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Abstract
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1 Introduction
Recently, Khan et al. [] introduced the Hermite-based Appell polynomials via the gener-
ating function

G(x, y, z; t) = A(t) exp(Mt),

where

M = x + y
∂

∂x
+ z

∂

∂x

is the multiplicative operator of the -variable Hermite polynomials, which are defined by

exp
(
xt + yt + zt

)
=

∞∑
n=

H ()
n (x, y, z)

tn

n!
(.)

and

A(t) =
∞∑
n=

antn, a �= .

By using the Berry decoupling identity,

eA+B = em
/e((

–m
 )A/+A)eB, [A,B] =mA/
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they obtained the generating function of the Hermite-based Appell polynomials HAn(x,
y, z) as

G(x, y, z; t) = A(t) exp
(
xt + yt + zt

)
=

∞∑
n=

HAn(x, y, z)
tn

n!
.

Letting A(t) = t
et– , they defined Hermite-Bernoulli polynomials HBn(x, y, z) by

t
et – 

exp
(
xt + yt + zt

)
=

∞∑
n=

HBn(x, y, z)
tn

n!
, |t| < π .

For A(t) = 
et+ , they defined Hermite-Euler polynomials HEn(x, y, z) by


et + 

exp
(
xt + yt + zt

)
=

∞∑
n=

HEn(x, y, z)
tn

n!
, |t| < π

and for A(t) = t
et+ , they defined Hermite-Genocchi polynomials HGn(x, y, z) by

t
et + 

exp
(
xt + yt + zt

)
=

∞∑
n=

HGn(x, y, z)
tn

n!
, |t| < π .

Recently, the author considered the following unification of the Apostol-Bernoulli, Euler
and Genocchi polynomials

f (α)a,b (x; t;k,β) :=
(

–ktk

βbet – ab

)α

ext =
∞∑
n=

P(α)
n,β (x;k,a,b)

tn

n!
(
k ∈N;a,b ∈R\{};α,β ∈C

)
and obtained the explicit representation of this unified family, in terms of Gaussian hyper-
geometric function. Some symmetry identities and multiplication formula are also given
in []. Note that the family of polynomials P()

n,β (x, y, z;k,a,b) was investigated in [].
We organize the paper as follows.
In Section , we introduce the unification of the Hermite-based generalized Apostol-

Bernoulli, Euler and Genocchi polynomials HP(α)
n,β (x, y, z;k,a,b) and give summation for-

mulas for this unification. In Section , we obtain some symmetry identities for these
polynomials. In Section , we give explicit closed-form formulae for this unified family.
Furthermore, we prove a finite series relation between this unification and d-Hermite
polynomials.

2 Hermite-based generalized Apostol-Bernoulli, Euler and Genocchi
polynomials

In this paper, we consider the following general class of polynomials:

f (α)a,b (x, y, z; t;k,β) :=
(

–ktk

βbet – ab

)α

ext+yt
+zt =

∞∑
n=

HP(α)
n,β (x, y, z;k,a,b)

tn

n!
(
k ∈N;a,b ∈R\{};α,β ∈C

)
. (.)
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For the existence of the expansion, we need
(i) |t| < π when α ∈ C, k =  and ( β

a )
b = ; |t| < π when α ∈N, k = , , . . . and

( β

a )
b = ; |t| < |b log( β

a )| when α ∈N, k ∈N and ( β

a )
b �=  (or �= –); x, y, z ∈R, β ∈C,

a,b ∈C/{}; α := ;
(ii) |t| < π when ( β

a )
b = –; |t| < |b log( β

a )| when ( β

a )
b �= –; x, y, z ∈R, k = , α,β ∈C,

a,b ∈C/{}; α := ;
(iii) |t| < π when α ∈N and ( β

a )
b = –; x, y, z ∈R, k ∈N, β ∈C, a,b ∈C/{}; α := ,

where w = |w|eiθ , –π ≤ θ < π and log(w) = log(|w|) + iθ .
For k = a = b =  and β = λ in (.), we define the following.

Definition . Let α ∈ N, λ be an arbitrary (real or complex) parameter and x, y, z ∈ R.
The Hermite-based generalized Apostol-Bernoulli polynomials are defined by

(
t

λet – 

)α

exp
(
xt + yt + zt

)
=

∞∑
n=

HB(α)
n (x, y, z;λ)

tn

n!
(|t| < π when α ∈C and λ = ; |t| < ∣∣log(λ)∣∣
when α ∈N and λ �= ;x, y, z ∈R; α := 

)
.

It is clear that

HP(α)
n,λ(x, y, z; , , ) = HB(α)

n (x, y, z;λ).

Some special cases of the Hermite-based generalized Apostol-Bernoulli polynomials
(some of which are definition) are listed below:
• HB()

n (x, y, z;λ) := HBn(x, y, z;λ) is called Hermite-based Apostol-Bernoulli
polynomials.

• HBn(x, y, z; ) = HBn(x, y, z) is the Hermite-Bernoulli polynomials.
• HBn(x, , ;λ) := Bn(x;λ) is the Apostol-Bernoulli polynomials (see [–]). When

λ = , we have the classical Bernoulli polynomials.
• Bn(;λ) := Bn(λ) are the Apostol-Bernoulli numbers. λ =  gives the classical Bernoulli
numbers.

Setting k +  = –a = b =  and β = λ in (.), we get the following.

Definition . Let α and λ ( �= –) be an arbitrary (real or complex) parameter and
x, y, z ∈ R. The Hermite-based generalized Apostol-Euler polynomials are defined by

(


λet + 

)α

exp
(
xt + yt + zt

)
=

∞∑
n=

HE (α)
n (x, y, z;λ)

tn

n!
(|t| < π when λ = ; |t| < ∣∣log(–λ)

∣∣ when λ �= ;x, y, z ∈R,α ∈C; α := 
)
.

Obviously, we have

HP(α)
n,λ(x, y, z; , –, ) = HE (α)

n (x, y, z;λ).

Some special cases of the Hermite-based generalized Apostol-Euler polynomials (some
of which are definition) are listed below:

http://www.advancesindifferenceequations.com/content/2013/1/116


Özarslan Advances in Difference Equations 2013, 2013:116 Page 4 of 13
http://www.advancesindifferenceequations.com/content/2013/1/116

• HE ()
n (x, y, z;λ) := HEn(x, y, z;λ) is called Hermite-based Apostol-Euler polynomials.

• HEn(x, y, z; ) = HEn(x, y, z) is the Hermite-Euler polynomials.
• HEn(x, , ;λ) := En(x;λ) is the Apostol-Euler polynomials (see []). For λ = , we have
the classical Euler polynomials.

• nEn(  ;λ) := En(λ) are the Apostol-Euler numbers. The case λ =  gives the classical
Euler numbers.

Choosing k = –a = b =  and β = λ in (.), we define the following.

Definition . Let α and λ ( �= –) be an arbitrary (real or complex) parameter and
x, y, z ∈ R. The Hermite-based generalized Apostol-Genocchi polynomials are defined
by

(
t

λet + 

)α

exp
(
xt + yt + zt

)
=

∞∑
n=

HG(α)
n (x, y, z;λ)

tn

n!
(|t| < π when α ∈N and λ = ; |t| < ∣∣log(–λ)

∣∣
when α ∈N and λ �= ;x, y, z ∈R; α := 

)
.

It is easily seen that

HP(α)
n, λ

(
x, y, z; ,

–

, 

)
= HGα

n (x, y, z;λ).

Some special cases of the Hermite-based generalized Apostol-Genocchi polynomials
(some of which are definition) are listed below:
• HG()

n (x, y, z;λ) := HGn(x, y, z;λ) is called Hermite-based Apostol-Genocchi
polynomials.

• HGn(x, y, z; ) = HGn(x, y, z) is the Hermite-Genocchi polynomials.
• HGn(x, , ;λ) := Gn(x;λ) is the Apostol-Genocchi polynomials (see [, ]). When

λ = , we have the classical Genocchi polynomials.
• Gn(;λ) := Gn(λ) are the Apostol-Genocchi numbers. λ =  gives the classical
Genocchi numbers.

Finally we define the unified Hermite-based Apostol polynomials by

f ()a,b (x; t;k,β) :=
–ktk

βbet – ab
ext+yt

+zt =
∞∑
n=

HPn,β (x, y, z;k,a,b)
tn

n!
(
k ∈N;a,b ∈R\{};β ∈C

)
.

Thus it is clear that HPn,β (x, y, z;k,a,b) = HP()
n,β (x, y, z;k,a,b) and that we have the following

observations at once:
• HPn,λ(x, y, z; , , ) = HBn(x, y, z;λ) are the Hermite-based Apostol-Bernoulli
polynomials.

• HPn,λ(x, y, z; , –, ) = HE(x, y, z;λ) are the Hermite-based Apostol-Euler polynomials.
• HPn, λ

(x, y, z; , – , ) = HGn(x, y, z;λ) are the Hermite-based Apostol-Genocchi
polynomials.
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For the other generalization, we refer [–] and []. Now we give some relations
between the above mentioned Apostol polynomials.
Using (.), we get the following identity at once.

Theorem . Let α,k ∈ N; a,b ∈ R\{}; β ∈ C be such that the conditions (i)-(iii) are
satisfied. Then, the following relation

n∑
r=

(
n
r

)
HP(α)

n–r,β (x, y, z;k,a,b)HP
(α)
r,β (u, v,w;k,a,b) = HP(α)

n,β (x + u, y + v, z +w;k,a,b)

holds true.

Corollary . For each n ∈ N, the following relation

n∑
k=

(
n
k

)
HB(α)

n–k(x, y, z;λ)HB
(β)
k (u, v,w;λ) = HB(α+β)

n (x + u, y + v, z +w;λ)

holds true for the Hermite-based generalized Apostol-Bernoulli polynomials.

Corollary . For each n ∈N, the following relation

n∑
k=

(
n
k

)
HE (α)

n–k(x, y, z;λ)HE
(β)
k (u, v,w;λ) = HE (α+β)

n (x + u, y + v, z +w;λ)

holds true for the Hermite-based generalized Apostol-Euler polynomials.

Corollary . For each n ∈N, the following relation

n∑
k=

(
n
k

)
HG(α)

n–k(x, y, z;λ)HG
(β)
k (u, v,w;λ) = HG(α+β)

n (x + u, y + v, z +w;λ)

holds true for the Hermite-based generalized Apostol-Genocchi polynomials.

Theorem . For each n ∈N, the following relation

n∑
k=

(
n
k

)
HB(α)

n–k(x, y, z;λ)HE
(α)
k (u, v,w;λ) = nHB(α)

n

(
x + u


,
y + v


,
z +w


;λ
)

holds true between the Hermite-based generalized Apostol-Bernoulli and Euler polynomi-
als.

Proof By direct calculations, we have

∞∑
n=

HB(α)
n

(
x + u


,
y + v


,
z +w


;λ
)
(t)n

n!

=
(

t
λet – 

)α

exp

[(
x + u


)
t +

(
y + v


)
(t) +

(
z +w


)
(t)

]

=
(

t
λet – 

)α

exp
(
xt + yt + zt

)( 
λet + 

)α

exp
(
ut + vt +wt

)
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=
∞∑
n=

HB(α)
n (x, y, z;λ)

tn

n!

∞∑
k=

HE (α)
k (u, v,w;λ)

tk

k!

=
∞∑
n=

n∑
k=

(
n
k

)
HB(α)

n–k(x, y, z;λ)HE
(α)
k (u, v,w;λ)

tn

n!
.

Comparing the coefficients of tn
n! on both sides, we get the result. �

3 Symmetry identities for the unified family
For each k ∈ N, the sum Sk(n) =

∑n
i= ik is known as the power sum and we have the

following generating relation:

∞∑
k=

Sk(n)
tk

k!
=  + et + et + · · · + ent =

e(n+)t – 
et – 

.

For an arbitrary real or complex λ, the generalized sum of integer powers Sk(n,λ) is de-
fined, in [], via the following generating relation:

∞∑
k=

Sk(n,λ)
tk

k!
=

λe(n+)t – 
λet – 

.

It clear that Sk(n, ) = Sk(n).
For each k ∈N, the sumMk(n) =

∑n
i=(–)kik is known as the sum of alternative integer

powers. The following generating relation is straightforward:

∞∑
k=

Mk(n)
tk

k!
=  – et + et – · · · + (–)nent =

 – (–et)(n+)

et + 
.

For an arbitrary real or complex λ, the generalized sum of alternative integer powers
Mk(n,λ) is defined, in [], by

∞∑
k=

Mk(n,λ)
tk

k!
=
 – λ(–et)(n+)

λet + 
.

ClearlyMk(n, ) =Mk(n). On the other hand, if n is even, then

Sk(n, –λ) =Mk(n,λ). (.)

We start by obtaining certain symmetry identities, which includes the results given in
[–] and [], when y = z = .

Theorem . Let c,d,m ∈ N, n ∈ N be such that the conditions (i)-(iii) are satisfied with
t replaced by ct and dt. Then we have the following symmetry identity:

n∑
r=

(
n
r

)
cn–rdr+k

HP(m)
n–r,β

(
dx,dy,dz;k,a,b

)

×
r∑

l=

(
r
l

)
Sl

(
c – ;

(
β

a

)b)
HP(m–)

r–l,β
(
cX, cY , cZ;k,a,b

)

http://www.advancesindifferenceequations.com/content/2013/1/116
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=
n∑

r=

(
n
r

)
dn–rcr+kHP(m)

n–r,β
(
cx, cy, cz;k,a,b

)

×
r∑

l=

(
r
l

)
Sl

(
d – ;

(
β

a

)b)
HP(m–)

r–l,β
(
dX,dY ,dZ;k,a,b

)
.

Proof Let

G(t) :=
(–k)(m–)tkm–kecdxt+y(cdt)+z(cdt) (βbecdt – ab)ecdXt+Y (cdt)+Z(cdt)

(βbect – ab)m(βbedt – ab)m
.

Expanding G(t) into a series, we get

G(t) =


ckmdk(m–)

(
–kcktk

βbect – ab

)m

ecdxt+y(cdt)
+z(cdt)

(
βbecdt – ab

βbedt – ab

)

×
(

–kdktk

βbedt – ab

)m–

ecdXt+Y (cdt)
+Z(cdt)

=


ckmdk(m–)

[ ∞∑
n=

HP(m)
n,β

(
dx,dy,dz;k,a,b

) (ct)n
n!

][ ∞∑
l=

Sl
(
c – ;

(
β

a

)b) (dt)l

l!

]

×
[ ∞∑

r=
HP(m–)

r,β
(
cX, cY , cZ;k,a,b

) (dt)r
r!

]
.

Now, using Corollary  in [, p.], we get

G(t) =


ckmdkm

∞∑
n=

[ n∑
r=

(
n
r

)
cn–rdr+k

HP(m)
n–r,β

(
dx,dy,dz;k,a,b

)

×
r∑

l=

(
r
l

)
Sl

(
c – ;

(
β

a

)b)
HP(m–)

r–l,β
(
cX, cY , cZ;k,a,b

)] tn

n!
. (.)

In a similar manner,

G(t) =


dkmck(m–)

(
–kdktk

βbect – ab

)m

ecdxt+y(cdt)
+z(cdt)

(
βbecdt – ab

βbedt – ab

)

×
(

–kcktk

βbedt – ab

)m–

ecdXt+Y (cdt)
+Z(cdt)

=


ckmdkm

∞∑
n=

[ n∑
r=

(
n
r

)
dn–rcr+kHP(m)

n–r,β
(
cx, cy, cz;k,a,b

)

×
r∑

l=

(
r
l

)
Sl

(
d – ;

(
β

a

)b)
HP(m–)

r–l,β
(
dX,dY ,dZ;k,a,b

)] tn

n!
. (.)

From (.) and (.), we get the result. �

For k = a = b =  and β = λ we get the following corollary at once.

http://www.advancesindifferenceequations.com/content/2013/1/116
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Corollary . For all c,d,m ∈ N, n ∈ N, λ ∈ C, we have the following symmetry identity
for the Hermite based generalized Apostol-Bernoulli polynomials:

n∑
r=

(
n
r

)
cn–rdr+

HB(m)
n–r

(
dx,dy,dz,λ

)

×
r∑

l=

(
r
l

)
Sl(c – ;λ)HB(m–)

r–l
(
cX, cY , cZ,λ

)

=
n∑

r=

(
n
r

)
dn–rcr+HB(m)

n–r
(
cx, cy, cz,λ

)

×
r∑

l=

(
r
l

)
Sl(d – ;λ)HB(m–)

r–l
(
dX,dY ,dZ,λ

)
.

For k +  = –a = b =  and β = λ we get, by considering (.) that

Corollary . For all m ∈N, n ∈ N, λ ∈C, we have for each pair of positive even integers
c and d, or for each pair of positive odd integers c and d,

n∑
r=

(
n
r

)
cn–rdr+

HE (m)
n–r

(
dx,dy,dz,λ

)

×
r∑

l=

(
r
l

)
Ml(c – ;λ)HE (m–)

r–l
(
cX, cY , cZ,λ

)

=
n∑

r=

(
n
r

)
dn–rcr+HE (m)

n–r
(
cx, cy, cz,λ

)

×
r∑

l=

(
r
l

)
Ml(d – ;λ)HE (m–)

r–l
(
dX,dY ,dZ,λ

)
.

Letting k = –a = b =  and β = λ and taking into account (.) that we have the follow-
ing.

Corollary . For all m ∈N, n ∈ N, λ ∈C, we have for each pair of positive even integers
c and d, or for each pair of positive odd integers c and d, that

n∑
r=

(
n
r

)
cn–rdr+

HG(m)
n–r

(
dx,dy,dz,λ

)

×
r∑

l=

(
r
l

)
Ml(c – ;λ)HG(m–)

r–l
(
cX, cY , cZ,λ

)

=
n∑

r=

(
n
r

)
dn–rcr+HG(m)

n–r
(
cx, cy, cz,λ

)

×
r∑

l=

(
r
l

)
Ml(d – ;λ)HG(m–)

r–l
(
dX,dY ,dZ,λ

)
.
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4 Closed-form formulae for Hermite-based generalized Apostol polynomials
In this section, taking into account the relations

f (α)a,b (x, y, z; t;k,β) :=
(

–ktk

βbet – ab

)α

ext+yt
+zt =

∞∑
n=

HP(α)
n,β (x, y, z;k,a,b)

tn

n!
,

f ()a,b (x, y, z; t;k,β) :=
(

–ktk

βbet – ab

)
ext+yt

+zt =
∞∑
n=

HPn,β (x, y, z;k,a,b)
tn

n!
,

we observe the following fact:

[
f ()a,b

(
x
α
,
y
α
,
z
α
; t;k,β

)]α

= f (α)a,b (x, y, z; t;k,β). (.)

Using (.), we start by proving the following closed form summation formula:

Theorem . Let the conditions (i)-(iii) be satisfied. The following summation formula:

n∑
l=

(
n
l

)[
HP(α)

n–l+,β (x, y, z;k,a,b)HPl,β

(
x
α
,
y
α
,
z
α
;k,a,b

)

– αHP(α)
n–l,β (x, y, z;k,a,b)HPl+,β

(
x
α
,
y
α
,
z
α
;k,a,b

)]
= 

holds true.

Proof Taking logarithms on both sides of (.) and then differentiating with respect to t,
we get

∂f (α)a,b (x, y, z; t;k,β)
∂t

f ()a,b

(
x
α
,
y
α
,
z
α
; t;k,β

)

= αf (α)a,b (x, y, z; t;k,β)
∂f ()a,b (

x
α
, y

α
, z

α
; t;k,β)

∂t
.

Inserting the corresponding generating relations, we obtain

∞∑
n=

nHP(α)
n,β (x, y, z;k,a,b)

tn–

n!

∞∑
l=

HPl,β

(
x
α
,
y
α
,
z
α
;k,a,b

)
tl

l!

= α

∞∑
n=

HP(α)
n,β (x, y, z;k,a,b)

tn

n!

∞∑
l=

lHPl,β

(
x
α
,
y
α
,
z
α
;k,a,b

)
tl–

l!
,

and hence

∞∑
n=

HP(α)
n+,β (x, y, z;k,a,b)

tn

n!

∞∑
l=

HPl,β

(
x
α
,
y
α
,
z
α
;k,a,b

)
tl

l!

= α

∞∑
n=

HP(α)
n,β (x, y, z;k,a,b)

tn

n!

∞∑
l=

HPl+,β

(
x
α
,
y
α
,
z
α
;k,a,b

)
tl

l!
.
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Using the fact that (see [, p., Lemma ])

∞∑
n=

∞∑
l=

A(n, l) =
∞∑
n=

n∑
l=

A(n – l, l), (.)

we get

∞∑
n=

[ n∑
l=

(
n
l

)
HP(α)

n–l+,β (x, y, z;k,a,b)HPl,β

(
x
α
,
y
α
,
z
α
;k,a,b

)]
tn

n!

= α

∞∑
n=

[ n∑
l=

(
n
l

)
HP(α)

n–l,β (x, y, z;k,a,b)HPl+,β

(
x
α
,
y
α
,
z
α
;k,a,b

)]
tn

n!
.

Whence the result. �

Corollary . Let k = a = b =  and β = λ. For all m ∈ N, n ∈ N, λ ∈ C, we have the fol-
lowing closed form summation formula for the generalized Apostol-Bernoulli polynomials:

n∑
k=

(
n
k

)[
HB(α)

n–k+ (x, y, z;λ)HBk

(
x
α
,
y
α
,
z
α
;λ

)

– αHB(α)
n–k(x, y, z;λ)Bk+

(
x
α
,
y
α
,
z
α
;λ

)]
= .

Corollary . Let k +  = –a = b =  and β = λ. For all m ∈ N, n ∈ N, λ ∈ C, we have the
following closed form summation formula for the generalized Apostol-Euler polynomials:

n∑
k=

(
n
k

)[
HE (α)

n–k+ (x, y, z;λ)HEk
(
x
α
,
y
α
,
z
α
;λ

)

– αHE (α)
n–k(x, y, z;λ)Ek+

(
x
α
,
y
α
,
z
α
;λ

)]
= .

Corollary . Let k = –a = b =  and β = λ. For all m ∈ N, n ∈ N, λ ∈ C, we have the
following closed form summation formula for the generalized Apostol-Genocchi polynomi-
als:

n∑
k=

(
n
k

)[
HG(α)

n–k+ (x, y, z;λ)HGk

(
x
α
,
y
α
,
z
α
;λ

)

– αHG(α)
n–k(x, y, z;λ)Gk+

(
x
α
,
y
α
,
z
α
;λ

)]
= .

Theorem . Let the conditions (i)-(iii) be satisfied. Then we have the following relation
between Hermite based Apostol polynomials and d-Hermite polynomials:

HP(α)
n+m,β (X,Y ,Z;k,a,b)

=
n,m∑
r,l=

(
n
r

)(
m
l

)
H ()

r+l(X – x,Y – y,Z – z)HP(α)
n+m–r–l(x, y, z;k,a,b).
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Proof From (.), we can write that

(
–k(t +w)k

βbet+w – ab

)α

ex(t+w)+y(t+w)
+z(t+w) =

∞∑
n=

HP(α)
n,β (x, y, z;k,a,b)

(t +w)n

n!

=
∞∑

n,m=
HP(α)

n+m,β (x, y, z;k,a,b)
tn

n!
wm

m!
. (.)

Therefore, we get

(
–k(t +w)k

βbet+w – ab

)α

= e–x(t+w)–y(t+w)
–z(t+w)

∞∑
n,m=

HP(α)
n+m,β (x, y, z;k,a,b)

tn

n!
wm

m!
.

Multiplying both sides by eX(t+w)+Y (t+w)+Z(t+w) , we have

(
–k(t +w)k

βbet+w – ab

)α

eX(t+w)+Y (t+w)
+Z(t+w)

= e(X–x)(t+w)+(Y–y)(t+w)
+(Z–z)(t+w)

∞∑
n,m=

HP(α)
n+m,β (x, y, z;k,a,b)

tn

n!
wm

m!
.

Taking into account (.) and (.), then using (.), we get

∞∑
n,m=

HP(α)
n+m,β (X,Y ,Z;k,a,b)

tn

n!
wm

m!

=
∞∑

n,m=
HP(α)

n+m,β (x, y, z;k,a,b)
tn

n!
wm

m!

∞∑
r,l=

H ()
r+l(X – x,Y – y,Z – z)

tr

r!
wl

l!

=
∞∑

n,m=

n,m∑
r,l=

(
n
r

)(
m
l

)
H ()

r+l(X – x,Y – y,Z – z)HP(α)
n+m–r–l(x, y, z;k,a,b)

tn

n!
wm

m!
.

Whence the result. �

Corollary . Let k = a = b =  and β = λ. For all c,d,m ∈ N, n ∈ N, λ ∈ C, we have the
following summation formula between the Hermite-based generalized Apostol-Bernoulli
polynomials and d-Hermite polynomials:

HB(α)
n+m(X,Y ,Z;λ)

=
n,m∑
k,l=

(
n
k

)(
m
l

)
H ()

k+l(X – x,Y – y,Z – z)HB(α)
n+m–k–l(x, y, z;λ).

Corollary . Let k +  = –a = b =  and β = λ. For all m ∈ N, n ∈ N, λ ∈ C, we have
the following summation formula between the Hermite-based generalized Apostol-Euler
polynomials and d-Hermite polynomials:

HE (α)
n+m(X,Y ,Z;λ)

=
n,m∑
k,l=

(
n
k

)(
m
l

)
H ()

k+l(X – x,Y – y,Z – z)HE (α)
n+m–k–l(x, y, z;λ).
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Corollary . Let k = –a = b =  and β = λ. For all m ∈ N, n ∈ N, λ ∈ C, we have the
following summation formula between the Hermite-based generalized Apostol-Genocchi
polynomials and d-Hermite polynomials:

HG(α)
n+m(X,Y ,Z;λ)

=
n,m∑
k,l=

(
n
k

)(
m
l

)
H ()

k+l(X – x,Y – y,Z – z)HG(α)
n+m–k–l(x, y, z;λ).
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