (i.e., f is singular at t = ). They obtained the existence of positive so-
lutions by means of the Guo-Krasnosel’skii fixed-point theorem and nonlinear alternative
of Leray-Schauder type in a cone. In [], the uniqueness of the solution is not treated.
From the above works, we can see a fact, although the fractional boundary value prob-

lems have been investigated by some authors, to the best of our knowledge, there have
been few papers which deal with the problem (.)-(.) for nonlinear singular fractional
differential equation. Motivated by all the works above, this paper is mainly concerned
with the uniqueness of a positive solution for the singular nonlinear fractional differential
equation boundary value problem

Dα
+u(t) + f

(
t,u(t)

)
= ,  < t < , (.)

u() = , u() = aD
α–
 u(t)|t=ξ , (.)

where  < α ≤  is a real number, ξ ∈ (,  ], a ∈ (, +∞) satisfy a�(α)ξ α–
 < �( α+

 ), and
Dα

+ is the standard Riemann-Liouville differentiation, and f : (, ]× [, +∞) → [, +∞),
with limt→+ f (t, ·) = +∞. In this article, by using a fixed- point theorem in partially or-
dered set, existence and uniqueness results of a positive solution for the problem (.)-(.)
are given.
The paper is organized as follows. In Section , we give some preliminary results that

will be used in the proof of the main results. In Section , we establish the uniqueness of a
positive solution for the singular nonlinear fractional differential equation boundary value
problem (.)-(.). In the end, we illustrate a simple use of the main result.

2 Preliminaries and lemmas
For the convenience of the reader, we present here the necessary definitions from frac-
tional calculus theory. These definitions can be found in the recent literature such as []
and [].

Definition. [, ] TheRiemann-Liouville fractional integral of order α >  of a function
f : (, +∞)→R is given by

Iα+ f (t) =
∫ t



(t – s)α–

�(α)
f (s)ds,

provided that the right side is pointwise defined on (,+∞), where � is the gamma func-
tion.

Definition . [, ] The Riemann-Liouville fractional derivative of order α >  of a con-
tinuous function f : (, +∞)→R is given by

(
Dα

+f
)
(t) =


�(n – α)

(
d
dt

)n ∫ t


(t – s)n–α+f (s)ds,

provided that the right side is pointwise defined on (,+∞). Here, n = [α] +  and [α]
denotes the integer part of α.
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Lemma . [] Let α > . If we assume u ∈ C(, )∩ L(, ), then the fractional differential
equation

Dα
+u(t) = 

has

u(t) = Ctα– +Ctα– + · · · +CNtα–N , Ci ∈R, i = , , . . . ,N ,

as unique solutions, where N is the smallest integer greater than or equal to α.

Lemma . [] Assume that h ∈ C(, )∩L(, ) with a fractional derivative of order α > 
that belongs to C(, )∩ L(, ). Then

Iα+D
α
+h(t) = h(t) +Ctα– +Ctα– + · · · +CNtα–N ,

for some Ci ∈R, i = , , . . . ,N , where N is the smallest integer greater than or equal to α.

Lemma . [] Let h ∈ C(, ) ∩ L(, ) and  < α ≤ , ξ ∈ (, ), a ∈ R satisfy that
a�(α)ξ α–

 �= �( α+
 ), then the unique solution of

Dα
+u(t) + h(t) = ,  < t < , (.)

u() = , u() = aD
α–
 u(t)|t=ξ (.)

is given by

u(t) = –
∫ t



(t – s)α–

�(α)
h(s)ds

+
tα–�( α+

 )

�( α+
 ) – a�(α)ξ α–



{∫ 



( – s)α–

�(α)
h(s)ds – a

∫ ξ



(ξ – s) α–


�( α+
 )

h(s)ds
}
. (.)

Lemma . [] Let h ∈ C((, ), [, +∞)) ∩ L(, ) and  < α ≤ , ξ ∈ (,  ], a ∈ (, +∞)
satisfy that a�(α)ξ α–

 < �( α+
 ), then the unique solution of the problem (.)-(.)

u(t) = –
∫ t



(t – s)α–

�(α)
h(s)ds

+
tα–�( α+

 )

�( α+
 ) – a�(α)ξ α–



{∫ 



( – s)α–

�(α)
h(s)ds – a

∫ ξ



(ξ – s) α–


�( α+
 )

h(s)ds
}

=
∫ 


G(t, s)h(s)ds +

atα–

�( α+
 ) – a�(α)ξ α–



×
{∫ ξ



[
( – s)α–ξ

α–
 – (ξ – s)

α–


]
h(s)ds +

∫ 

ξ

( – s)α–ξ
α–
 h(s)ds

}
(.)

http://www.advancesindifferenceequations.com/content/2013/1/114


Zhou et al. Advances in Difference Equations 2013, 2013:114 Page 4 of 11
http://www.advancesindifferenceequations.com/content/2013/1/114

is nonnegative on [, ], where

G(t, s) =

⎧⎨
⎩

[t(–s)]q––(t–s)q–
�(q) , if  ≤ s ≤ t ≤ ,

[t(–s)]q–
�(q) , if  ≤ t ≤ s ≤ .

The following two lemmas are fundamental in the proofs of our main result.

Lemma . [] Let (E,≤) be a partially ordered set and suppose that there exists ametric
d in E such that (E,d) is a complete metric space. Assume that E satisfies:

If xn is a nondecreasing sequence in E such that xn → x then xn ≤ x, ∀n ∈N. (.)

Let f : E → E be a nondecreasing mapping such that

d
(
f (x), f (y)

) ≤ d(x, y) – ϕ
(
d(x, y)

)
, for x ≥ y, (.)

where ϕ : [, +∞) → [, +∞) is continuous and nondecreasing function such that ϕ is
positive in (,+∞), ϕ() =  and limt→+∞ ϕ(t) = +∞. If there exists x ∈ E with x ≤ f (x),
then f has a fixed point.
If we consider that (E,≤) satisfies the following condition:

For x, y ∈ E there exists z ∈ E which is comparable to x and y, (.)

then we have the following result.

Lemma. [] Adding condition (.) to the hypotheses of Lemma .,we obtain unique-
ness of the fixed point of f .

3 Main results
Theorem . Let  < α ≤ , ξ ∈ (,  ], a ∈ (, +∞) satisfy that a�(α)ξ α–

 < �( α+
 ), F :

(, ] → [, +∞) is continuous, and limt→+ F(t) = +∞. Suppose that there exists a constant
σ :  < σ <  such that tσF(t) is a continuous function on [, ]. Then the unique solution of
the problem (.)-(.) is given by

H(t) = –
∫ t



(t – s)α–

�(α)
F(s)ds

+
tα–�( α+

 )

�( α+
 ) – a�(α)ξ α–



{∫ 



( – s)α–

�(α)
F(s)ds – a

∫ ξ



(ξ – s) α–


�( α+
 )

F(s)ds
}

=
∫ 


G(t, s)F(s)ds +

atα–

�( α+
 ) – a�(α)ξ α–



×
{∫ ξ



[
( – s)α–ξ

α–
 – (ξ – s)

α–


]
F(s)ds +

∫ 

ξ

( – s)α–ξ
α–
 F(s)ds

}
(.)

and is continuous on [, ].
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Proof By the continuity of tσF(t), it is easy to check that H() = . The proof is divided
into three cases.
Case . t = , ∀t ∈ (, ].
Since tσF(t) is continuous in [, ], there exists a constantM > , such that |tσF(t)| ≤ M,

t ∈ [, ]. Hence,

∣∣H(t) –H()
∣∣

=
∣∣∣∣
∫ 


G(t, s)F(s)ds +

atα–

�( α+
 ) – a�(α)ξ α–



×
{∫ ξ



[
( – s)α–ξ

α–
 – (ξ – s)

α–


]
F(s)ds +

∫ 

ξ

( – s)α–ξ
α–
 F(s)ds

}∣∣∣∣
=

∣∣∣∣
∫ 


G(t, s)s–σ sσF(s)ds +

atα–

�( α+
 ) – a�(α)ξ α–



×
{∫ ξ



[
( – s)α–ξ

α–
 – (ξ – s)

α–


]
s–σ sσF(s)ds +

∫ 

ξ

( – s)α–ξ
α–
 s–σ sσF(s)ds

}∣∣∣∣
≤ M

∣∣∣∣
∫ t



[
[t( – s)]α– – (t – s)α–

�(α)

]
s–σ ds +

∫ 

t

[t( – s)]α–

�(α)
s–σ ds

+
atα–

�( α+
 ) – a�(α)ξ α–


×

{∫ ξ



[
( – s)α–ξ

α–
 – (ξ – s)

α–


]
s–σ ds

+
∫ 

ξ

( – s)α–ξ
α–
 s–σ ds

}∣∣∣∣
≤ M

tα–

�(α)
B( – σ ,α) +M

tα–σ

�(α)
B( – σ ,α)

+
aMtα–ξ α–



�( α+
 ) – a�(α)ξ α–


B( – σ ,α) +

aMtα–ξ –σ+ α–


�( α+
 ) – a�(α)ξ α–


B
(
 – σ ,

α + 


)

≤ M
�( – σ )

�( – σ + α)
[
tα– + tα–σ

]

+
aMtα–ξ α–



�( α+
 ) – a�(α)ξ α–



�( – σ )�(α)
�( – σ + α)

+
aMtα–ξ –σ+ α–



�( α+
 ) – a�(α)ξ α–



�( – σ )�( α+
 )

�( – σ + α+
 )

→  (t → ),

where B(·, ·) denotes the beta function.
Case . t ∈ (, ), ∀t ∈ (t, ].

∣∣H(t) –H(t)
∣∣

=
∣∣∣∣
∫ 


G(t, s)s–σ sσF(s)ds –

∫ 


G(t, s)s–σ sσF(s)ds

+
a[tα– – tα– ]

�( α+
 ) – a�(α)ξ α–


×

{∫ ξ



[
( – s)α–ξ

α–
 – (ξ – s)

α–


]
s–σ sσF(s)ds

+
∫ 

ξ

( – s)α–ξ
α–
 s–σ sσF(s)ds

}∣∣∣∣
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≤ M
∣∣∣∣
∫ t



[t( – s)]α– – (t – s)α–

�(α)
s–σ ds +

∫ 

t

[t( – s)]α–

�(α)
s–σ ds

–
∫ 

t

[t( – s)]α–

�(α)
s–σ ds –

∫ t



[t( – s)]α– – (t – s)α–

�(α)
s–σ ds

+
a[tα– – tα– ]

�( α+
 ) – a�(α)ξ α–


×

{∫ ξ



[
( – s)α–ξ

α–
 – (ξ – s)

α–


]
s–σ ds

+
∫ 

ξ

( – s)α–ξ
α–
 s–σ ds

}∣∣∣∣
=M

∣∣∣∣ t
α– – tα–

�(α)

∫ 


( – s)α–s–σ ds +

∫ t

t

(t – s)α–

�(α)
s–σ ds

+
∫ t



(t – s)α– – (t – s)α–

�(α)
s–σ ds +

a[tα– – tα– ]
�( α+

 ) – a�(α)ξ α–


×
{∫ ξ



[
( – s)α–ξ

α–
 – (ξ – s)

α–


]
s–σ ds +

∫ 

ξ

( – s)α–ξ
α–
 s–σ ds

}∣∣∣∣
≤ M

{
tα– – tα–

�(α)
B( – σ ,α) +

tα–σ – tα–σ

�(α)
B( – σ ,α) +

a[tα– – tα– ]
�( α+

 ) – a�(α)ξ α–


×
[
ξ

α–
 B( – σ ,α) + ξ –σ+ α–

 B
(
 – σ ,

α – 


)]}

→  (t → t).

Case . t ∈ (, ], ∀t ∈ [, t). The proof is similar to that of Case , so we omit it. �

Let Banach space E = C[, ] be endowed with the norm ‖u‖ =maxt∈[,] |u(t)|. Note that
this space can be equipped with a partial order given by

x, y ∈ E, x≤ y ⇔ x(t)≤ y(t), t ∈ [, ]. (.)

It is easy to check that (E,≤) with the classic metric given by

d(x, y) = max
t∈[,]

{∣∣x(t) – y(t)
∣∣} (.)

satisfies condition (.) of Lemma .. Moreover, for x, y ∈ E, as the function max{x, y} is
continuous in [, ], (E,≤) satisfies condition (.).

Theorem . Let  < σ < ,  < α ≤ , ξ ∈ (,  ], a ∈ (, +∞) satisfy that a�(α)ξ α–
 <

�( α+
 ), f : (, ]× [, +∞) → [, +∞) is continuous,with limt→+ f (t, ·) = +∞, and tσ f (t,u)

is continuous function on [, ]× [, +∞). Assume that there exists λ satisfying

 < λ

≤
[

�( – σ )
�( – σ + α)

+
�( α+

 )�( – σ )

[�( α+
 ) – a�(α)ξ α–

 ]�( – σ + α)

+
aξ (–σ+ α–

 )�( – σ )�( α+
 )

[�( α+
 ) – a�(α)ξ α–

 ]�( – σ + α+
 )

]–

,

http://www.advancesindifferenceequations.com/content/2013/1/114
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such that for u, v ∈ [, +∞) with u≥ v and t ∈ [, ],

 ≤ tσ
[
f (t,u) – f (t, v)

] ≤ λφ(u – v), (.)

where φ : [, +∞) → [, +∞) is continuous and nondecreasing, ϕ(u) = u – φ(u) satisfies
(a) ϕ : [, +∞)→ [, +∞) and nondecreasing;
(b) ϕ() = ;
(c) ϕ is positive in (, +∞).
Then the problem (.)-(.) has an unique positive solution.

Proof Define the cone K ⊂ E by

K =
{
u ∈ E : u(t) ≥ , t ∈ [, ]

}
.

Note that, as K is a closed subset of E, K is a complete metric space.
Suppose that u is a solution of boundary value problem (.) and (.). Then

u(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds +

atα–

�( α+
 ) – a�(α)ξ α–



×
{∫ ξ



[
( – s)α–ξ

α–
 – (ξ – s)

α–


]
f
(
s,u(s)

)
ds

+
∫ 

ξ

( – s)α–ξ
α–
 f

(
s,u(s)

)
ds

}
, t ∈ [, ].

Define an operatorA :K → E as follows:

(Au)(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds +

atα–

�( α+
 ) – a�(α)ξ α–



×
{∫ ξ



[
( – s)α–ξ

α–
 – (ξ – s)

α–


]
f
(
s,u(s)

)
ds

+
∫ 

ξ

( – s)α–ξ
α–
 f

(
s,u(s)

)
ds

}
, t ∈ [, ]. (.)

By Theorem ., Au ∈ E. Moreover, in view of Lemma . and tσ f (t,u) ≥  for (t,u) ∈
[, ]× [, +∞), by hypothesis, we get

(Au)(t)≥ , t ∈ [, ],

so, A(K) ⊂K.
In what follows, we check that hypotheses in Lemmas . and . are satisfied. Firstly,

the operatorA is nondecreasing. By hypothesis, for u≥ v, we get

(Au)(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds +

atα–

�( α+
 ) – a�(α)ξ α–



×
{∫ ξ



[
( – s)α–ξ

α–
 – (ξ – s)

α–


]
f
(
s,u(s)

)
ds

http://www.advancesindifferenceequations.com/content/2013/1/114
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+
∫ 

ξ

( – s)α–ξ
α–
 f

(
s,u(s)

)
ds

}

≥
∫ 


G(t, s)f

(
s, v(s)

)
ds +

atα–

�( α+
 ) – a�(α)ξ α–



×
{∫ ξ



[
( – s)α–ξ

α–
 – (ξ – s)

α–


]
f
(
s, v(s)

)
ds

+
∫ 

ξ

( – s)α–ξ
α–
 f

(
s, v(s)

)
ds

}

= (Av)(t).

Besides, for u≥ v, by (.), we get

d(Au,Av) = max
t∈[,]

{∣∣Au(t) –Av(t)
∣∣}

= max
t∈[,]

[
Au(t) –Av(t)

]

≤ max
t∈[,]

[∫ 


G(t, s)

[
f
(
s,u(s)

)
– f

(
s, v(s)

)]
ds +

atα–

�( α+
 ) – a�(α)ξ α–



×
{∫ ξ



[
( – s)α–ξ

α–
 – (ξ – s)

α–


][
f
(
s,u(s)

)
– f

(
s, v(s)

)]
ds

+
∫ 

ξ

( – s)α–ξ
α–


[
f
(
s,u(s)

)
– f

(
s, v(s)

)]
ds

}]

≤ max
t∈[,]

[∫ 


G(t, s)s–σ λφ

[
u(s) – v(s)

]
ds +

atα–

�( α+
 ) – a�(α)ξ α–



×
{∫ ξ



[
( – s)α–ξ

α–
 – (ξ – s)

α–


]
s–σ λφ

[
u(s) – v(s)

]
ds

+
∫ 

ξ

( – s)α–ξ
α–
 s–σ λφ

[
u(s) – v(s)

]
ds

}]
.

As the function φ(u) is nondecreasing, for u≥ v, we get

φ
[
u(s) – v(s)

] ≤ φ
(‖u – v‖). (.)

By the last inequality, we get

d(Au,Av)≤ max
t∈[,]

[∫ 


G(t, s)s–σ λφ

[
u(s) – v(s)

]
ds +

atα–

�( α+
 ) – a�(α)ξ α–



×
{∫ ξ



[
( – s)α–ξ

α–
 – (ξ – s)

α–


]
s–σ λφ

[
u(s) – v(s)

]
ds

+
∫ 

ξ

( – s)α–ξ
α–
 s–σ λφ

[
u(s) – v(s)

]
ds

}]

≤ λφ
(‖u – v‖) max

t∈[,]

[∫ 


G(t, s)s–σ ds +

atα–

�( α+
 ) – a�(α)ξ α–
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×
{∫ ξ



[
( – s)α–ξ

α–
 – (ξ – s)

α–


]
s–σ ds +

∫ 

ξ

( – s)α–ξ
α–
 s–σ ds

}]

= λφ
(‖u – v‖) max

t∈[,]

[
tα–σ

�(α)
B( – σ ,α) +

tα–�( α+
 )B( – σ ,α)

[�( α+
 ) – a�(α)ξ α–

 ]�(α)

+
atα–ξ (–σ+ α–

 )

[�( α+
 ) – a�(α)ξ α–

 ]
B
(
 – σ ,

α + 


)]

= λφ
(‖u – v‖)

[
B( – σ ,α)

�(α)
+

�( α+
 )B( – σ ,α)

[�( α+
 ) – a�(α)ξ α–

 ]�(α)

+
aξ (–σ+ α–

 )

[�( α+
 ) – a�(α)ξ α–

 ]
B
(
 – σ ,

α + 


)]

= λφ
(‖u – v‖)

[
�( – σ )

�( – σ + α)
+

�( α+
 )�( – σ )

[�( α+
 ) – a�(α)ξ α–

 ]�( – σ + α)

+
aξ (–σ+ α–

 )�( – σ )�( α+
 )

[�( α+
 ) – a�(α)ξ α–

 ]�( – σ + α+
 )

]

≤ φ
(‖u – v‖)

= ‖u – v‖ – [‖u – v‖ – φ
(‖u – v‖)].

Put ϕ(u) = u – φ(u). Obviously, ϕ : [, +∞) → [, +∞) is continuous, nondecreasing, pos-
itive in (,+∞), ϕ() = .
Thus, for u ≥ v, we get

d(Au,Av)≤ d(u, v) – ϕ
(
d(u, v)

)
. (.)

Finally, take into account that for the zero function,  ≤ A, by Lemma ., our problem
(.)-(.) has at least one nonnegative solution. Moreover, this solution is unique, since
(K,≤) satisfies condition (.) and Lemma .. This completes the proof. �

In the sequel, we present an example which illustrates Theorem ..

4 An example
Example . Consider the following fractional boundary value problem:

D

 u(t) =

(t – 
 )

 ln( + u(t))√
t

,  < t < , (.)

u() = , u() =


D


 u(t)|t= 


, (.)

where α = 
 , a = ξ = 

 . In this case, f (t,u) = (t– 
 )

 ln(+u)√
t for (t,u) ∈ (, ]× [, +∞), σ = 

 .
Note that f is continuous in (, ] × [, +∞) and limt→+ f (t, ·) = ∞. Moreover, for u ≥ v
and t ∈ [, ], we have

 ≤ tσ
[
f (t,u) – f (t, v)

]
=

[(
t –




)

ln( + u) –
(
t –




)

ln( + v)
]
. (.)
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Because g(x) = ln(x + ) is nondecreasing on [,+∞), and

[(
t –




)

ln( + u) –
(
t –




)

ln( + v)
]
=

(
t –




)

ln
( + u)
( + v)

=
(
t –




)

ln
( + v + u – v)

( + v)

≤
(



)

ln( + u – v).

With the aid of a computer, we obtain that

[
�( – σ )

�( – σ + α)
+

�( α+
 )�( – σ )

[�( α+
 ) – a�(α)ξ α–

 ]�( – σ + α)

+
aξ (–σ+ α–

 )�( – σ )�( α+
 )

[�( α+
 ) – a�(α)ξ α–

 ]�( – σ + α+
 )

]–

≈ . · · · > 

.

So, by Theorem ., the problem (.)-(.) has an unique positive solution.
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