Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials

Mehmet Ali Özarslan*

Correspondence:
mehmetali.ozarslan@emu.edu.tr Department of Mathematics, Faculty of Arts of Sciences, Eastern Mediterranean University, Gazimagusa, North Cyprus, Mersin 10, Turkey

Abstract

In this paper, we introduce a unified family of Hermite-based Apostol-Bernoulli, Euler and Genocchi polynomials. We obtain some symmetry identities between these polynomials and the generalized sum of integer powers. We give explicit closed-form formulae for this unified family. Furthermore, we prove a finite series relation between this unification and $3 d$-Hermite polynomials. MSC: Primary 11B68; secondary 33C05 Keywords: Hermite-based Apostol-Bernoulli polynomials; Hermite-based Apostol-Euler polynomials; Hermite-based Apostol-Genocchi polynomials; generalized sum of integer powers; generalized sum of alternative integer powers

1 Introduction

Recently, Khan et al. [1] introduced the Hermite-based Appell polynomials via the generating function

$$
\mathcal{G}(x, y, z ; t)=A(t) \exp (\mathcal{M} t)
$$

where

$$
\mathcal{M}=x+2 y \frac{\partial}{\partial x}+3 z \frac{\partial^{2}}{\partial x^{2}}
$$

is the multiplicative operator of the 3-variable Hermite polynomials, which are defined by

$$
\begin{equation*}
\exp \left(x t+y t^{2}+z t^{3}\right)=\sum_{n=0}^{\infty} H_{n}^{(3)}(x, y, z) \frac{t^{n}}{n!} \tag{1.1}
\end{equation*}
$$

and

$$
A(t)=\sum_{n=0}^{\infty} a_{n} t^{n}, \quad a_{0} \neq 0
$$

By using the Berry decoupling identity,

$$
e^{A+B}=e^{m^{2} / 12} e^{\left(\left(\frac{-m}{2}\right) A^{1 / 2}+A\right)} e^{B}, \quad[A, B]=m A^{1 / 2}
$$

they obtained the generating function of the Hermite-based Appell polynomials ${ }_{H} A_{n}(x$, y, z) as

$$
\mathcal{G}(x, y, z ; t)=A(t) \exp \left(x t+y t^{2}+z t^{3}\right)=\sum_{n=0}^{\infty}{ }_{H} A_{n}(x, y, z) \frac{t^{n}}{n!}
$$

Letting $A(t)=\frac{t}{e^{t-1}}$, they defined Hermite-Bernoulli polynomials ${ }_{H} B_{n}(x, y, z)$ by

$$
\frac{t}{e^{t}-1} \exp \left(x t+y t^{2}+z t^{3}\right)=\sum_{n=0}^{\infty}{ }_{H} B_{n}(x, y, z) \frac{t^{n}}{n!}, \quad|t|<2 \pi .
$$

For $A(t)=\frac{2}{e^{t}+1}$, they defined Hermite-Euler polynomials ${ }_{H} E_{n}(x, y, z)$ by

$$
\frac{2}{e^{t}+1} \exp \left(x t+y t^{2}+z t^{3}\right)=\sum_{n=0}^{\infty}{ }_{H} E_{n}(x, y, z) \frac{t^{n}}{n!}, \quad|t|<\pi
$$

and for $A(t)=\frac{2 t}{e^{t}+1}$, they defined Hermite-Genocchi polynomials ${ }_{H} G_{n}(x, y, z)$ by

$$
\frac{2 t}{e^{t}+1} \exp \left(x t+y t^{2}+z t^{3}\right)=\sum_{n=0}^{\infty}{ }_{H} G_{n}(x, y, z) \frac{t^{n}}{n!}, \quad|t|<\pi .
$$

Recently, the author considered the following unification of the Apostol-Bernoulli, Euler and Genocchi polynomials

$$
\begin{aligned}
& f_{a, b}^{(\alpha)}(x ; t ; k, \beta):=\left(\frac{2^{1-k} t^{k}}{\beta^{b} e^{t}-a^{b}}\right)^{\alpha} e^{x t}=\sum_{n=0}^{\infty} P_{n, \beta}^{(\alpha)}(x ; k, a, b) \frac{t^{n}}{n!} \\
& \quad\left(k \in \mathbb{N}_{0} ; a, b \in \mathbb{R} \backslash\{0\} ; \alpha, \beta \in \mathbb{C}\right)
\end{aligned}
$$

and obtained the explicit representation of this unified family, in terms of Gaussian hypergeometric function. Some symmetry identities and multiplication formula are also given in [2]. Note that the family of polynomials $P_{n, \beta}^{(1)}(x, y, z ; k, a, b)$ was investigated in [3].
We organize the paper as follows.
In Section 2, we introduce the unification of the Hermite-based generalized ApostolBernoulli, Euler and Genocchi polynomials ${ }_{H} P_{n, \beta}^{(\alpha)}(x, y, z ; k, a, b)$ and give summation formulas for this unification. In Section 3, we obtain some symmetry identities for these polynomials. In Section 4, we give explicit closed-form formulae for this unified family. Furthermore, we prove a finite series relation between this unification and $3 d$-Hermite polynomials.

2 Hermite-based generalized Apostol-Bernoulli, Euler and Genocchi polynomials

In this paper, we consider the following general class of polynomials:

$$
\begin{align*}
& f_{a, b}^{(\alpha)}(x, y, z ; t ; k, \beta):=\left(\frac{2^{1-k} t^{k}}{\beta^{b} e^{t}-a^{b}}\right)^{\alpha} e^{x+y t^{2}+z t^{3}}=\sum_{n=0}^{\infty}{ }_{H} P_{n, \beta}^{(\alpha)}(x, y, z ; k, a, b) \frac{t^{n}}{n!} \\
& \quad\left(k \in \mathbb{N}_{0} ; a, b \in \mathbb{R} \backslash\{0\} ; \alpha, \beta \in \mathbb{C}\right) . \tag{2.1}
\end{align*}
$$

For the existence of the expansion, we need
(i) $|t|<2 \pi$ when $\alpha \in \mathbb{C}, k=1$ and $\left(\frac{\beta}{a}\right)^{b}=1 ;|t|<2 \pi$ when $\alpha \in \mathbb{N}_{0}, k=2,3, \ldots$ and $\left(\frac{\beta}{a}\right)^{b}=1 ;|t|<\left|b \log \left(\frac{\beta}{a}\right)\right|$ when $\alpha \in \mathbb{N}_{0}, k \in \mathbb{N}$ and $\left(\frac{\beta}{a}\right)^{b} \neq 1($ or $\neq-1) ; x, y, z \in \mathbb{R}, \beta \in \mathbb{C}$, $a, b \in \mathbb{C} /\{0\} ; 1^{\alpha}:=1 ;$
(ii) $|t|<\pi$ when $\left(\frac{\beta}{a}\right)^{b}=-1 ;|t|<\left|b \log \left(\frac{\beta}{a}\right)\right|$ when $\left(\frac{\beta}{a}\right)^{b} \neq-1 ; x, y, z \in \mathbb{R}, k=0, \alpha, \beta \in \mathbb{C}$, $a, b \in \mathbb{C} /\{0\} ; 1^{\alpha}:=1 ;$
(iii) $|t|<\pi$ when $\alpha \in \mathbb{N}_{0}$ and $\left(\frac{\beta}{a}\right)^{b}=-1 ; x, y, z \in \mathbb{R}, k \in \mathbb{N}, \beta \in \mathbb{C}, a, b \in \mathbb{C} /\{0\} ; 1^{\alpha}:=1$, where $w=|w| e^{i \theta},-\pi \leq \theta<\pi$ and $\log (w)=\log (|w|)+i \theta$.

For $k=a=b=1$ and $\beta=\lambda$ in (2.1), we define the following.

Definition 2.1 Let $\alpha \in \mathbb{N}_{0}, \lambda$ be an arbitrary (real or complex) parameter and $x, y, z \in \mathbb{R}$. The Hermite-based generalized Apostol-Bernoulli polynomials are defined by

$$
\begin{aligned}
& \left(\frac{t}{\lambda e^{t}-1}\right)^{\alpha} \exp \left(x t+y t^{2}+z t^{3}\right)=\sum_{n=0}^{\infty}{ }_{H} \mathcal{B}_{n}^{(\alpha)}(x, y, z ; \lambda) \frac{t^{n}}{n!} \\
& (|t|<2 \pi \text { when } \alpha \in \mathbb{C} \text { and } \lambda=1 ;|t|<|\log (\lambda)| \\
& \text { when } \left.\alpha \in \mathbb{N}_{0} \text { and } \lambda \neq 1 ; x, y, z \in \mathbb{R} ; 1^{\alpha}:=1\right) .
\end{aligned}
$$

It is clear that

$$
{ }_{H} P_{n, \lambda}^{(\alpha)}(x, y, z ; 1,1,1)={ }_{H} \mathcal{B}_{n}^{(\alpha)}(x, y, z ; \lambda) .
$$

Some special cases of the Hermite-based generalized Apostol-Bernoulli polynomials (some of which are definition) are listed below:

- ${ }_{H} \mathcal{B}_{n}^{(1)}(x, y, z ; \lambda):={ }_{H} \mathcal{B}_{n}(x, y, z ; \lambda)$ is called Hermite-based Apostol-Bernoulli polynomials.
- ${ }_{H} \mathcal{B}_{n}(x, y, z ; 1)={ }_{H} B_{n}(x, y, z)$ is the Hermite-Bernoulli polynomials.
- ${ }_{H} \mathcal{B}_{n}(x, 0,0 ; \lambda):=\mathcal{B}_{n}(x ; \lambda)$ is the Apostol-Bernoulli polynomials (see [4-7]). When $\lambda=1$, we have the classical Bernoulli polynomials.
- $\mathcal{B}_{n}(0 ; \lambda):=\mathcal{B}_{n}(\lambda)$ are the Apostol-Bernoulli numbers. $\lambda=1$ gives the classical Bernoulli numbers.
Setting $k+1=-a=b=1$ and $\beta=\lambda$ in (2.1), we get the following.
Definition 2.2 Let α and $\lambda(\neq-1)$ be an arbitrary (real or complex) parameter and $x, y, z \in \mathbb{R}$. The Hermite-based generalized Apostol-Euler polynomials are defined by

$$
\begin{aligned}
& \left(\frac{2}{\lambda e^{t}+1}\right)^{\alpha} \exp \left(x t+y t^{2}+z t^{3}\right)=\sum_{n=0}^{\infty}{ }_{H} \mathcal{E}_{n}^{(\alpha)}(x, y, z ; \lambda) \frac{t^{n}}{n!} \\
& \quad\left(|t|<\pi \text { when } \lambda=1 ;|t|<|\log (-\lambda)| \text { when } \lambda \neq 1 ; x, y, z \in \mathbb{R}, \alpha \in \mathbb{C} ; 1^{\alpha}:=1\right) .
\end{aligned}
$$

Obviously, we have

$$
{ }_{H} P_{n, \lambda}^{(\alpha)}(x, y, z ; 0,-1,1)={ }_{H} \mathcal{E}_{n}^{(\alpha)}(x, y, z ; \lambda) .
$$

Some special cases of the Hermite-based generalized Apostol-Euler polynomials (some of which are definition) are listed below:

- ${ }_{H} \mathcal{E}_{n}^{(1)}(x, y, z ; \lambda):={ }_{H} \mathcal{E}_{n}(x, y, z ; \lambda)$ is called Hermite-based Apostol-Euler polynomials.
- ${ }_{H} \mathcal{E}_{n}(x, y, z ; 1)={ }_{H} E_{n}(x, y, z)$ is the Hermite-Euler polynomials.
- ${ }_{H} \mathcal{E}_{n}(x, 0,0 ; \lambda):=\mathcal{E}_{n}(x ; \lambda)$ is the Apostol-Euler polynomials (see [8]). For $\lambda=1$, we have the classical Euler polynomials.
- $2^{n} \mathcal{E}_{n}\left(\frac{1}{2} ; \lambda\right):=\mathcal{E}_{n}(\lambda)$ are the Apostol-Euler numbers. The case $\lambda=1$ gives the classical Euler numbers.
Choosing $k=-2 a=b=1$ and $2 \beta=\lambda$ in (2.1), we define the following.

Definition 2.3 Let α and $\lambda(\neq-1)$ be an arbitrary (real or complex) parameter and $x, y, z \in \mathbb{R}$. The Hermite-based generalized Apostol-Genocchi polynomials are defined by

$$
\begin{aligned}
& \left(\frac{2 t}{\lambda e^{t}+1}\right)^{\alpha} \exp \left(x t+y t^{2}+z t^{3}\right)=\sum_{n=0}^{\infty}{ }_{H} \mathcal{G}_{n}^{(\alpha)}(x, y, z ; \lambda) \frac{t^{n}}{n!} \\
& \left(|t|<\pi \text { when } \alpha \in \mathbb{N}_{0} \text { and } \lambda=1 ;|t|<|\log (-\lambda)|\right. \\
& \text { when } \left.\alpha \in \mathbb{N}_{0} \text { and } \lambda \neq 1 ; x, y, z \in \mathbb{R} ; 1^{\alpha}:=1\right) .
\end{aligned}
$$

It is easily seen that

$$
{ }_{H} P_{n, \frac{\lambda}{2}}^{(\alpha)}\left(x, y, z ; 1, \frac{-1}{2}, 1\right)={ }_{H} \mathcal{G}_{n}^{\alpha}(x, y, z ; \lambda) .
$$

Some special cases of the Hermite-based generalized Apostol-Genocchi polynomials (some of which are definition) are listed below:

- ${ }_{H} \mathcal{G}_{n}^{(1)}(x, y, z ; \lambda):={ }_{H} \mathcal{G}_{n}(x, y, z ; \lambda)$ is called Hermite-based Apostol-Genocchi polynomials.
- ${ }_{H} \mathcal{G}_{n}(x, y, z ; 1)={ }_{H} G_{n}(x, y, z)$ is the Hermite-Genocchi polynomials.
- ${ }_{H} \mathcal{G}_{n}(x, 0,0 ; \lambda):=\mathcal{G}_{n}(x ; \lambda)$ is the Apostol-Genocchi polynomials (see $[9,10]$). When $\lambda=1$, we have the classical Genocchi polynomials.
- $\mathcal{G}_{n}(0 ; \lambda):=\mathcal{G}_{n}(\lambda)$ are the Apostol-Genocchi numbers. $\lambda=1$ gives the classical Genocchi numbers.
Finally we define the unified Hermite-based Apostol polynomials by

$$
\begin{aligned}
& f_{a, b}^{(1)}(x ; t ; k, \beta):=\frac{2^{1-k} t^{k}}{\beta^{b} e^{t}-a^{b}} e^{x t+y t^{2}+z t^{3}}=\sum_{n=0}^{\infty}{ }_{H} P_{n, \beta}(x, y, z ; k, a, b) \frac{t^{n}}{n!} \\
& \quad\left(k \in \mathbb{N}_{0} ; a, b \in \mathbb{R} \backslash\{0\} ; \beta \in \mathbb{C}\right) .
\end{aligned}
$$

Thus it is clear that ${ }_{H} P_{n, \beta}(x, y, z ; k, a, b)={ }_{H} P_{n, \beta}^{(1)}(x, y, z ; k, a, b)$ and that we have the following observations at once:

- ${ }_{H} P_{n, \lambda}(x, y, z ; 1,1,1)={ }_{H} \mathcal{B}_{n}(x, y, z ; \lambda)$ are the Hermite-based Apostol-Bernoulli polynomials.
- ${ }_{H} P_{n, \lambda}(x, y, z ; 0,-1,1)={ }_{H} \mathcal{E}(x, y, z ; \lambda)$ are the Hermite-based Apostol-Euler polynomials.
- ${ }_{H} P_{n, \frac{\lambda}{2}}\left(x, y, z ; 1, \frac{-1}{2}, 1\right)={ }_{H} \mathcal{G}_{n}(x, y, z ; \lambda)$ are the Hermite-based Apostol-Genocchi polynomials.

For the other generalization, we refer [11-25] and [26]. Now we give some relations between the above mentioned Apostol polynomials.
Using (2.1), we get the following identity at once.
Theorem 2.1 Let $\alpha, k \in \mathbb{N}_{0} ; a, b \in \mathbb{R} \backslash\{0\} ; \beta \in \mathbb{C}$ be such that the conditions (i)-(iii) are satisfied. Then, the following relation

$$
\sum_{r=0}^{n}\binom{n}{r}_{H} P_{n-r, \beta}^{(\alpha)}(x, y, z ; k, a, b)_{H} P_{r, \beta}^{(\alpha)}(u, v, w ; k, a, b)={ }_{H} P_{n, \beta}^{(\alpha)}(x+u, y+v, z+w ; k, a, b)
$$

holds true.

Corollary 2.2 For each $n \in \mathbb{N}$, the following relation

$$
\sum_{k=0}^{n}\binom{n}{k}{ }_{H} \mathcal{B}_{n-k}^{(\alpha)}(x, y, z ; \lambda)_{H} \mathcal{B}_{k}^{(\beta)}(u, v, w ; \lambda)={ }_{H} \mathcal{B}_{n}^{(\alpha+\beta)}(x+u, y+v, z+w ; \lambda)
$$

holds true for the Hermite-based generalized Apostol-Bernoulli polynomials.
Corollary 2.3 For each $n \in \mathbb{N}$, the following relation

$$
\sum_{k=0}^{n}\binom{n}{k}{ }_{H} \mathcal{E}_{n-k}^{(\alpha)}(x, y, z ; \lambda)_{H} \mathcal{E}_{k}^{(\beta)}(u, v, w ; \lambda)={ }_{H} \mathcal{E}_{n}^{(\alpha+\beta)}(x+u, y+v, z+w ; \lambda)
$$

holds true for the Hermite-based generalized Apostol-Euler polynomials.
Corollary 2.4 For each $n \in \mathbb{N}$, the following relation

$$
\sum_{k=0}^{n}\binom{n}{k}_{H} \mathcal{G}_{n-k}^{(\alpha)}(x, y, z ; \lambda)_{H} \mathcal{G}_{k}^{(\beta)}(u, v, w ; \lambda)={ }_{H} \mathcal{G}_{n}^{(\alpha+\beta)}(x+u, y+v, z+w ; \lambda)
$$

holds true for the Hermite-based generalized Apostol-Genocchi polynomials.

Theorem 2.5 For each $n \in \mathbb{N}$, the following relation

$$
\sum_{k=0}^{n}\binom{n}{k}_{H} \mathcal{B}_{n-k}^{(\alpha)}(x, y, z ; \lambda)_{H} \mathcal{E}_{k}^{(\alpha)}(u, v, w ; \lambda)=2_{H}^{n} \mathcal{B}_{n}^{(\alpha)}\left(\frac{x+u}{2}, \frac{y+v}{4}, \frac{z+w}{8} ; \lambda^{2}\right)
$$

holds true between the Hermite-based generalized Apostol-Bernoulli and Euler polynomials.

Proof By direct calculations, we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty}{ }_{H} \mathcal{B}_{n}^{(\alpha)}\left(\frac{x+u}{2}, \frac{y+v}{4}, \frac{z+w}{8} ; \lambda^{2}\right) \frac{(2 t)^{n}}{n!} \\
& \quad=\left(\frac{2 t}{\lambda^{2} e^{2 t}-1}\right)^{\alpha} \exp \left[\left(\frac{x+u}{2}\right) 2 t+\left(\frac{y+v}{4}\right)(2 t)^{2}+\left(\frac{z+w}{8}\right)(2 t)^{3}\right] \\
& \quad=\left(\frac{t}{\lambda e^{t}-1}\right)^{\alpha} \exp \left(x t+y t^{2}+z t^{3}\right)\left(\frac{2}{\lambda e^{t}+1}\right)^{\alpha} \exp \left(u t+v t^{2}+w t^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty}{ }_{H} \mathcal{B}_{n}^{(\alpha)}(x, y, z ; \lambda) \frac{t^{n}}{n!} \sum_{k=0}^{\infty}{ }_{H} \mathcal{E}_{k}^{(\alpha)}(u, v, w ; \lambda) \frac{t^{k}}{k!} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k}{ }_{H} \mathcal{B}_{n-k}^{(\alpha)}(x, y, z ; \lambda)_{H} \mathcal{E}_{k}^{(\alpha)}(u, v, w ; \lambda) \frac{t^{n}}{n!} .
\end{aligned}
$$

Comparing the coefficients of $\frac{t^{n}}{n!}$ on both sides, we get the result.

3 Symmetry identities for the unified family

For each $k \in \mathbb{N}_{0}$, the sum $S_{k}(n)=\sum_{i=0}^{n} i^{k}$ is known as the power sum and we have the following generating relation:

$$
\sum_{k=0}^{\infty} S_{k}(n) \frac{t^{k}}{k!}=1+e^{t}+e^{2 t}+\cdots+e^{n t}=\frac{e^{(n+1) t}-1}{e^{t}-1}
$$

For an arbitrary real or complex λ, the generalized sum of integer powers $S_{k}(n, \lambda)$ is defined, in [27], via the following generating relation:

$$
\sum_{k=0}^{\infty} S_{k}(n, \lambda) \frac{t^{k}}{k!}=\frac{\lambda e^{(n+1) t}-1}{\lambda e^{t}-1} .
$$

It clear that $S_{k}(n, 1)=S_{k}(n)$.
For each $k \in \mathbb{N}_{0}$, the $\operatorname{sum} M_{k}(n)=\sum_{i=0}^{n}(-1)^{k} i^{k}$ is known as the sum of alternative integer powers. The following generating relation is straightforward:

$$
\sum_{k=0}^{\infty} M_{k}(n) \frac{t^{k}}{k!}=1-e^{t}+e^{2 t}-\cdots+(-1)^{n} e^{n t}=\frac{1-\left(-e^{t}\right)^{(n+1)}}{e^{t}+1}
$$

For an arbitrary real or complex λ, the generalized sum of alternative integer powers $M_{k}(n, \lambda)$ is defined, in [27], by

$$
\sum_{k=0}^{\infty} M_{k}(n, \lambda) \frac{t^{k}}{k!}=\frac{1-\lambda\left(-e^{t}\right)^{(n+1)}}{\lambda e^{t}+1}
$$

Clearly $M_{k}(n, 1)=M_{k}(n)$. On the other hand, if n is even, then

$$
\begin{equation*}
S_{k}(n,-\lambda)=M_{k}(n, \lambda) . \tag{3.1}
\end{equation*}
$$

We start by obtaining certain symmetry identities, which includes the results given in [28-32] and [27], when $y=z=0$.

Theorem 3.1 Let $c, d, m \in \mathbb{N}, n \in \mathbb{N}_{0}$ be such that the conditions (i)-(iii) are satisfied with t replaced by ct and $d t$. Then we have the following symmetry identity:

$$
\begin{aligned}
& \sum_{r=0}^{n}\binom{n}{r} c^{n-r} d^{r+k}{ }_{H} P_{n-r, \beta}^{(m)}\left(d x, d^{2} y, d^{3} z ; k, a, b\right) \\
& \quad \times \sum_{l=0}^{r}\binom{r}{l} S_{l}\left(c-1 ;\left(\frac{\beta}{a}\right)^{b}\right){ }_{H} P_{r-l, \beta}^{(m-1)}\left(c X, c^{2} Y, c^{3} Z ; k, a, b\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{r=0}^{n}\binom{n}{r} d^{n-r} c^{r+k}{ }_{H} P_{n-r, \beta}^{(m)}\left(c x, c^{2} y, c^{3} z ; k, a, b\right) \\
& \times \sum_{l=0}^{r}\binom{r}{l} S_{l}\left(d-1 ;\left(\frac{\beta}{a}\right)^{b}\right)_{H} P_{r-l, \beta}^{(m-1)}\left(d X, d^{2} Y, d^{3} Z ; k, a, b\right) .
\end{aligned}
$$

Proof Let

$$
G(t):=\frac{2^{(1-k)(2 m-1)} t^{2 k m-k} e^{c d x t+y(c d t)^{2}+z(c d t)^{3}}\left(\beta^{b} e^{c d t}-a^{b}\right) e^{c d X t+Y(c d t)^{2}+Z(c d t)^{3}}}{\left(\beta^{b} e^{c t}-a^{b}\right)^{m}\left(\beta^{b} e^{d t}-a^{b}\right)^{m}} .
$$

Expanding $G(t)$ into a series, we get

$$
\begin{aligned}
G(t)= & \frac{1}{c^{k m} d^{k(m-1)}}\left(\frac{2^{1-k} c^{k} t^{k}}{\beta^{b} e^{c t}-a^{b}}\right)^{m} e^{c d x t+y(c d t)^{2}+z(c d t)^{3}}\left(\frac{\beta^{b} e^{c d t}-a^{b}}{\beta^{b} e^{d t}-a^{b}}\right) \\
& \times\left(\frac{2^{1-k} d^{k} t^{k}}{\beta^{b} e^{d t}-a^{b}}\right)^{m-1} e^{c d X t+Y(c d t)^{2}+Z(c d t)^{3}} \\
= & \frac{1}{c^{k m} d^{k(m-1)}}\left[\sum_{n=0}^{\infty}{ }_{H} P_{n, \beta}^{(m)}\left(d x, d^{2} y, d^{3} z ; k, a, b\right) \frac{(c t)^{n}}{n!}\right]\left[\sum_{l=0}^{\infty} S_{l}\left(c-1 ;\left(\frac{\beta}{a}\right)^{b}\right) \frac{(d t)^{l}}{l!}\right] \\
& \times\left[\sum_{r=0}^{\infty}{ }_{H} P_{r, \beta}^{(m-1)}\left(c X, c^{2} Y, c^{3} Z ; k, a, b\right) \frac{(d t)^{r}}{r!}\right] .
\end{aligned}
$$

Now, using Corollary 2 in [33, p.890], we get

$$
\begin{align*}
G(t)= & \frac{1}{c^{k m} d^{k m}} \sum_{n=0}^{\infty}\left[\sum_{r=0}^{n}\binom{n}{r} c^{n-r} d^{r+k}{ }_{H} P_{n-r, \beta}^{(m)}\left(d x, d^{2} y, d^{3} z ; k, a, b\right)\right. \\
& \left.\times \sum_{l=0}^{r}\binom{r}{l} S_{l}\left(c-1 ;\left(\frac{\beta}{a}\right)^{b}\right)_{H} P_{r-l, \beta}^{(m-1)}\left(c X, c^{2} Y, c^{3} Z ; k, a, b\right)\right] \frac{t^{n}}{n!} \tag{3.2}
\end{align*}
$$

In a similar manner,

$$
\begin{align*}
G(t)= & \frac{1}{d^{k m} c^{k(m-1)}}\left(\frac{2^{1-k} d^{k} t^{k}}{\beta^{b} e^{c t}-a^{b}}\right)^{m} e^{c d x t+y(c d t)^{2}+z(c d t)^{3}}\left(\frac{\beta^{b} e^{c d t}-a^{b}}{\beta^{b} e^{d t}-a^{b}}\right) \\
& \times\left(\frac{2^{1-k} c^{k} t^{k}}{\beta^{b} e^{d t}-a^{b}}\right)^{m-1} e^{c d X t+Y(c d t)^{2}+Z(c d t)^{3}} \\
= & \frac{1}{c^{k m} d^{k m}} \sum_{n=0}^{\infty}\left[\sum_{r=0}^{n}\binom{n}{r} d^{n-r} c^{r+k}{ }_{H} P_{n-r, \beta}^{(m)}\left(c x, c^{2} y, c^{3} z ; k, a, b\right)\right. \\
& \left.\times \sum_{l=0}^{r}\binom{r}{l} S_{l}\left(d-1 ;\left(\frac{\beta}{a}\right)^{b}\right){ }_{H} P_{r-l, \beta}^{(m-1)}\left(d X, d^{2} Y, d^{3} Z ; k, a, b\right)\right] \frac{t^{n}}{n!} . \tag{3.3}
\end{align*}
$$

From (3.2) and (3.3), we get the result.

For $k=a=b=1$ and $\beta=\lambda$ we get the following corollary at once.

Corollary 3.2 For all $c, d, m \in \mathbb{N}, n \in \mathbb{N}_{0}, \lambda \in \mathbb{C}$, we have the following symmetry identity for the Hermite based generalized Apostol-Bernoulli polynomials:

$$
\begin{aligned}
& \sum_{r=0}^{n}\binom{n}{r} c^{n-r} d^{r+1}{ }_{H} \mathcal{B}_{n-r}^{(m)}\left(d x, d^{2} y, d^{3} z, \lambda\right) \\
& \times \sum_{l=0}^{r}\binom{r}{l} S_{l}(c-1 ; \lambda)_{H} \mathcal{B}_{r-l}^{(m-1)}\left(c X, c^{2} Y, c^{3} Z, \lambda\right) \\
&= \sum_{r=0}^{n}\binom{n}{r} d^{n-r} c^{r+1}{ }_{H} \mathcal{B}_{n-r}^{(m)}\left(c x, c^{2} y, c^{3} z, \lambda\right) \\
& \quad \times \sum_{l=0}^{r}\binom{r}{l} S_{l}(d-1 ; \lambda)_{H} \mathcal{B}_{r-l}^{(m-1)}\left(d X, d^{2} Y, d^{3} Z, \lambda\right)
\end{aligned}
$$

For $k+1=-a=b=1$ and $\beta=\lambda$ we get, by considering (3.1) that

Corollary 3.3 For all $m \in \mathbb{N}, n \in \mathbb{N}_{0}, \lambda \in \mathbb{C}$, we have for each pair of positive even integers c and d, or for each pair of positive odd integers c and d,

$$
\begin{aligned}
& \sum_{r=0}^{n}\binom{n}{r} c^{n-r} d^{r+1}{ }_{H} \mathcal{E}_{n-r}^{(m)}\left(d x, d^{2} y, d^{3} z, \lambda\right) \\
& \times \sum_{l=0}^{r}\binom{r}{l} M_{l}(c-1 ; \lambda)_{H} \mathcal{E}_{r-l}^{(m-1)}\left(c X, c^{2} Y, c^{3} Z, \lambda\right) \\
&= \sum_{r=0}^{n}\binom{n}{r} d^{n-r} c^{r+1}{ }_{H} \mathcal{E}_{n-r}^{(m)}\left(c x, c^{2} y, c^{3} z, \lambda\right) \\
& \quad \times \sum_{l=0}^{r}\binom{r}{l} M_{l}(d-1 ; \lambda)_{H} \mathcal{E}_{r-l}^{(m-1)}\left(d X, d^{2} Y, d^{3} Z, \lambda\right)
\end{aligned}
$$

Letting $k=-2 a=b=1$ and $2 \beta=\lambda$ and taking into account (3.1) that we have the following.

Corollary 3.4 For all $m \in \mathbb{N}, n \in \mathbb{N}_{0}, \lambda \in \mathbb{C}$, we have for each pair of positive even integers c and d, or for each pair of positive odd integers c and d, that

$$
\begin{aligned}
& \sum_{r=0}^{n}\binom{n}{r} c^{n-r} d^{r+1}{ }_{H} \mathcal{G}_{n-r}^{(m)}\left(d x, d^{2} y, d^{3} z, \lambda\right) \\
& \quad \times \sum_{l=0}^{r}\binom{r}{l} M_{l}(c-1 ; \lambda)_{H} \mathcal{G}_{r-l}^{(m-1)}\left(c X, c^{2} Y, c^{3} Z, \lambda\right) \\
& =\sum_{r=0}^{n}\binom{n}{r} d^{n-r} c^{r+1}{ }_{H} \mathcal{G}_{n-r}^{(m)}\left(c x, c^{2} y, c^{3} z, \lambda\right) \\
& \quad \times \sum_{l=0}^{r}\binom{r}{l} M_{l}(d-1 ; \lambda)_{H} \mathcal{G}_{r-l}^{(m-1)}\left(d X, d^{2} Y, d^{3} Z, \lambda\right)
\end{aligned}
$$

4 Closed-form formulae for Hermite-based generalized Apostol polynomials

In this section, taking into account the relations

$$
\begin{aligned}
& f_{a, b}^{(\alpha)}(x, y, z ; t ; k, \beta):=\left(\frac{2^{1-k} t^{k}}{\beta^{b} e^{t}-a^{b}}\right)^{\alpha} e^{x t+y t^{2}+z t^{3}}=\sum_{n=0}^{\infty}{ }_{H} P_{n, \beta}^{(\alpha)}(x, y, z ; k, a, b) \frac{t^{n}}{n!}, \\
& f_{a, b}^{(1)}(x, y, z ; t ; k, \beta):=\left(\frac{2^{1-k} t^{k}}{\beta^{b} e^{t}-a^{b}}\right) e^{x t+y t^{2}+z t^{3}}=\sum_{n=0}^{\infty}{ }_{H} P_{n, \beta}(x, y, z ; k, a, b) \frac{t^{n}}{n!},
\end{aligned}
$$

we observe the following fact:

$$
\begin{equation*}
\left[f_{a, b}^{(1)}\left(\frac{x}{\alpha}, \frac{y}{\alpha}, \frac{z}{\alpha} ; t ; k, \beta\right)\right]^{\alpha}=f_{a, b}^{(\alpha)}(x, y, z ; t ; k, \beta) . \tag{4.1}
\end{equation*}
$$

Using (4.1), we start by proving the following closed form summation formula:
Theorem 4.1 Let the conditions (i)-(iii) be satisfied. The following summation formula:

$$
\begin{aligned}
& \sum_{l=0}^{n}\binom{n}{l}\left[{ }_{H} P_{n-l+1, \beta}^{(\alpha)}(x, y, z ; k, a, b)_{H} P_{l, \beta}\left(\frac{x}{\alpha}, \frac{y}{\alpha}, \frac{z}{\alpha} ; k, a, b\right)\right. \\
& \left.\quad-\alpha_{H} P_{n-l, \beta}^{(\alpha)}(x, y, z ; k, a, b)_{H} P_{l+1, \beta}\left(\frac{x}{\alpha}, \frac{y}{\alpha}, \frac{z}{\alpha} ; k, a, b\right)\right]=0
\end{aligned}
$$

holds true.
Proof Taking logarithms on both sides of (4.1) and then differentiating with respect to t, we get

$$
\begin{aligned}
& \frac{\partial f_{a, b}^{(\alpha)}(x, y, z ; t ; k, \beta)}{\partial t} f_{a, b}^{(1)}\left(\frac{x}{\alpha}, \frac{y}{\alpha}, \frac{z}{\alpha} ; t ; k, \beta\right) \\
& \quad=\alpha f_{a, b}^{(\alpha)}(x, y, z ; t ; k, \beta) \frac{\partial f_{a, b}^{(1)}\left(\frac{x}{\alpha}, \frac{y}{\alpha}, \frac{z}{\alpha} ; t ; k, \beta\right)}{\partial t} .
\end{aligned}
$$

Inserting the corresponding generating relations, we obtain

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n_{H} P_{n, \beta}^{(\alpha)}(x, y, z ; k, a, b) \frac{t^{n-1}}{n!} \sum_{l=0}^{\infty}{ }_{H} P_{l, \beta}\left(\frac{x}{\alpha}, \frac{y}{\alpha}, \frac{z}{\alpha} ; k, a, b\right) \frac{t^{l}}{l!} \\
& \quad=\alpha \sum_{n=0}^{\infty}{ }_{H} P_{n, \beta}^{(\alpha)}(x, y, z ; k, a, b) \frac{t^{n}}{n!} \sum_{l=0}^{\infty} l_{H} P_{l, \beta}\left(\frac{x}{\alpha}, \frac{y}{\alpha}, \frac{z}{\alpha} ; k, a, b\right) \frac{t^{l-1}}{l!},
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \sum_{n=0}^{\infty}{ }_{H} P_{n+1, \beta}^{(\alpha)}(x, y, z ; k, a, b) \frac{t^{n}}{n!} \sum_{l=0}^{\infty}{ }_{H} P_{l, \beta}\left(\frac{x}{\alpha}, \frac{y}{\alpha}, \frac{z}{\alpha} ; k, a, b\right) \frac{t^{l}}{l!} \\
& \quad=\alpha \sum_{n=0}^{\infty}{ }_{H} P_{n, \beta}^{(\alpha)}(x, y, z ; k, a, b) \frac{t^{n}}{n!} \sum_{l=0}^{\infty}{ }_{H} P_{l+1, \beta}\left(\frac{x}{\alpha}, \frac{y}{\alpha}, \frac{z}{\alpha} ; k, a, b\right) \frac{t^{l}}{l!} .
\end{aligned}
$$

Using the fact that (see [34, p.101, Lemma 3])

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{l=0}^{\infty} A(n, l)=\sum_{n=0}^{\infty} \sum_{l=0}^{n} A(n-l, l), \tag{4.2}
\end{equation*}
$$

we get

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left[\sum_{l=0}^{n}\binom{n}{l}_{H} P_{n-l+1, \beta}^{(\alpha)}(x, y, z ; k, a, b)_{H} P_{l, \beta}\left(\frac{x}{\alpha}, \frac{y}{\alpha}, \frac{z}{\alpha} ; k, a, b\right)\right] \frac{t^{n}}{n!} \\
& \quad=\alpha \sum_{n=0}^{\infty}\left[\sum_{l=0}^{n}\binom{n}{l}_{H} P_{n-l, \beta}^{(\alpha)}(x, y, z ; k, a, b)_{H} P_{l+1, \beta}\left(\frac{x}{\alpha}, \frac{y}{\alpha}, \frac{z}{\alpha} ; k, a, b\right)\right] \frac{t^{n}}{n!} .
\end{aligned}
$$

Whence the result.

Corollary 4.2 Let $k=a=b=1$ and $\beta=\lambda$. For all $m \in \mathbb{N}, n \in \mathbb{N}_{0}, \lambda \in \mathbb{C}$, we have the following closed form summation formula for the generalized Apostol-Bernoulli polynomials:

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k}\left[{ }_{H} \mathcal{B}_{n-k+1}^{(\alpha)}(x, y, z ; \lambda)_{H} \mathcal{B}_{k}\left(\frac{x}{\alpha}, \frac{y}{\alpha}, \frac{z}{\alpha} ; \lambda\right)\right. \\
& \left.\quad-\alpha_{H} \mathcal{B}_{n-k}^{(\alpha)}(x, y, z ; \lambda) \mathcal{B}_{k+1}\left(\frac{x}{\alpha}, \frac{y}{\alpha}, \frac{z}{\alpha} ; \lambda\right)\right]=0
\end{aligned}
$$

Corollary 4.3 Let $k+1=-a=b=1$ and $\beta=\lambda$. For all $m \in \mathbb{N}, n \in \mathbb{N}_{0}, \lambda \in \mathbb{C}$, we have the following closed form summation formula for the generalized Apostol-Euler polynomials:

$$
\begin{gathered}
\sum_{k=0}^{n}\binom{n}{k}\left[{ }_{H} \mathcal{E}_{n-k+1}^{(\alpha)}(x, y, z ; \lambda)_{H} \mathcal{E}_{k}\left(\frac{x}{\alpha}, \frac{y}{\alpha}, \frac{z}{\alpha} ; \lambda\right)\right. \\
\left.\quad-\alpha_{H} \mathcal{E}_{n-k}^{(\alpha)}(x, y, z ; \lambda) \mathcal{E}_{k+1}\left(\frac{x}{\alpha}, \frac{y}{\alpha}, \frac{z}{\alpha} ; \lambda\right)\right]=0 .
\end{gathered}
$$

Corollary 4.4 Let $k=-2 a=b=1$ and $2 \beta=\lambda$. For all $m \in \mathbb{N}, n \in \mathbb{N}_{0}, \lambda \in \mathbb{C}$, we have the following closed form summation formula for the generalized Apostol-Genocchi polynomials:

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k}\left[{ }_{H} \mathcal{G}_{n-k+1}^{(\alpha)}(x, y, z ; \lambda)_{H} \mathcal{G}_{k}\left(\frac{x}{\alpha}, \frac{y}{\alpha}, \frac{z}{\alpha} ; \lambda\right)\right. \\
& \left.\quad-\alpha_{H} \mathcal{G}_{n-k}^{(\alpha)}(x, y, z ; \lambda) \mathcal{G}_{k+1}\left(\frac{x}{\alpha}, \frac{y}{\alpha}, \frac{z}{\alpha} ; \lambda\right)\right]=0
\end{aligned}
$$

Theorem 4.5 Let the conditions (i)-(iii) be satisfied. Then we have the following relation between Hermite based Apostol polynomials and 3d-Hermite polynomials:

$$
\begin{aligned}
& { }_{H} P_{n+m, \beta}^{(\alpha)}(X, Y, Z ; k, a, b) \\
& \quad=\sum_{r, l=0}^{n, m}\binom{n}{r}\binom{m}{l} H_{r+l}^{(3)}(X-x, Y-y, Z-z)_{H} P_{n+m-r-l}^{(\alpha)}(x, y, z ; k, a, b) .
\end{aligned}
$$

Proof From (2.1), we can write that

$$
\begin{align*}
\left(\frac{2^{1-k}(t+w)^{k}}{\beta^{b} e^{t+w}-a^{b}}\right)^{\alpha} e^{x(t+w)+y(t+w)^{2}+z(t+w)^{3}} & =\sum_{n=0}^{\infty}{ }_{H} P_{n, \beta}^{(\alpha)}(x, y, z ; k, a, b) \frac{(t+w)^{n}}{n!} \\
& =\sum_{n, m=0}^{\infty}{ }_{H} P_{n+m, \beta}^{(\alpha)}(x, y, z ; k, a, b) \frac{t^{n}}{n!} \frac{w^{m}}{m!} \tag{4.3}
\end{align*}
$$

Therefore, we get

$$
\left(\frac{2^{1-k}(t+w)^{k}}{\beta^{b} e^{t+w}-a^{b}}\right)^{\alpha}=e^{-x(t+w)-y(t+w)^{2}-z(t+w)^{3}} \sum_{n, m=0}^{\infty}{ }_{H} P_{n+m, \beta}^{(\alpha)}(x, y, z ; k, a, b) \frac{t^{n}}{n!} \frac{w^{m}}{m!} .
$$

Multiplying both sides by $e^{X(t+w)+Y(t+w)^{2}+Z(t+w)^{3}}$, we have

$$
\begin{aligned}
& \left(\frac{2^{1-k}(t+w)^{k}}{\beta^{b} e^{t+w}-a^{b}}\right)^{\alpha} e^{X(t+w)+Y(t+w)^{2}+Z(t+w)^{3}} \\
& \quad=e^{(X-x)(t+w)+(Y-y)(t+w)^{2}+(Z-z)(t+w)^{3}} \sum_{n, m=0}^{\infty}{ }_{H} P_{n+m, \beta}^{(\alpha)}(x, y, z ; k, a, b) \frac{t^{n}}{n!} \frac{w^{m}}{m!} .
\end{aligned}
$$

Taking into account (1.1) and (4.3), then using (4.2), we get

$$
\begin{aligned}
& \sum_{n, m=0}^{\infty}{ }_{H} P_{n+m, \beta}^{(\alpha)}(X, Y, Z ; k, a, b) \frac{t^{n}}{n!} \frac{w^{m}}{m!} \\
& \quad=\sum_{n, m=0}^{\infty}{ }_{H} P_{n+m, \beta}^{(\alpha)}(x, y, z ; k, a, b) \frac{t^{n}}{n!} \frac{w^{m}}{m!} \sum_{r, l=0}^{\infty} H_{r+l}^{(3)}(X-x, Y-y, Z-z) \frac{t^{r}}{r!} \frac{w^{l}}{l!} \\
& \quad=\sum_{n, m=0}^{\infty} \sum_{r, l=0}^{n, m}\binom{n}{r}\binom{m}{l} H_{r+l}^{(3)}(X-x, Y-y, Z-z)_{H} P_{n+m-r-l}^{(\alpha)}(x, y, z ; k, a, b) \frac{t^{n}}{n!} \frac{w^{m}}{m!} .
\end{aligned}
$$

Whence the result.

Corollary 4.6 Let $k=a=b=1$ and $\beta=\lambda$. For all $c, d, m \in \mathbb{N}, n \in \mathbb{N}_{0}, \lambda \in \mathbb{C}$, we have the following summation formula between the Hermite-based generalized Apostol-Bernoulli polynomials and 3d-Hermite polynomials:

$$
\begin{aligned}
& { }_{H} \mathcal{B}_{n+m}^{(\alpha)}(X, Y, Z ; \lambda) \\
& \quad=\sum_{k, l=0}^{n, m}\binom{n}{k}\binom{m}{l} H_{k+l}^{(3)}(X-x, Y-y, Z-z)_{H} \mathcal{B}_{n+m-k-l}^{(\alpha)}(x, y, z ; \lambda) .
\end{aligned}
$$

Corollary 4.7 Let $k+1=-a=b=1$ and $\beta=\lambda$. For all $m \in \mathbb{N}, n \in \mathbb{N}_{0}, \lambda \in \mathbb{C}$, we have the following summation formula between the Hermite-based generalized Apostol-Euler polynomials and 3d-Hermite polynomials:

$$
\begin{aligned}
& { }_{H} \mathcal{E}_{n+m}^{(\alpha)}(X, Y, Z ; \lambda) \\
& \quad=\sum_{k, l=0}^{n, m}\binom{n}{k}\binom{m}{l} H_{k+l}^{(3)}(X-x, Y-y, Z-z)_{H} \mathcal{E}_{n+m-k-l}^{(\alpha)}(x, y, z ; \lambda) .
\end{aligned}
$$

Corollary 4.8 Let $k=-2 a=b=1$ and $2 \beta=\lambda$. For all $m \in \mathbb{N}, n \in \mathbb{N}_{0}, \lambda \in \mathbb{C}$, we have the following summation formula between the Hermite-based generalized Apostol-Genocchi polynomials and 3d-Hermite polynomials:

$$
\begin{aligned}
& { }_{H} \mathcal{G}_{n+m}^{(\alpha)}(X, Y, Z ; \lambda) \\
& \quad=\sum_{k, l=0}^{n, m}\binom{n}{k}\binom{m}{l} H_{k+l}^{(3)}(X-x, Y-y, Z-z)_{H} \mathcal{G}_{n+m-k-l}^{(\alpha)}(x, y, z ; \lambda) .
\end{aligned}
$$

Competing interests

The author declares that they have no competing interests.

Author's contributions

The author completed the paper himself. The author read and approved the final manuscript.

Acknowledgements

Dedicated to Professor Hari M Srivastava.

Received: 3 December 2012 Accepted: 10 April 2013 Published: 24 April 2013

References

1. Khan, S, Yasmin, G, Khan, R, Hassan, NAM: Hermite-based Appell polynomials: properties and applications. J. Math. Anal. Appl. 351, 756-764 (2009)
2. Özarslan, MA: Unified Apostol-Bernoulli, Euler and Genocchi polynomials. Comput. Math. Appl. 62(6), 2452-2462 (2011)
3. Ozden, H, Simsek, Y, Srivastava, HM: A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials. Comput. Math. Appl. 60(10), 2779-2787 (2010)
4. Luo, Q-M: On the Apostol-Bernoulli polynomials. Cent. Eur. J. Math. 2(4), 509-515 (2004)
5. Luo, Q-M, Srivastava, HM: Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 51(3-4), 631-642 (2006)
6. Luo, Q-M, Srivastava, HM: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 308(1), 290-302 (2005)
7. Srivastava, HM: Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Camb. Philos. Soc. 129(1), 77-84 (2000)
8. Luo, Q-M: Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions. Taiwan. J. Math. 10, 917-925 (2006)
9. Luo, Q-M: Extension for the Genocchi polynomials and its Fourier expansions and integral representations. Osaka J. Math. 48(2), 291-309 (2011)
10. Luo, Q-M: Fourier expansions and integral representations for the Genocchi polynomials. J. Integer Seq. 12, Article ID 09.1.4 (2009)
11. Dere, R, Simsek, Y: Genocchi polynomials associated with the umbral algebra. Appl. Math. Comput. 218, 756-761 (2011)
12. Dere, R, Simsek, Y: Applications of umbral algebra to some special polynomials. Adv. Stud. Contemp. Math. 22, 433-438 (2012)
13. Karande, BK, Thakare, NK: On the unification of Bernoulli and Euler polynomials. Indian J. Pure Appl. Math. 6, 98-107 (1975)
14. Kurt, B, Simsek, Y: Frobenius-Euler type polynomials related to Hermite-Bernoulli polynomials. Analysis and applied math. AIP Conf. Proc. 1389, 385-388 (2011)
15. Luo, Q-M: q-Extensions for the Apostol-Genocchi polynomials. Gen. Math. 17, 113-125 (2009)
16. Luo, Q-M: The multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order. Integral Transforms Spec. Funct. 20(5-6), 377-391 (2009)
17. Luo, Q-M, Srivastava, HM: Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind. Appl. Math. Comput. 217, 5702-5728 (2011)
18. Ozden, H, Simsek, Y: A new extension of q-Euler numbers and polynomials related to their interpolation functions. Appl. Math. Lett. 21, 934-939 (2008)
19. Simsek, Y: Complete sum of products of (h, q)-extension of Euler polynomials and numbers. J. Differ. Equ. Appl. 16(11), 1331-1348 (2010)
20. Simsek, Y: Twisted (h, q)-Bernoulli numbers and polynomials related to twisted (h, q)-zeta function and L-function. J. Math. Anal. Appl. 324, 790-804 (2006)
21. Simsek, Y: Twisted p-adic (h, q)-L-functions. Comput. Math. Appl. 59, 2097-2110 (2010)
22. Srivastava, HM: Some generalizations and basic (or q^{-}) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 5, 390-444 (2011)
23. Srivastava, HM, Choi, J: Series Associated with the Zeta and Related Functions. Kluwer Academic, Dordrecht (2001)
24. Srivastava, HM, Choi, J: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012)
25. Srivastava, HM, Garg, M, Choudhary, S: A new generalization of the Bernoulli and related polynomials. Russ. J. Math. Phys. 17, 251-261 (2010)
26. Srivastava, HM, Özarslan, MA, Kaanoğlu, C: Some generalized Lagrange-based Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. Russ. J. Math. Phys. 20, 110-120 (2013)
27. Zhang, Z, Yang, H: Several identities for the generalized Apostol-Bernoulli polynomials. Comput. Math. Appl. 56(12), 2993-2999 (2008)
28. Deeba, E, Rodriguez, D: Stirling's series and Bernoulli numbers. Am. Math. Mon. 98, 423-426 (1991)
29. Kurt, V: A further symmetric relation on the analogue of the Apostol-Bernoulli and the analogue of the Apostol-Genocchi polynomials. Appl. Math. Sci. 3(53-56), 2757-2764 (2009)
30. Raabe, JL: Zurückführung einiger Summen und bestimmten Integrale auf die Jakob Bernoullische Function. J. Reine Angew. Math. 42, 348-376 (1851)
31. Tuenter, HJH: A symmetry of power sum polynomials and Bernoulli numbers. Am. Math. Mon. 108, 258-261 (2001)
32. Yang, SL: An identity of symmetry for the Bernoulli polynomials. Discrete Math. 308(4), 550-554 (2008)
33. Srivastava, HM, Özarslan, MA, Kaanoğlu, C: Some families of generating functions for a certain class of three-variable polynomials. Integral Transforms Spec. Funct. 21(12), 885-896 (2010)
34. Srivastava, HM, Manocha, HL: A Treatise on Generating Functions. Halsted, New York (1984)
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

[^0]: doi:10.1186/1687-1847-2013-116
 Cite this article as: Özarslan: Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials. Advances in Difference Equations 2013 2013:116

