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1 Introduction
As is well known, the Bernoulli polynomials of order a are defined by the generating func-
tion to be

(
t

et – 

)a

ext =
∞∑
n=

B(a)
n (x)

tn

n!
(see [–]), (.)

and the Narumi polynomials are also given by

(
log( + t)

t

)a

( + t)x =
∞∑
n=

N (a)
n (x)
n!

tn (see [, ]). (.)

In the special case, x = , N (a)
n () =N (a)

n are called the Narurni numbers.
Throughout this paper, we assume that λ ∈ C with λ �= . Frobenius-Euler polynomials

of order a are defined by the generating function to be

(
 – λ

et – λ

)a

ext =
∞∑
n=

H (a)
n (x|λ) t

n

n!
(see [–]). (.)

The Stirling number of the second kind is also defined by the generating function to be

(
et – 

)n = n!
∞∑
k=n

S(k,n)
tk

k!
(see [–]), (.)

and the Stirling number of the first kind is given by

(x)n = x(x – ) · · · (x – n + ) =
n∑
l=

S(n, l)xl (see [, –]). (.)
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Let

F =

{
f (t) =

∞∑
k=

ak
k!
tk

∣∣∣ ak ∈C

}
. (.)

Let P be the algebra of polynomials in the variable x over C and P
* be the vector space

of all linear functionals on P. The action of the linear functional L on a polynomial p(x)
is denoted by 〈L|p(x)〉. We recall that the vector space structures on P

* are defined by
〈L + M|p(x)〉 = 〈L|p(x)〉 + 〈M|p(x)〉, 〈cL|p(x)〉 = c〈L|p(x)〉, where c is a complex constant
(see [, ]).
For f (t) =

∑∞
k= ak

tk
k! ∈F , we define a linear functional f (t) on P by setting

〈
f (t)|xn〉 = an (n≥ ). (.)

By (.) and (.), we get

〈
tk|xn〉 = n!δn,k (n,k ≥ ), (.)

where δn,k is the Kronecker symbol (see [–]).
Suppose that fL(t) =

∑∞
k=

〈L|xk〉
k! tk . Then we have 〈fL(t)|xn〉 = 〈L|xn〉 and fL(t) = L. Thus,

we note that themap L �→ fL(t) is a vector space isomorphism from P
* ontoF . Henceforth,

F will be thought of as both a formal power series and a linear functional. We shall call F
the umbral algebra. The umbral calculus is the study of umbral algebra (see [–]).
The order o(f (t)) of the non-zero power series f (t) is the smallest integer k for which

the coefficient of tk does not vanish. If o(f (t)) = , then f (t) is called a delta series. If
o(f (t)) = , then f (t) is called an invertible series. Let o(f (t)) =  and o(g(t)) = . Then
there exists a unique sequence Sn(x) of polynomials such that 〈g(t)f (t)k|Sn(x)〉 = n!δn,k
(n,k ≥ ). The sequence Sn(x) is called Sheffer sequence for (g(t), f (t)), which is denoted
by Sn(x)∼ (g(t), f (t)). By (.), we easily get that 〈eyt|p(x)〉 = p(y). For f (t) ∈F and p(x) ∈ P,
we have

f (t) =
∞∑
k=

〈f (t)|xk〉
k!

tk , p(x) =
∞∑
k=

〈tk|p(x)〉
k!

xk , (.)

and

〈
f(t) · · · fm(t)|xn

〉
=

∑
i+···+im=n

(
n

i, . . . , im

)( m∏
j=

〈
fj(t)|xij

〉)
, (.)

where f(t), f(t), . . . , fm(t) ∈F (see [–]). For f (t), g(t) ∈F and p(x) ∈ P, by (.), we get

p(k)() =
〈
tk|p(x)〉, 〈

|p(k)(x)〉 = p(k)(). (.)

Thus, by (.), we have

tkp(x) = p(k)(x) =
dkp(x)
dxk

(k ≥ ) (see [–]). (.)
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Let Sn(x)∼ (g(t), f (t)). Then we have


g(f̄ (t))

eyf̄ (t) =
∞∑
k=

Sk(y)
k!

tk , for all y ∈C, (.)

where f̄ (t) is the compositional inverse of f (t) (see [, ]). By (.) and (.), we see that
N (a)

n (x)∼ (( et–t )a, et – ).
For a �= , the Poisson-Charlier sequences are given by

Cn(x;a) =
n∑

k=

(
n
k

)
(–)n–ka–k(x)k ∼ (

ea(e
t–),a

(
et – 

))
. (.)

In particular, n ∈ Z+ =N∪ {}, we have
∞∑
l=

Cn(l;a)
tl

l!
= et

(
t – a
a

)n

(see [, ]). (.)

The Frobenius-type Eulerian polynomials of order a are given by

(
 – λ

et(λ–) – λ

)a

ext =
∞∑
n=

A(a)
n (x|λ) (see [, ]). (.)

From (.) and (.), we note that

A(a)
n (x|λ)∼

((
et(–λ) – λ

 – λ

)a

, t
)
.

Let us assume that pn(x)∼ (, f (t)), qn(x)∼ (, g(t)). Then we have

qn(x) = x
(
f (t)
g(t)

)n

x–pn(x) (see [, ]). (.)

Equation (.) is important in deriving our results in this paper. The purpose of this pa-
per is to investigate some properties of Sheffer sequences of several polynomials arising
from umbral calculus. From our investigation, we can derive many interesting identities
of several polynomials.

2 Sheffer sequences of polynomials
Let us assume that Sn(x) ∼ (g(t), f (t)). Then, by the definition of Sheffer sequence, we see
that g(t)Sn(x) ∼ (, f (t)). If g(t) is an invertible series, then 

g(t) is also an invertible series.
Let us consider the following Sheffer sequences:

Mn(x)∼
(
, f (t)

)
, xn ∼ (, t). (.)

From (.) and (.), we note that

Mn(x) = x
(

t
f (t)

)n

x–xn = x
(

t
f (t)

)n

xn–. (.)
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For g(t)Sn(x)∼ (, f (t)), by (.), we get

g(t)Sn(x) = x
(

t
f (t)

)n

xn–. (.)

Therefore, by (.), we obtain the following theorem.

Theorem . For Sn(x)∼ (g(t), f (t)) and n≥ , we have

Sn(x) =


g(t)
x
(

t
f (t)

)n

xn–.

For example, let Sn(x) = Dn(x) ∼ ( –λ
et–λ

, et–et+ ), where Dn(x) is the nth Daehee polynomial
(see [, , ]). Then, by Theorem ., we get

Dn(x) =
(
et – λ

 – λ

)
x
(

t
et – 

)n(
et + 

)nxn– = (
et – λ

 – λ

)
x

n∑
l=

(
n
l

)
B(n)
n–(x + l)

=


 – λ

n∑
l=

(
n
l

){
(x + )B(n)

n–(x + l + ) – λxB(n)
n–(x + l)

}
.

Let us take Sn(x)∼ (( et–λ
–λ

)a, t
ebt– ) (b �= ). Then, by Theorem ., we get

Sn(x) =
(
 – λ

et – λ

)a

x
(
ebt – 

t

)n

xn–

=
(
 – λ

et – λ

)a

x
n–∑
k=

n!bk+n

(k + n)!
S(k + n,n)xn–k–(n – )k

=
n–∑
k=

(n–
k

)
(k+n

n
)S(k + n,n)bk+nH (a)

n–k(x|λ). (.)

Therefore, by (.), we obtain the following theorem.

Theorem . For n≥ , let Sn(x) ∼ (( et–λ
–λ

)a, t
ebt– ), b �= . Then we have

Sn(x) =
n–∑
k=

(n–
k

)
(k+n

n
)S(k + n,n)bk+nH (a)

n–k(x|λ).

Let

Sn(x)∼
((

et – 
t

)a

,
tebt

ect – 

)
, c �= . (.)

From Theorem ., we can derive

Sn(x) =
(

t
et – 

)a

x
(
ect – 
tebt

)n

xn–

=
(

t
et – 

)a

xe–nbt
∞∑
l=

n!S(l + n,n)
(l + n)!

cl+ntlxn–
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=
(

t
et – 

)a

x
n–∑
l=

(n–
l
)

(l+n
l
) S(l + n,n)cn+l(x – nb)n––l

=
(

t
et – 

)a

x
n–∑
l=

n––l∑
j=

(n–
l
)

(l+n
l
) (

n –  – l
j

)
S(l + n,n)cn+l(–nb)jxn––l–j

=
n–∑
l=

n––l∑
j=

(n–
l
)

(l+n
l
) (

n –  – l
j

)
S(l + n,n)cn+l(–nb)jB(a)

n–l–j(x). (.)

Therefore, by (.), we obtain the following theorem.

Theorem . For n≥ , let Sn(x)∼ (( et–t )a, tebtect– ), c �= . Then we have

Sn(x) =
n–∑
l=

n––l∑
j=

(n–
l
)

(l+n
l
) (

n –  – l
j

)
S(l + n,n)cn+l(–nb)jB(a)

n–l–j(x).

Let us take the following Sheffer sequence:

Sn(x)∼
((

et + 


)α

,
t

log( + t)

)
. (.)

By Theorem . and (.), we get

Sn(x) =
(


et + 

)α

x
(
log( + t)

t

)n

xn– =
(


et + 

)α

x
∞∑
l=

N (n)
l
l!

tlxn–

=
(


et + 

)α

x
n–∑
l=

(
n – 
l

)
N (n)

l xn–l–

=
n–∑
l=

(
n – 
l

)
N (n)

l E(α)
n–l(x), (.)

where E(α)
n (x) are the nth Euler polynomials of order α which is defined by the generating

function to be

(


et + 

)α

ext =
∞∑
n=

E(α)
n (x)

tn

n!
.

Therefore, by (.), we obtain the following theorem.

Theorem . For n≥ , let Sn(x)∼ (( et+ )α , t
log(+t) ). Then we have

Sn(x) =
n–∑
l=

(
n – 
l

)
N (n)

l E(α)
n–l(x).

As is known, we note that

(
log( + t)

t

)n

= n
∞∑
l=

B(n+l)
l
n + l

tl

l!
. (.)

http://www.advancesindifferenceequations.com/content/2013/1/118


Kim et al. Advances in Difference Equations 2013, 2013:118 Page 6 of 10
http://www.advancesindifferenceequations.com/content/2013/1/118

Thus, by Theorem . and (.), we get

Sn(x) =
(


et + 

)α

x
(
log( + t)

t

)n

xn–

=
(


et + 

)α

xn
n–∑
l=

B(n+l)
l
n + l

(
n – 
l

)
xn––l

= n
n–∑
l=

B(n+l)
l
n + l

(
n – 
l

)
E(α)
n–l(x). (.)

Therefore, by Theorem . and (.), we obtain the following corollary.

Corollary . For n≥ , and  ≤ l ≤ n – , we have

N (n)
l
n

=
B(n+l)
l
n + l

.

Remark Let Sn(x)∼ (( et–t )α , log( + t)). Then, by Theorem ., we get

Sn(x) =
(

t
et – 

)α

x
(

t
log( + t)

)n

xn–

=
(

t
et – 

)α

x
n–∑
l=

(
n – 
l

)
N (–n)

l xn––l

=
n–∑
l=

(
n – 
l

)
N (–n)

l B(α)
n–l(x). (.)

Let us assume that

Sn(x)∼
((

et – λ

 – λ

)α

,
log( + t)
( + t)c

)
(c �= ). (.)

Then, by Theorem . and (.), we get

Sn(x) =
(
 – λ

et – λ

)α

x
(

t( + t)c

log( + t)

)n

xn–

=
(
 – λ

et – λ

)α

x
n–∑
l=

B(l–n+)
l (cn + )

(n – )l
l!

xn––l

=
n–∑
l=

(
n – 
l

)
B(l–n+)
l (cn + )

(
 – λ

et – λ

)α

xn–l

=
n–∑
l=

(
n – 
l

)
B(l–n+)
l (cn + )H (α)

n–l(x|λ). (.)

Therefore, by (.), we obtain the following theorem.
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Theorem . For n≥ , let Sn(x)∼ (( et–λ
–λ

)α , log(+t)(+t)c ), c �= . Then we have

Sn(x) =
n–∑
l=

(
n – 
l

)
B(l–n+)
l (cn + )H (α)

n–l(x|λ).

As is well known, the Bernoulli polynomials of the second kind are defined by the gener-
ating function to be

t( + t)x

log( + t)
=

∞∑
l=

bl(x)
l!

tl (see [, ]). (.)

Thus, by (.) and (.), we get

(
t( + t)c

log( + t)

)n

=
∞∑
l=

( ∑
l+···+ln=l

(
l

l, . . . , ln

)
bl (c) · · ·bln (c)

)
tl

l!
. (.)

By Theorem ., (.) and (.), we get

Sn(x) =
(
 – λ

et – λ

)α

x
n–∑
l=

( ∑
l+···+ln=l

(
l

l, . . . , ln

)( n∏
i=

bli (c)

)(
n – 
l

)
xn––l

)

=
n–∑
l=

( ∑
l+···+ln=l

(
l

l, . . . , ln

)( n∏
i=

bli (c)

))(
n – 
l

)(
 – λ

et – λ

)α

xn–l

=
n–∑
l=

( ∑
l+···+ln=l

(
l

l, . . . , ln

)( n∏
i=

bli (c)

))(
n – 
l

)
H (α)

n–l(x|λ). (.)

Therefore, by Theorem . and (.), we obtain the following theorem.

Theorem . For n≥ ,  ≤ l ≤ n – , we have

∑
l+···+ln=l

(
l

l, . . . , ln

)( n∏
i=

bli (c)

)
= B(l–n+)

l (cn + ) (c �= ).

Remark From (.), we note that

(
t( + t)c

log( + t)

)n

xn– =
n–∑
l=

(
n – 
l

)
N (–n)

l (cn)xn––l, (.)

where c �= . By Theorem ., (.) and (.), we get

Sn(x) =
(
 – λ

et – λ

)α

x
(

t( + t)c

log( + t)

)n

xn–

=
n–∑
l=

(
n – 
l

)
N (–n)

l (cn)H (α)
n–l(x|λ). (.)
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From (.) and (.), we can derive the following identity:

N (–n)
l (cn) =

∑
l+···+ln=l

(
l

l, . . . , ln

)( n∏
i=

bli (c)

)
, (.)

where n≥ ,  ≤ l ≤ n –  and c �= . Let

Sn(x)∼
((

e(λ–)t – λ

 – λ

)α

,
t( + t)c

log( + t)

)
, c �= . (.)

From Theorem . and (.), we note that

Sn(x) =
(

 – λ

e(λ–)t – λ

)α

x
(
log( + t)
t( + t)c

)n

xn–

=
(

 – λ

e(λ–)t – λ

)α

x
n–∑
l=

(
n – 
l

)
N (n)

l (–cn)xn––l

=
n–∑
l=

(
n – 
l

)
N (n)

l (–cn)A(α)
n–l(x|λ). (.)

Therefore, by (.), we obtain the following proposition.

Proposition . For n≥ , let Sn(x)∼ (( e(λ–)t–λ
–λ

)α , t
(+t)c
log(+t) ), c �= . Then we have

Sn(x) =
n–∑
l=

(
n – 
l

)
N (n)

l (–nc)A(α)
n–l(x|λ).

Now we observe that
(
log( + t)
t( + t)c

)n

= ( + t)–nc
(
log( + t)

t

)n

= ( + t)–nc
( ∞∑

k=

n!S(k + n,n)
(k + n)!

tk
)

=

( ∞∑
m=

(
–nc
m

)
tm

)( ∞∑
k=

n!S(k + n,n)
(k + n)!

tk
)

=
∞∑
l=

{ l∑
k=

n!S(k + n,n)
(k + n)!

(
–nc
l – k

)}
tl. (.)

By Theorem ., (.) and (.), we get

Sn(x) =
(

 – λ

e(λ–)t – λ

)α

x
(
log( + t)
t( + t)c

)n

xn–

=
n–∑
l=

(
n – 
l

)
l!

{ l∑
k=

n!
(k + n)!

S(n + k,n)
(
–nc
l – k

)}
A(α)
n–l(x|λ). (.)

Therefore, by Proposition . and (.), we obtain the following theorem.
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Theorem . For n≥ ,  ≤ l ≤ n –  and c �= , we have

N (n)
l (–cn) = l!

l∑
k=

n!
(n + k)!

S(k + n,n)
(
–nc
l – k

)
.

Remark It is easy to show that

(
log( + t)

)n = ∞∑
l=

n!
(l + n)!

S(l + n,k)tl+n. (.)

By Theorem ., (.) and (.), we get

Sn(x) =
(


et + 

)α

x
(
log( + t)

t

)n

xn–

=
(


et + 

)α

x
n–∑
l=

n!l!
(l + n)!

(
n – 
l

)
S(l + n,n)xn––l

=
n–∑
l=

(n–
l
)

(l+n
n

) S(l + n,n)E(α)
n–l(x). (.)

From Theorem . and (.), we can derive the following identity:

N (n)
l =

S(l + n,n)(l+n
n

) , where n ≥ , ≤ l ≤ n – . (.)

Let us consider the following Sheffer sequence:

Sn(x)∼
((

e(λ–)t – λ

 – λ

)α

,
t

ect( + bt)m

)
, b, c �= ,m ∈ Z+. (.)

By Theorem . and (.), we get

Sn(x) =
(

 – λ

e(λ–)t – λ

)α

x
(
ect( + bt)m

)nxn–
=

(
 – λ

e(λ–)t – λ

)α

xenct( + bt)mnxn–. (.)

From (.) and (.), we can derive

Sn(x) =
(

 – λ

e(λ–)t – λ

)α

x(–)mn
n–∑
l=

Cmn

(
l; –

nc
b

)
(nc)l

(
n – 
l

)
xn––l

= (–)mn
n–∑
l=

Cmn

(
l; –

nc
b

)
(nc)l

(
n – 
l

)
A(α)
n–l(x|λ). (.)

Therefore, by (.), we obtain the following theorem.
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Theorem . For n≥ , let Sn(x)∼ (( e(λ–)t–λ
–λ

)α , t
ect (+bt)m ), where m ∈ Z+, b �=  and c �= .

Then we have

Sn(x) = (–)mn
n–∑
l=

Cmn

(
l; –

nc
b

)
(nc)l

(
n – 
l

)
A(α)
n–l(x|λ).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Author details
1Department of Mathematics, Sogang University, Seoul, 121-742, Republic of Korea. 2Department of Mathematics,
Kwangwoon University, Seoul, 139-701, Republic of Korea. 3Department of Mathematics Education, Kyungpook National
University, Taegu, 702-701, Republic of Korea. 4Hanrimwon, Kwangwoon University, Seoul, 139-701, Republic of Korea.

Acknowledgements
The authors express their sincere gratitude to the referees for their valuable suggestions and comments. This paper is
supported in part by the Research Grant of Kwangwoon University in 2013.

Received: 19 February 2013 Accepted: 10 April 2013 Published: 24 April 2013

References
1. Carlitz, L: Eulerian numbers and polynomials of higher order. Duke Math. J. 27, 401-423 (1960)
2. Diarra, B: Ultrametric umbral calculus in characteristic p. Bull. Belg. Math. Soc. Simon Stevin 14, 845-869 (2007)
3. Dere, R, Simsek, Y: Applications of umbral algebra to some special polynomials. Adv. Stud. Contemp. Math. 22,

433-438 (2012)
4. Ernst, T: Examples of a q-umbral calculus. Adv. Stud. Contemp. Math. 16(1), 1-22 (2008)
5. Kim, T: Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic

integral on Zp . Russ. J. Math. Phys. 16(4), 484-491 (2009)
6. Kim, T: Identities involving Frobenius-Euler polynomials arising from non-linear differential equations. J. Number

Theory 132(1), 2854-2865 (2012)
7. Kim, T: An identity of the symmetry for the Frobenius-Euler polynomials associated with the fermionic p-adic

invariant q-integrals on Zp . Rocky Mt. J. Math. 41(1), 239-247 (2011)
8. Kim, T: Symmetry p-adic invariant integral on Zp for Bernoulli and Euler polynomials. J. Differ. Equ. Appl. 14(12),

1267-1277 (2008)
9. Kim, DS, Kim, T, Lee, SH, Rim, SH: Frobenius-Euler polynomials and umbral calculus in the p-adic case. Adv. Differ. Equ.

2012, 222 (2012)
10. Kim, DS, Kim, T: Some new identities of Frobenius-Euler numbers and polynomials. J. Inequal. Appl. 2012, 307 (2012)
11. Roman, S: More on the umbral calculus, with emphasis on the q-umbral calculus. J. Math. Anal. Appl. 107, 222-254

(1985)
12. Roman, S: The Umbral Calculus. Dover, New York (2005)
13. Kim, DS, Kim, T: Applications of umbral calculus associated with p-adic invariant integrals on Zp . Abstr. Appl. Anal.

2012, Article ID 865721 (2012)
14. Kim, DS, Kim, T: Some identities of Frobenius-Euler polynomials arising from umbral calculus. Adv. Differ. Equ. 2012,

196 (2012)
15. Kim, DS, Kim, T, Lee, S-H, Kim, Y-H: Some identities for the product of two Bernoulli and Euler polynomials. Adv. Differ.

Equ. 2012, 95 (2012)
16. Kim, T, Rim, S-H, Dolgy, DV, Lee, S-H: Some identities on Bernoulli and Euler polynomials arising from the

orthogonality of Laguerre polynomials. Adv. Differ. Equ. 2012, 201 (2012)
17. Kim, T: Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic

integral on Z+. Russ. J. Math. Phys. 16(4), 484-491 (2009)
18. Mansour, T, Schork, M, Severini, S: A generalization of boson normal ordering. Phys. Lett. A 364(3-4), 214-220 (2007)
19. Robinson, TJ: Formal calculus and umbral calculus. Electron. J. Comb. 17, Research paper 95 (2010)
20. Ryoo, C: Some relations between twisted q-Euler numbers and Bernstein polynomials. Adv. Stud. Contemp. Math.

21(2), 217-223 (2011)
21. Araci, S, Acikgoz, M: A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials.

Adv. Stud. Contemp. Math. 22(3), 399-406 (2012)

doi:10.1186/1687-1847-2013-118
Cite this article as: Kim et al.: Sheffer sequences of polynomials and their applications. Advances in Difference
Equations 2013 2013:118.

http://www.advancesindifferenceequations.com/content/2013/1/118

	Sheffer sequences of polynomials and their applications
	Abstract
	MSC
	Keywords

	Introduction
	Sheffer sequences of polynomials
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


