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Abstract
In the paper, we consider the existence criteria for positive solutions of the nonlinear
p-Laplacian fractional differential equation whose nonlinearity contains the first-order
derivative explicitly

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ϕp (CDαu(t)))
′
= ϕp(λ)f (t,u(t),u′(t)), t ∈ (0, 1),

k0u(0) – k1u(1) = 0,

m0u(0) –m1u(1) = 0,

x(r)(0) = 0, r = 2, 3, . . . , [α],

where ϕp is the p-Laplacian operator, i.e., ϕp(s) = |s|p–2s, p > 1, and ϕq = ϕ–1
p , 1p +

1
q = 1.

CDα is the standard Caputo derivative and f (t,u,u′) : [0, 1]× [0,∞)× (–∞, +∞)→
[0,∞) satisfies the Carathéodory type condition. The nonlinear alternative of
Leray-Schauder type and the fixed-point theorems in Banach space are used to
investigate the existence of at least single, twin, triple, n or 2n – 1 positive solutions for
p-Laplacian fractional order differential equations. As an application, two examples
are given to illustrate our theoretical results.
MSC: 34A08; 34B18; 34K37
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1 Introduction
Fractional calculus is a generalization of ordinary differentiation and integration to arbi-
trary noninteger order. The increasing interest of fractional equations ismotivated by their
applications in various fields of science such as physics, fluid mechanics, heat conduction
inmaterials withmemory, chemistry and engineering. Fractional derivatives and integrals
are proved to bemore useful for the formulation of certain electrochemical problems than
the classical models [–]. In consequence, the subject of fractional differential equations
is gaining diverse and continuous attention. For more details of some recent theoretical
results on fractional differential equations and their applications, we refer the reader to
[–] and the references therein.
Turbulent flow in a porous medium is a fundamental mechanics problem. For study-

ing this type of problem, Leibenson [] introduced the following p-Laplacian differential

© 2013 Su et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2013/1/119
mailto:suyingxzit@163.com
http://creativecommons.org/licenses/by/2.0


Su et al. Advances in Difference Equations 2013, 2013:119 Page 2 of 32
http://www.advancesindifferenceequations.com/content/2013/1/119

equation:

(
ϕp

(
u′(t)

))′ = f
(
t,u(t),u′(t)

)
, t ∈ (, ), ()

where ϕp(s) = |s|p–s, p > , and ϕq = ϕ–
p , 

p + 
q = . The study of differential equation ()

is of significance theoretically and practically [], then many important results relative to
differential equation () with different boundary value conditions have been obtained. It
is quite natural that to investigate arbitrary noninteger order differential equation relative
to equation ().
Motivated by the references [–], in this paper, we consider the following p-Laplacian

fractional differential equations with Caputo fractional derivative:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(ϕp (CDαu(t))) ′ = ϕp(λ)f (t,u(t),u′(t)), t ∈ (, ),

ku() – ku() = ,

mu() –mu() = ,

x(r)() = , r = , , . . . , [α],

()

where ϕp is the p-Laplacian operator, i.e., ϕp(s) = |s|p–s, p > , and ϕq = ϕ–
p , 

p + 
q = .

CDα is the standard Caputo derivative and f (t,u,u′) : [, ]× [,∞)× (–∞, +∞) → [,∞)
satisfies the Carathéodory type condition. α >  is real and [α] denotes the integer part
of the real number α, λ > , ki, mi (i = , ) are constants satisfying  < k < k and
 < m < m. The existence criteria of at least one or two positive solutions are estab-
lished by using the nonlinear alternative of Leray-Schauder type and the Krasnosel’skii’s
fixed-point theorem, and the existence of at least n or n –  distinct positive solu-
tions are obtained by using of the Leggett-Williams fixed-point theorem, the generalized
Avery-Henderson fixed-point theorem as well as the Avery-Peterson fixed-point theo-
rem.
The rest of the paper is organized as follows. In Section , we present some basic defini-

tions and several fixed-point theorems. In Section , we give and discuss the completely
continuous operator of p-Laplacian fractional differential equation (). In Section , by us-
ing the nonlinear alternative of Leray-Schauder type and the Krasnosel’skii’s fixed-point
theorem, some new sufficient conditions of the existence of at least one or two positive
solutions of p-Laplacian fractional differential equation () are obtained. In Section , the
existence criteria for at least three or arbitrary n or n– positive solutions of p-Laplacian
fractional differential equation () are established. In Section , we present two exam-
ples.
In this study, we assume that f (t,u,u) : [, ] × [,∞) × (–∞, +∞) → [,∞) satisfies

the following conditions of Carathéodory type:
(S) f (t,u,u) is Lebesgue measurable with respect to t on [, ];
(S) for a.e. t ∈ [, ], f (t, ·, ·) is continuous on [, ]× [,∞)× (–∞, +∞).

2 Preliminaries
In this section, we list some basic definitions and the several fixed-point theorems, which
help us to better understand our proofs presented in next a few sections.
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Definition  [] Let α > , the fractional integral of order α of function y : (,∞) → R is
defined by

Iαy(t) =


�(α)

∫ t


(t – s)α–y(s)ds,

provided the integral exists.

Definition  [] The Caputo derivative of a function y : (,∞)→R is given by

CDαy(t) =


�(n – α)

∫ t



y(n)(s)
(t – s)α+–n

ds,

provided that the right side is pointwise defined on (,∞), where n –  < α < n and n is a
integer.

The Gamma function is given by

�(α) =
∫ +∞


e–ttα– dt,

and the Beta function is given by

B(p,q) =
∫ 


tp–( – t)q– dt.

In addition,

B(p,q) =
�(p)�(q)
�(p + q)

.

The following are two fixed point theorems. The former one is the so-called nonlinear
alternative of Leray-Schauder type and the latter one is the Krasnosel’skii’s fixed-point
theorem [, ].

Lemma  Let X be a Banach space with C ⊂ X being closed and convex. Assume that U is
a relatively open subset of C with  ∈U andA :U → C is a completely continuous operator,
then either

(i) A has a fixed point in U , or
(ii) there exists u ∈ ∂U and γ ∗

 ∈ (, ) with u = γ ∗
 Au.

Lemma  Let P be a cone in a Banach space E. Assume � and � are open subsets of E
with  ∈ � and � ⊂ �. If A : P∩ (�\�) → P is a completely continuous operator such
that either

(i) ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂� and ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂�, or
(ii) ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂� and ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂�.

Then A has a fixed point in P ∩ (�\�).

http://www.advancesindifferenceequations.com/content/2013/1/119
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Assume that Pc = {u ∈ P : ‖u‖ < c} and P(q,b,d) = {u ∈ P : b ≤ q(u),‖u‖ ≤ d}, where
the map q is a nonnegative continuous concave functional on P. The following two theo-
rems are the Leggett and Williams fixed-point theorems [] and the generalized Avery-
Henderson fixed-point theorem [], respectively.

Lemma  Suppose that A : Pc → Pc is completely continuous and there exists a concave
positive functional q on P such that q(u) ≤ ‖u‖ for u ∈ Pc. Suppose that there exist constants
 < a < b < d ≤ c such that:

(i) {u ∈ P(q,b,d) : q(u) > b} = ∅ and q(Tu) > b if u ∈ P(q,b,d);
(ii) ‖Tu‖ < a if u ∈ Pa;
(iii) q(Tu) > b for u ∈ P(q,b, c) with ‖Tu‖ > d.

Then A has at least three fixed points u, u and u such that

‖u‖ < a, b < q(u) and u > a with q(u) < b.

For each d > , let P(γ ,d) = {x ∈ P : γ (x) < d}, where γ is a nonnegative continuous
functional on a cone P of a real Banach space E.

Lemma  Let P be a cone in a real Banach space E. Let α, β and γ be increasing, nonneg-
ative continuous functionals on P such that for some c >  and H > , γ (x) ≤ β(x) ≤ α(x)
and ‖x‖ ≤ Hγ (x) for all x ∈ P(γ , c). Suppose that there exist positive numbers a and b with
a < b < c, and A : P(γ , c) → P is a completely continuous operator such that:

(i) γ (Ax) < c for all x ∈ ∂P(γ , c);
(ii) β(Ax) > b for all x ∈ ∂P(β ,b);
(iii) P(α,a) = ∅ and α(Ax) < a for x ∈ ∂P(α,a).

Then A has at least three fixed points x, x and x belonging to P(γ , c) such that

 ≤ α(x) < a < α(x) with β(x) < b < β(x) and γ (x) < c.

Let β and φ be nonnegative continuous convex functionals on P, λ be a nonnegative
continuous concave functional on P and ϕ be a nonnegative continuous functional on P.
We define the following convex sets:

P(φ,λ,b,d) =
{
x ∈ P : b ≤ λ(x),φ(x)≤ d

}
,

P(φ,β ,λ,b, c,d) =
{
x ∈ P : b ≤ λ(x),β(x)≤ c,φ(x)≤ d

}
,

and

R(φ,ϕ,a,d) =
{
x ∈ P : a≤ ϕ(x),φ(x)≤ d

}
.

We are ready to recall the Avery-Peterson fixed-point theorem [].

Lemma  Let P be a cone in a real Banach space E, and β , φ, λ and ϕ be defined as
the above. Moreover, ϕ satisfies ϕ(λ′x) ≤ λ′ϕ(x) for  ≤ λ′ ≤  such that for some positive
numbers h and d,

λ(x)≤ ϕ(x) and ‖x‖ ≤ hφ(x) ()

http://www.advancesindifferenceequations.com/content/2013/1/119
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holds for all x ∈ P(φ,d). Suppose that A : P(φ,d) → P(φ,d) is completely continuous and
there exist positive real numbers a, b, c, with a < b such that:

(i) {x ∈ P(φ,β ,λ,b, c,d) : λ(x) > b} = ∅ and λ(A(x)) > b for x ∈ P(φ,β ,λ,b, c,d);
(ii) λ(A(x)) > b for x ∈ P(φ,λ,b,d) with β(A(x)) > c;
(iii)  /∈ R(φ,ϕ,a,d) and λ(A(x)) < a for all x ∈ R(φ,ϕ,a,d) with ϕ(x) = a.

Then A has at least three fixed points x,x,x ∈ P(φ,d) such that

φ(xi) ≤ d for i = , , , b < λ(x),

a < ϕ(x) and λ(x) < b with ϕ(x) < a.

3 Completely continuous operator
In this section,we firstly present some lemmas,whichwill be used in our discussions. Then
we establish the completely continuous operator for our p-Laplacian fractional differential
equation, and obtain that solving the solutions of p-Laplacian fractional differential equa-
tion () are equivalent to finding the fixed points of the associated completely continuous
operator.

Lemma  Let  < n –  < α < n, assume that u ∈ Cn(, )∩ L[, ], then the following frac-
tional differential equation:

CDαu(t) =  ()

has the unique solution

u(t) =
n–∑
k=

u(k)()
k!

tk .

Proof It follows from Definition  that the result is true. �

Lemma  Assume that h ∈ L((, ),R+), then the p-Laplacian fractional differential equa-
tion

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(ϕp (CDαu(t))) ′ = ϕp(λ)h(t), t ∈ (, ),

ku() – ku() = ,

mu() –mu() = ,

u(r)() = , r = , , . . . , [α]

()

has a unique solution

u(t) =
m

m –m

λ

�(α – )

(
k

k – k
+ t

)∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ

+
k

k – k
λ

�(α)

∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ

+
λ

�(α)

∫ t


(t – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ . ()
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Proof It follows from () that

CDαu(t) = λϕq

(∫ t


h(s)ds

)
.

The fractional integral of order α of function u denotes by Iαu, then

u(t) = u() + u′()t +
u′′()
!

t + · · · + u(n–)()
(n – )!

tn– + Iαλϕq

(∫ t


h(s)ds

)

= u() + u′()t +
λ

�(α)

∫ t


(t – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ , ()

the latter inequality holds since u(r)() = , r = , , . . . , [α]. In addition,

u′(t) = u′() +
λ

�(α – )

∫ t


(t – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ ,

hence

u() = u() + u′() +
λ

�(α)

∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ ,

u′() = u′() +
λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ .

The boundary conditions of () reduce to

u() =
k

k – k
m

m –m

λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ

+
k

k – k
λ

�(α)

∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ , ()

and

u′() =
m

m –m

λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


h(s)ds

)
dτ . ()

Now, plugging () and () into (), then () is satisfied. �

Suppose that E = C([, ],R), then E is a Banach space endowed with norm

‖u‖ = sup
{‖u‖,‖u‖

}
,

where

‖u‖ = sup
t∈[,]

∣∣u(t)∣∣,

and

‖u‖ = sup
t∈[,]

∣∣u′(t)
∣∣.
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The cone P ⊂ E is defined by

P =

⎧⎪⎨
⎪⎩u ∈ E

∣∣∣∣∣
u(t) ≥ , sup

t∈[,]

∣∣u(t)∣∣ ≤ min

{
k

k – k
sup
t∈[,]

∣∣u′(t)
∣∣, k
k

inf
t∈[,]

∣∣u(t)∣∣
}
,

u is increasing and convex on [, ]

⎫⎪⎬
⎪⎭ .

The operator A : E → E is defined by

(Au)(t) =
m

m –m

λ

�(α – )

(
k

k – k
+ t

)∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

+
k

k – k
λ

�(α)

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

+
λ

�(α)

∫ t


(t – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ . ()

Then the solutions of fractional differential equation () are the corresponding fixed points
of the operator A.

Lemma  Suppose that conditions (S) and (S) are satisfied. For any t ∈ [, ] and all
(u,u) ∈ [, +∞)× (–∞, +∞),we assume that there exist two nonnegative real-value func-
tions a,a ∈ L[, ] such that

∫ t


f (s,u,u)ds ≤ ϕp

(
a(t) + a(t) max

t∈[,]
u(t)

)
, ()

or
∫ t


f (s,u,u)ds ≤ ϕp

(
a(t) + a(t) max

t∈[,]
∣∣u(t)∣∣

)
. ()

Then the operator A : P → P is completely continuous.

Proof of Lemma  Firstly, we show that A : P → P is continuous.
Let u ∈ P, it is obvious that Au(t) ≥  for arbitrary t ∈ [, ]. By using the property of

the fractional integral and derivative, we obtain that

(Au)′(t) =
m

m –m

λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

+
λ

�(α – )

∫ t


(t – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ ≥ ,

and

(Au)′′(t) =
λ

�(α – )

∫ t


(t – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ ≥ .

Since Ax is nonnegative, increasing and convex on [, ], we have

sup
t∈[,]

∣∣(Au)(t)∣∣ = max
t∈[,]

(Au)(t) = (Au)(),

sup
t∈[,]

∣∣(Au)′(t)∣∣ = max
t∈[,]

(Au)′(t) = (Au)′(),

http://www.advancesindifferenceequations.com/content/2013/1/119
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and

inf
t∈[,]

∣∣(Au)(t)∣∣ = (Au)(), inf
t∈[,]

∣∣(Au)′(t)∣∣ = (Au)′().

Moreover,

sup
t∈[,]

∣∣(Au)(t)∣∣ = (Au)() =
k
k
(Au)() =

k
k

inf
t∈[,]

∣∣(Au)(t)∣∣,

and

sup
t∈[,]

∣∣(Au)(t)∣∣
= (Au)()

=
m

m –m

k
k – k

λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

+
k

k – k
λ

�(α)

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

≤ m

m –m

k
k – k

λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

+
k

k – k
λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

=
k

k – k
m

m –m

λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

=
k

k – k
(Au)′() =

k
k – k

sup
t∈[,]

∣∣(Au)′(t)∣∣. ()

Therefore,

sup
t∈[,]

∣∣(Au)(t)∣∣ ≤
{
k
k

inf
t∈[,]

∣∣(Au)(t)∣∣, k
k – k

sup
t∈[,]

∣∣(Au)′(t)∣∣
}
,

which implies that A : P → P.
Suppose that {un}∞n= ⊂ P, n = , , . . . , and un uniformly converges to u on [, ], that is

lim
n→∞‖un – u‖ = .

So, we have

lim
n→∞‖un – u‖ =  and lim

n→∞‖un – u‖ = ,

which implies that

lim
n→∞un(t) = u(t) and lim

n→∞u′
n(t) = u′(t), t ∈ [, ].

Then (S) and the continuous of ϕq imply that

lim
n→∞ϕq

(
f
(
t,un(t),u′

n(t)
))

= ϕq
(
f
(
t,u(t),u′(t)

))
, t ∈ [, ],

http://www.advancesindifferenceequations.com/content/2013/1/119
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then, we obtain

∣∣Aun(t) –Au(t)
∣∣

≤ m

m –m

λ

�(α – )

(
k

k – k
+ t

)

×
∣∣∣∣
∫ 


( – τ )α–

(
ϕq

(∫ τ


f
(
s,un,u′

n
)
ds

)
– ϕq

(∫ τ


f
(
s,u,u′)ds

))
dτ

∣∣∣∣
+

∣∣∣∣ k
k – k

λ

�(α)

∫ 


( – τ )α–

(
ϕq

(∫ τ


f
(
s,un,u′

n
)
ds

)

– ϕq

(∫ τ


f
(
s,u,u′)ds

))
dτ

∣∣∣∣
+

∣∣∣∣ λ

�(α)

∫ 


(t – τ )α–

(
ϕq

(∫ τ


f
(
s,un,u′

n
)
ds

)
– ϕq

(∫ τ


f
(
s,u,u′)ds

))
dτ

∣∣∣∣
→  as n→ ∞, ()

and

∣∣A′un(t) –A′u(t)
∣∣

≤
∣∣∣∣ m

m –m

λ

�(α – )

∫ 


( – τ )α–

(
ϕq

(∫ τ


f
(
s,un,u′

n
)
ds

)

– ϕq

(∫ τ


f
(
s,u,u′)ds

))
dτ

∣∣∣∣
+

∣∣∣∣ λ

�(α – )

∫ 


(t – τ )α–

(
ϕq

(∫ τ


f
(
s,un,u′

n
)
ds

)
– ϕq

(∫ τ


f
(
s,u,u′)ds

))
dτ

∣∣∣∣
→  as n→ ∞. ()

By virtue of () and (), we have

∥∥(Aun)(t) – (Au)(t)
∥∥ →  as n→ ∞,

which means that A is continuous.
Secondly, we show that Amaps bounded sets into bounded sets in P. It suffices to show

that for any η > , there is a positive constant l >  such that for each u ∈ Bη = {u ∈ P :
‖u‖ ≤ η}, we have ‖Au‖ ≤ l.
Let

l =
k

k – k
m

m –m

λ

�(α – )

(∫ 


( – τ )α–a(τ )dτ + η

∫ 


( – τ )α–a(τ )dτ

)

> . ()

According to () and (), we have

∣∣Au(t)∣∣ ≤ k
k – k

m

m –m

λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

≤ k
k – k

m

m –m

λ

�(α – )

∫ 


( – τ )α–

(
a(τ ) + a(τ ) max

t∈[,]
u(t)

)
dτ

http://www.advancesindifferenceequations.com/content/2013/1/119
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≤ k
k – k

m

m –m

λ

�(α – )

(∫ 


( – τ )α–a(τ )dτ + η

∫ 


( – τ )α–a(τ )dτ

)

= l.

Using () and () yields

∣∣Au(t)∣∣ ≤ k
k – k

m

m –m

λ

�(α – )

∫ 


( – τ )α–

(
a(τ ) + a(τ ) max

t∈[,]
∣∣u′(t)

∣∣)dτ

≤ k
k – k

m

m –m

λ

�(α – )

(∫ 


( – τ )α–a(τ )dτ + η

∫ 


( – τ )α–a(τ )dτ

)

= l.

In addition, using () and (), we also have

∣∣(Au)′(t)∣∣ ≤ m

m –m

λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

≤ k
k – k

m

m –m

λ

�(α – )

×
(∫ 


( – τ )α–a(τ )dτ + η

∫ 


( – τ )α–a(τ )dτ

)

= l.

Hence, we have ‖Au‖ ≤ l.
Thirdly, we consider that A maps bounded sets into equicontinuous sets of P. Since

(t – s)α– and t are uniformly continuous on [, ], then for any ε > , there exists δ > ,
whenever |t – t| < δ, we have

∣∣(t – s)α– – (t – s)α–
∣∣ < �(α)ε

λ[a(τ ) + ηa(τ )]
,

we also obtain

|t – t| < ε


∫ 
 ( – τ )α–[a(τ ) + ηa(τ )]dτ

.

For convenience, we assume t < t. For any u ∈ Bη , according to () and (), we get

∣∣Au(t) –Au(t)
∣∣ ≤

∣∣∣∣(t – t)
∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

∣∣∣∣
+

∣∣∣∣ λ

�(α)

∫ 



[
(t – τ )α– – (t – τ )α–

]
ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

∣∣∣∣
<

∣∣∣∣(t – t)
∫ 


( – τ )α–

[
a(τ ) + ηa(τ )

]
dτ

∣∣∣∣
+

∣∣∣∣ λ

�(α)

∫ 



[
(t – τ )α– – (t – τ )α–

][
a(τ ) + ηa(τ )

]
dτ

∣∣∣∣
< ε,
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and

∣∣(Au)′(t) – (Au)′(t)
∣∣

≤
∣∣∣∣ λ

�(α – )

∫ 



[
(t – τ )α– – (t – τ )α–

]
ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

∣∣∣∣
≤ λ

�(α – )

∫ 



∣∣[(t – τ )α– – (t – τ )α–
]∣∣[a(s) + ηa(s)

]
ds

<
�(α)

�(α – )
ε.

Consequently, we obtain

∥∥Au(t) –Au(t)
∥∥ <min

{
�(α)

�(α – )
, 

}
ε,

which implies that the family of functions {Au : u ∈ Bη} is equicontinuous. It follows from
the virtue of the Arzela-Ascoli theorem that the operator A : P → P is completely con-
tinuous. �

Remark  If f (t,u,u) : [, ]× [,∞)× (–∞, +∞) → [,∞) is continuous, we can obtain
that A : P → P is completely continuous by using a similar argument as the above.

4 Existence of one or two solutions
In this section, we discuss the existence of single or twin positive solutions to problem ().

Theorem  Assume that all assumptions of Lemma  and

λ

∫ 


( – τ )α–a(τ )dτ <

(k – k)(m –m)�(α – )
km

hold, then the fractional differential equation () has at least one positive solution.

Proof of Theorem  Let

U =
{
u ∈ P : ‖u‖ < r

}
,

where

r =
k

k–k
m

m–m
λ

�(α–)
∫ 
 ( – τ )α–a(τ )dτ

 – k
k–k

m
m–m

λ
�(α–)

∫ 
 ( – τ )α–a(τ )dτ

> .

Assume that there exist u ∈ P and γ ∗
 ∈ (, ) such that u = γ ∗

 Au. Then we find

u(t) = γ ∗
 Au ≤ γ ∗

 Au()

≤ γ ∗


k
k – k

m

m –m

λ

�(α – )

×
∫ 


( – τ )α–

(
a(τ ) + a(τ )max

{
max
t∈[,]

u(t), max
t∈[,]

∣∣u′(t)
∣∣})

dτ
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≤ γ ∗


k
k – k

m

m –m

λ

�(α – )

×
(∫ 


( – τ )α–a(τ )dτ + ‖u‖

∫ 


( – τ )α–a(τ )dτ

)
,

and

∣∣u′(t)
∣∣ = ∣∣γ ∗

 (Au)
′(t)

∣∣
=

∣∣∣∣γ ∗


m

m –m

λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

∣∣∣∣
≤ γ ∗


k

k – k
m

m –m

λ

�(α – )

×
(∫ 


( – τ )α–a(τ )dτ + ‖u‖

∫ 


( – τ )α–a(τ )dτ

)
.

Thus, we have

‖u‖ <
k

k – k
m

m –m

λ

�(α – )
γ ∗


×
(∫ 


( – τ )α–a(τ )dτ + r

∫ 


( – τ )α–a(τ )dτ

)

= γ ∗
 r,

which means that u /∈ ∂U and ‖u‖ = r.
By virtue of Lemma , we conclude that the fractional differential equation () has at

least one positive solution. �

Remark  ‘All assumptions of Lemma  hold’ can be replaced by ‘f (t,u,u) : [, ] ×
[,∞)× (–∞, +∞)→ [,∞) is continuous’ in Theorem .

Theorem  Assume that all assumptions of Lemma  and the following conditions hold:
(i) there exists a constantm >  such that f (t,u,u) ≤ ϕp(m�) for

(t,u,u) ∈ [, ]× [,m]× [–m,m], where � = ( k
k–k

m
m–m

λ�(q)
�(α+q–) )

–;
(ii) there exists a constant e >  such that f (t,u,u)≥ ϕp(e�) for

(t,u,u) ∈ [, ]× [, e]× [–e, e], where � = ( m
m–m

λ�(q)
�(α+q–) )

–, andm = e.
Then the fractional differential equation () has at least one positive solution u such that
‖u‖ lies between m and e.

Proof of Theorem  Without loss of generality, we assume thatm < e.
Let

�m =
{
u ∈ E : ‖u‖ <m

}
.

For any u ∈ P ∩ ∂�m, there is

max
t∈[,]

∣∣u′(t)
∣∣ ≤ ‖u‖ <m and max

t∈[,]
u(t) ≤ m.

http://www.advancesindifferenceequations.com/content/2013/1/119


Su et al. Advances in Difference Equations 2013, 2013:119 Page 13 of 32
http://www.advancesindifferenceequations.com/content/2013/1/119

It follows from condition (i) that

‖Au‖ = max
{‖Au‖,‖Au‖

}

≤ k
k – k

m

m –m

λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

< m�
k

k – k
m

m –m

λ

�(α – )

∫ 


( – τ )α–τ q– dτ

< m�
k

k – k
m

m –m

λ�(q)
�(α + q – )

≤ m, ()

which implies that

‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂�m. ()

We define

�e =
{
u ∈ E : ‖u‖ < e

}

for arbitrary u ∈ P ∩ ∂�e, and find

max
t∈[,]

∣∣u′(t)
∣∣ ≤ ‖u‖ < e and max

t∈[,]
u(t) ≤ e.

On the other hand, it follows from condition (ii) that

‖Au‖ ≥
∣∣∣max
t∈[,]

(Au)′(t)
∣∣∣

=
m

m –m

λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

≥ e�
m

m –m

λ

�(α – )

∫ 


( – τ )α–τ q– dτ

≥ e�
m

m –m

λ�(q)
�(α + q – )

= e, ()

which implies that

‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂�e. ()

By using () and (), it follows from Lemma  that the fractional differential equation
() has a positive solution u in P ∩ (�e\�m). �

Let

f  = lim
(u,u)→(,)

sup
t∈[,]

f (t,u,u)
ϕp(|u|) for u,u ∈ P,

f∞ = lim
u+|u|→∞ inf

t∈[,]
f (t,u,u)

ϕp(u + |u|) for u,u ∈ P,

f = lim
(u,u)→(,)

inf
t∈[,]

f (t,u,u)
ϕp(u + |u|) for u,u ∈ P,

http://www.advancesindifferenceequations.com/content/2013/1/119


Su et al. Advances in Difference Equations 2013, 2013:119 Page 14 of 32
http://www.advancesindifferenceequations.com/content/2013/1/119

and

f ∞ = lim
(u,u)→(∞,∞)

sup
t∈[,]

f (t,u,u)
ϕp(|u|) for u,u ∈ P.

Now, we have the following two results.

Theorem  Assume that all assumptions of Lemma  hold. In addition, when f  ∈
[,ϕp(�)) and f∞ ∈ (ϕp(�),∞) ∪ {∞} hold too, then the fractional differential equation
() has at least one positive solution.

Proof of Theorem  It is easy to obtain that

sup
t∈[,]

u(t) ≤ k
k – k

sup
t∈[,]

∣∣u′(t)
∣∣,

then, according to the assumption f  < ϕp(�), there exists a sufficiently smallm >  such
that

f
(
t,u,u′) ≤ ϕp

(
�

∣∣u′∣∣) ≤ ϕp(�m) for
(
t,u,u′) ∈ [, ]×

[
,

k
k – k

m
]

× [–m,m],

we can obtain () is true. That is, if we let

�m∗ =
{
u ∈ E : ‖u‖ < k

k – k
m

}
,

then

‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂�m∗ .

It follows from f∞ >� that there exists an H > mk
k–k

such that

f
(
t,u,u′) ≥ ϕp

(
�

(
u +

∣∣u′∣∣)) ≥ ϕp
(
�‖u‖), ()

where t ∈ [, ] and u + |u′| ≥ H .
Set

�H =
{
u ∈ E : u +

∣∣u′∣∣ <H
}
,

then we see that �m∗ ⊂ �H .
For any u ∈ P ∩ ∂�H , we have u + |u′| =H . Equation () gives

‖Au‖ ≥
∣∣∣max
t∈[,]

(Au)′(t)
∣∣∣

=
m

m –m

λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

≥ �‖u‖ m

m –m

λ

�(α – )

∫ 


( – τ )α–tq– dτ
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≥ �‖u‖ m

m –m

λ�(q)
�(α + q – )

= ‖u‖.

Consequently, it follows from the virtue of Lemma  that the fractional differential equa-
tion () has a positive solution u in P ∩ (�H\�m∗ ). �

Theorem Assume that all assumptions of Lemma  hold. In addition, f ∈ (ϕp(�),∞)∪
{∞} and f ∞ ∈ [,ϕp(�)) are satisfied. Then the fractional differential equation () has at
least one positive solution.

Proof of Theorem  It follows from f > ϕp(�) that there exists a sufficiently small e > 
such that

f
(
t,u,u′) ≥ ϕp

(
�

(
u + |u′|))

≥ ϕp
(
�max

{‖u‖,‖u‖
})

for
(
t,u,u′) ∈ [, ]×

[
,

k
k – k

e
]

× [–e, e].

When (t,u,u′) ∈ [, ]× [, k
k–k

e]× [–e, e], we get

f
(
t,u,u′) ≥ ϕp

(
�max

{‖u‖,‖u‖
})

= ϕp(�e),

we can obtain (). Take

�e∗ =
{
u ∈ E : ‖u‖ < k

k – k
e
}
.

Then

‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂�e∗ .

Let ε = � – f ∞ (> ). Since f ∞ < ϕp(�), there exists a p (> k
k–k

e) such that

f
(
t,u,u′) ≤ ϕp

((
ε + f ∞)∣∣u′∣∣) = ϕp

(
�

∣∣u′∣∣), ()

where (t,u,u′) ∈ [, ]× [ k
k–k

p,∞)× (–∞, –p]∪ [p, +∞).
Note that

f ∈ C
(
[, ]× [,∞)× (–∞,∞), [,∞)

)
.

So there exists a C >  such that

f
(
t,u,u′) ≤ ϕp(C) for

(
t,u,u′) ∈ [, ]×

[
,

k
k – k

p
]

× [–p,p]. ()

Equations () and () reduce to

f
(
t,u,u′) ≤ max

{
ϕp(C),ϕp

(
�

∣∣u′∣∣)} for
(
t,u,u′) ∈ [, ]× [,∞)× (–∞,∞).
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Let

p∗
 >max

{
C/�,

k
k – k

e
}
,

and

�p∗

=

{
u ∈ E : ‖u‖ < p∗


}
.

If u ∈ P ∩ ∂�p∗

, one has ‖u‖ = p∗

 and

‖Au‖ ≤ k
k – k

m

m –m

λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

≤ k
k – k

m

m –m

λ

�(α – )

∫ 


( – τ )α–max

{
C,�

∣∣u′∣∣}τ q– dτ

≤ �p∗


k
k – k

m

m –m

λ�(q)
�(α + q – )

= ‖u‖.

This implies our desired result. �

Next, we dealwith the existence of at least twodistinct positive solutions to the fractional
differential equation ().

Theorem  Assume that all assumptions of Lemma  hold.Moreover, suppose that f = ∞
and f∞ = ∞, and the condition (i) in Theorem  is satisfied. Then the fractional differential
equation () has at least two distinct positive solutions u,u ∈ P.

Proof of Theorem  In view of f = ∞, there exists an H such that  <H <m and

f
(
t,u,u′) ≥ ϕp

(
h
(
u +

∣∣u′∣∣))

≥ ϕp
(
h‖u‖) for

(
t,u,u′) ∈ [, ]×

(
,

k
k – k

H

]
× [–H,H], ()

where h is given by

h
m

m –m

λ�(q)
�(α + q – )

≥ . ()

Take

�H =
{
u ∈ E : ‖u‖ <H

}
.

If u ∈ �H with ‖u‖ =H, it means that

sup
t∈[,]

∣∣u′(t)
∣∣ ≤ ‖u‖ =H for t ∈ [, ],
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and

sup
t∈[,]

u(t) ≤ H for t ∈ [, ].

It follows from () and () that

‖Au‖ ≥
∣∣∣max
t∈[,]

(Au)′(t)
∣∣∣

=
m

m –m

λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

≥ m

m –m

λ

�(α – )

∫ 


( – τ )α–τ q–h‖u‖dτ

≥ h
m

m –m

λ�(q)
�(α + q – )

‖u‖,

which implies that

‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂�H .

Let

�m =
{
u ∈ E : ‖u‖ <m

}
.

Then we obtain that () holds by using the condition (i) of Theorem . According
to Lemma , the fractional differential equation () has a positive solution u in P ∩
(�m\�H ).
It follows from f∞ = ∞ that there exists an H > k

k–k
e such that

f
(
t,u,u′) ≥ ϕp

(
k
(
u +

∣∣u′∣∣)) ≥ ϕp
(
k‖u‖), ()

where t ∈ [, ] and u + |u′| ≥ H. Moreover, k satisfies that

k
m

m –m

λ�(q)
�(α + q – )

≥ .

Let

�H =
{
u ∈ �H : u +

∣∣u′∣∣ <H
}
,

then we see that �m ⊂ �H .
For any u ∈ P ∩ ∂�H , we have u + |u′| =H. According to (), we deduce that

‖Au‖ ≥ m

m –m

λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

≥ m

m –m

λ

�(α – )

∫ 


( – τ )α–τ q–k‖u‖ds
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≥ k
m

m –m

λ�(q)
�(α + q – )

‖u‖
≥ ‖u‖.

Thus, it follows from (i) of Lemma  that the fractional differential equation () has at least
a single positive solution u in P ∩ (�H\�m) with

m ≤ ‖u‖ and u +
∣∣u′


∣∣ ≤ H.

It is easily seen that u and u are distinct. �

By a closely similar way, we can obtain the following result.

Theorem  Assume that all assumptions of Lemma  hold.Moreover, suppose that f  = 
and f ∞ = , and the condition (ii) in Theorem  is satisfied, then the fractional differential
equation () has at least two distinct positive solutions u,u ∈ P.

5 Existence of triple or multiple solutions
In this section, we will further discuss the existence of at least , n or n –  positive so-
lutions to p-Laplacian fractional differential equation () by using different fixed point
theorems in cone.
For the notational convenience, we define

M =
m

m –m

λ�(q)
�(α + q – )

,

N =
m

m –m

k
k – k

λ�(q)
�(α + q – )

,

and

L =
k

k – k
m

m –m

λ�(q)
�(α + q – )

.

5.1 Existence of three solutions
In this subsection, we investigate the existence of at least three distinct positive solutions
of equation ().

Theorem  Let a, b and c be constants such that  < a < b < d ≤ c and bk < ck. In addi-
tion, if all assumptions of Lemma  hold and f (t,u,u) satisfies the following conditions:

(i) f (t,u,u) < ϕp( aL ) for (t,u,u) ∈ [, ]× [,a]× [–a,a];
(ii) f (t,u,u) > ϕp( bN ) for (t,u,u) ∈ [, ]× [b,d]× [–c, c];
(iii) f (t,u,u) ≤ ϕp( cL ) for (t,u,u) ∈ [, ]× [, c]× [–c, c].

Then the fractional differential equation ()has at least triple positive solutions u,u,u ∈
P such that

 < ‖u‖ < a, b < inf
t∈[,]

u, a < u with inf
t∈[,]

u < b. ()
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Proof of Theorem  By the virtue of the completely continuous operator A and Lemma ,
we need to show that all conditions of Lemma  with respect to A are satisfied.
Let

q(u) = inf
t∈[,]

u(t) for u ∈ P,

then q(u) is a nonnegative continuous concave function and satisfies

q(u) ≤ ‖u‖ for u ∈ Pc =
{
u ∈ P : ‖u‖ ≤ c

}
.

Since

u ∈ [, c] and u′ ∈ [–c, c] for u ∈ Pc ,

it follows from condition (iii) that

‖Au‖ ≤ k
k – k

m

m –m

λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

≤ c
L

k
k – k

m

m –m

λ

�(α – )

∫ 


( – τ )α–τ dτ

≤ c
L

k
k – k

m

m –m

λ�(q)
�(α + q – )

≤ c, ()

which implies A : Pc → Pc .
When u ∈ Pa = {u ∈ P : ‖u‖ ≤ a}, it implies that u ∈ [,a] and u′ ∈ [–a,a], from this,

we can easily obtain that the conditions (ii) of Lemma  is true.
Let d be a fixed constant such that b < d ≤ c, then we have q(d) = d > b and ‖d‖ = d. This

means that

d ∈ P(q,b,d) =
{
u ∈ P : b≤ q(u),‖u‖ ≤ d

}
.

For any u ∈ P(q,b,d), we get

‖u‖ ≤ d and q(u) = inf
t∈[,]

u≥ b,

which implies that

u ∈ [b,d] and u′ ∈ [–d,d] for t ∈ [, ].

Hence, the condition (ii) gives that

q(Au) = inf
t∈[,]

Au = min
t∈[,]

∣∣(Au)(t)∣∣ = (Au)()

=
m

m –m

λ

�(α – )
k

k – k

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ
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=
b
N

m

m –m

λ

�(α – )
k

k – k

∫ 


( – τ )α–τ dτ

=
b
N

m

m –m

λ�(q)
�(α + q – )

k
k – k

> b,

which means that the condition (i) of Lemma  holds.
For any u ∈ P(q,b, c) with ‖Au‖ > d, it gives ‖u‖ ≤ c and inft∈[,] u ≥ b. By using the

same argument as the above, we see that q(Au) > b. This implies that the condition (iii) of
Lemma  is fulfilled.
Consequently, all conditions of Lemma  are verified. That is, the fractional differential

equation () has at least three distinct solutions distributed as (). �

Corollary  Assume that all assumptions of Lemma  hold. If the condition (iii) in Theo-
rem  is replaced by

(iii′) f ∞ = lim
(u,u)→(∞,∞)

sup
t∈[,]

f (t,u,u) ≤ ϕp

(
c
L

)
for u,u ∈ P,

then () in Theorem  also holds.

Proof of Corollary  We only need to prove that the condition (iii′) implies the condition
(iii) in Theorem . That is, assume that (iii′) holds, then there exists a number c∗ ≥ d∗ such
that

f
(
t,u,u′) ≤ ϕp

(
c∗

L

)
for

(
t,u,u′) ∈ [, ]×

[
,

k
k – k

c∗
]

× [
–c∗, c∗

]
.

Conversely, we suppose that for any c∗ ≥ d∗, there exists

(
uc,u′

c
) ∈

[
,

k
k – k

c∗
]

× [
–c∗, c∗

]

such that

f
(
t,uc,u′

c
)
> ϕp

(
c∗

L

)
for t ∈ [, ].

Take

c∗n > d∗ (n = , , . . .) with c∗n → ∞.

Then there exists

(
un,u′

n
) ∈

[
,

k
k – k

c∗n

]
× [

–c∗n, c
∗
n
]

such that

f
(
t,un,u′

n
)
> ϕp

(
c∗n
L

)
for t ∈ [, ], ()
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and

lim
n→∞ f

(
t,un,u′

n
)
= ∞ for t ∈ [, ]. ()

Since the condition (iii′) holds, there is a τ >  such that

f
(
t,u,u′) ≤ ϕp

( |u′|
L

)

for
(
t,u,u′) ∈ [, ]×

[
k

k – k
τ ,∞

)
× (–∞, τ ]∪ [τ ,∞). ()

Thus, we have

∣∣u′
n(t)

∣∣ ≤ τ for t ∈ [, ],

and

un(t) ≤ k
k – k

τ for t ∈ [, ].

Otherwise, if

∣∣u′
n(t)

∣∣ > τ and un(t) >
k

k – k
τ for t ∈ [, ],

it follows from () that

f
(
t,un,u′

n
) ≤ ϕp

( |u′
n|
L

)
≤ ϕp

(
c∗n
L

)
for t ∈ [, ],

which contradicts inequality ().
Let

W = max
(t,u,u′)∈[,]×[, k

k–k
τ ]×[–τ ,τ ]

f
(
t,u,u′),

so we have

f
(
t,un,u′

n
) ≤ W (n = , , . . .).

This apparently contradicts formula (). Consequently, we complete the proof. �

5.2 Existence of arbitrary n solutions
In this subsection, the existence criteria for at least three or arbitrary n positive solutions
to p-Laplacian fractional differential equation () are obtained.
We define the nonnegative, increasing, continuous functionals γ, β and α by

γ(u) = β(u) =max
{
inf

t∈[,]
u, inf

t∈[,]
∣∣u′∣∣} for u ∈ P,
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and

α(u) =max
{
sup
t∈[,]

u, sup
t∈[,]

∣∣u′∣∣} for u ∈ P,

so

γ(u) = β(u)≤ α(u) for each u ∈ P.

Since

inf
t∈[,]

u(t) = min
t∈[,]

u(t) = u()

=
m

m –m

λ

�(α – )
k

k – k

∫ 


( – τ )α–

∫ τ


h(s)dsdτ

≥ k
k

m

m –m

λ

�(α – )
k

k – k

∫ 


( – τ )α–

∫ τ


h(s)dsdτ

=
k
k

max
t∈[,]

u(t) = ‖u‖,

and

inf
t∈[,]

∣∣u′(t)
∣∣ = u′()

=
m

m –m

λ

�(α – )

∫ 


( – τ )α–

∫ τ


h(s)dsdτ

=
m

m

m

m –m

λ

�(α – )

∫ 


( – τ )α–

∫ τ


h(s)dsdτ

=
m

m
‖u‖.

Hence, we have

‖u‖ ≤ max

{
m

m
,
k
k

}
γ(u) = γ γ(u) for all u ∈ P,

where γ =max{m
m

, kk }.

Theorem  Assume that there exist real numbers a′, b′, c′ with a′ < b′ < c′ such that  <
kb′ < a′k. In addition, if all assumptions of Lemma  hold and f (t,u,u) satisfies the
following conditions:

(i) f (t,u,u) < ϕp( c
′
L ) for (t,u,u) ∈ [, ]× [,γ c′]× [–γ c′,γ c′];

(ii) f (t,u,u) > ϕp( b
′

N ) for (t,u,u) ∈ [, ]× [b′,γ b′]× [–γ b′,γ b′];
(iii) f (t,u,u) < ϕp( a

′
L ) for (t,u,u) ∈ [, ]× [,a′]× [–a′,a′].

Then the fractional differential equation () has at least three distinct positive solutions
u,u,u ∈ P(γ, c′) such that

 < ‖u‖ < a′ < ‖u‖,
max

{
inf

t∈[,]
u, inf

t∈[,]
∣∣u′


∣∣} < b′ <max

{
inf

t∈[,]
u, inf

t∈[,]
∣∣u′


∣∣} < c′.

()
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Proof of Theorem  We only need to check all conditions of Lemma  are fulfilled with
respect to the operator A. By using a similar way as to the proof of (), we can obtain that

A : P
(
γ, c′

) → P.

For arbitrary u ∈ ∂P(γ, c′), one has

γ(u) =max
{
inf

t∈[,]
u, inf

t∈[,]
∣∣u′∣∣} = c′,

and

‖u‖ ≤ γ γ(u) = γ c′.

This implies that

 ≤ u≤ γ c′, t ∈ [, ],

and

–γ c′ ≤ u′ ≤ γ c′, t ∈ [, ].

According to the condition (i), it gives

γ(Au) = max
{
inf

t∈[,]
Au, inf

t∈[,]
∣∣Au′∣∣}

≤ m

m –m

λ

�(α – )
k

k – k

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

≤ c′

L
m

m –m

λ

�(α – )
k

k – k

∫ 


( – τ )α–τ dτ

=
c′

L
m

m –m

λ�(q)
�(α + q – )

k
k – k

< c′.

We see that γ(Au) < c′ for u ∈ ∂P(γ, c′).
For any u ∈ ∂P(β,b′), it gives

β(u) =max
{
inf

t∈[,]
u, inf

t∈[,]
∣∣u′∣∣} = b′,

and

‖u‖ ≤ γβ(u) = γ γ(u) = γ b′.

This implies that

b′ ≤ u≤ γ b′, t ∈ [, ],
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and

–γ b′ ≤ u′ ≤ γ b′, t ∈ [, ].

Making use of the condition (ii), we get

β(Au) = max
{
inf

t∈[,]
Au, inf

t∈[,]
∣∣Au′∣∣}

= max

{
k

k – k
m

m –m
,

m

m –m

}
λ

�(α – )

×
∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

≥ b′

N
k

k – k
m

m –m

λ

�(α – )

∫ 


( – τ )α–τ dτ

=
b′

N
k

k – k
m

m –m

λ�(q)
�(α + q – )

= b′.

So we have β(Au) > b′ for u ∈ ∂P(β,b′).
We now show that P(α,a′) = ∅ and α(Au) < a′ for arbitrary u ∈ ∂P(α,a′). Since a′

 ∈
P(α,a′), for u ∈ ∂P(α,a′), we have

α(u) =max
{
sup
t∈[,]

u, sup
t∈[,]

∣∣u′∣∣} = a′,

which gives

 ≤ u≤ a′ and – a′ ≤ u′ ≤ a′ for t ∈ [, ].

It follows from the assumption (iii) that

α(Au) ≤ k
k – k

m

m –m

λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

≤ a′

L
k

k – k
m

m –m

λ

�(α – )

∫ 


( – τ )α–τ dτ

= a′.

All conditions in Lemma  are satisfied. From (S) and (S), we know that solutions
of equation () do not vanish identically on any closed subinterval of [, ]. Consequently,
equation () has at least three distinct positive solutions u, u, and u belonging to P(γ, c′)
distributed as (). �

The following result is regarded as a corollary of Theorem .

Corollary  Assume that all assumptions of Lemma  hold and f satisfies the following
conditions:

(i) f  =  and f ∞ = ;
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(ii) there exists a c >  such that

f (s,u,u) > ϕp

(

γ

c
N

)
for (t,u,u) ∈ [, ]×

[
c
γ
, c

]
× [–c, c].

Then the fractional differential equation () has at least three distinct positive solutions.

Proof of Corollary  Let b′ = 
γ
c. It follows from the condition (ii) that

f (t,u,u) > ϕp

(
b′

N

)
for (t,u,u) ∈ [, ]× [

b′,b′γ
] × [

–γ b′,γ b′],

which implies that the condition (ii) of Theorem  holds.
We choose a sufficiently small ε >  such that

εL = ε
k

k – k
m

m –m

λ�(q)
�(α + q – )

< . ()

In view of f  = , there exists a sufficiently small k∗
 >  such that

f (t,u,u) ≤ ϕp
(
ε|u|

)
for (t,u,u) ∈ [, ]×

[
,

k
k – k

k∗


]
× [

–k∗
 ,k

∗

]
. ()

Without loss of generality, let k∗
 = a′ < b′. Because of maxt∈[,] |u| ≤ a′, we have

maxt∈[,] u ≤ k
k–k

maxt∈[,] |u| ≤ k
k–k

a′. Thus, it follows from () and () that

f (t,u,u) ≤ ϕp
(
ε|u|

) ≤ ϕp
(
εa′) < ϕp

(
a′

L

)

for (t,u,u) ∈ [, ]×
[
,

k
k – k

a′
]

× [
–a′,a′],

which implies that the condition (iii) of Theorem  holds.
Choose ε sufficiently small such that

εγL = εγ
k

k – k
m

m –m

λ�(q)
�(α + q – )

< .

By using the continuity of f , there exists a constant C∗ such that

f (t,u,u) ≤ ϕp
(
C∗) for (t,u,u) ∈ [, ]×

[
,

k
k – k

γ c′
]

× [
–γ c′,γ c′

]
. ()

Since f ∞ = , there exists a k > LC∗ sufficiently large such that

f (t,u,u) ≤ ϕp
(
ε|u|

)

for (t,u,u) ∈ [, ]×
[

k
k – k

k, +∞
)

× [
k, +∞)∪ (–∞,k

]
.

Without loss of generality, let k > b′
γ
and c′ = k, so we see if

(t,u,u) ∈ [, ]×
[
,

k
k – k

γ c′
]

× [
–γ c′, –c′

] ∪ [
c′,γ c′

]
,
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then

f (t,u,u) ≤ ϕp
(
ε|u|

) ≤ ϕp
(
εγ c′

)
< ϕp

(
c′

L

)
. ()

Moreover, in view of (), one has

f (t,u,u) ≤ ϕp
(
C∗) < ϕp

(
k
L

)

= ϕp

(
c′

L

)
for (t,u,u) ∈ [, ]×

[
,

k
k – k

γ c′
]

× [
–γ c′,γ c′

]
. ()

From () and (), we see that the condition (i) of Theorem  is fulfilled. Hence, equation
() has at least three distinct positive solutions according to Theorem . �

According to Theorem , we can prove that the existence for multiple positive solutions
to the equation () when conditions (i), (ii) and (iii) are modified appropriately on f .

Theorem  If there exist constant numbers a′
i, b′

i and c′i such that  < a′
 < b′

 < c′ < · · · <
a′
n < b′

n < c′n together with

 < kb′
 < c′k < kb′

 < c′k < · · · < kb′
n < c′nk, n ∈N, ()

where i = , , . . . ,n. In addition, if all assumptions of Lemma  hold and the function f
satisfies:

(i) f (t,u,u) < ϕp(
c′i
L ) for (t,u,u) ∈ [, ]× [,γ c′i]× [–γ c′i,γ c′i];

(ii) f (t,u,u) > ϕp(
b′
i

N ) for (t,u,u) ∈ [, ]× [b′
i,γ b′

i]× [–γ b′
i,γ b′

i];
(iii) f (t,u,u) < ϕp(

a′
i
L ) for (t,u,u) ∈ [, ]× [,a′

i]× [–a′
i,a′

i].
Then the fractional differential equation () has at least n distinct positive solutions.

Proof of Theorem  By using almost same technique as to the proof of Theorem  in [].
�

By virtue of Lemma , we can obtain the following results by using the similar way as to
those of Theorem .

Theorem  Assume that there exist positive numbers a′, b′, c′ with a′ < b′ < c′ such that
c′k < b′k. In addition, if all assumptions of Lemma  hold and f (t,u,u) satisfies the
following conditions:

(i) f (t,u,u) > ϕp( c
′
N ) for (t,u,u) ∈ [, ]× [,γ c′]× [–γ c′,γ c′];

(ii) f (t,u,u) < ϕp( b
′
L ) for (t,u,u) ∈ [, ]× [b′,γ b′]× [–γ b′,γ b′];

(iii) f (t,u,u) > ϕp( a
′

N ) for (t,u,u) ∈ [, ]× [,a′]× [–a′,a′].
Then the fractional differential equation () has at least three distinct positive solutions
u,u,u ∈ P(γ, c′) such that

 ≤ ‖u‖ < a′ < ‖u‖,
max

{
inf

t∈[,]
u, inf

t∈[,]
∣∣u′


∣∣} < b′ <max

{
inf

t∈[,]
u, inf

t∈[,]
∣∣u′


∣∣} < c′.
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It also follows fromTheorem  that we can obtain the following corollary and theorem,
respectively.

Corollary  Assume that all assumptions of Lemma  hold and f satisfies conditions:
(i) f = ∞, f∞ = ∞;
(ii) there exists c >  such that f (t,u,u) < ϕp( γ

c
M ) for

(t,u,u) ∈ [, ]× [ c
λ
, c]× [–c, c].

Then the fractional differential equation () has at least three distinct positive solutions.

Theorem Assume that all assumptions of Lemma  hold and there are positive numbers
a′
i, b′

i, c′i such that a′
 < b′

 < c′ < · · · < a′
n < b′

n < c′n together with

 < kb′
 < c′k < kb′

 < c′k < · · · < kb′
n < c′nk, n ∈N,

where i = , , . . . ,n. In addition, f (t,u,u) satisfies the following conditions:
(i) f (t,u,u) > ϕp(

c′i
N ) for (t,u,u) ∈ [, ]× [,γ c′i]× [–γ c′i,γ c′i];

(ii) f (t,u,u) < ϕp(
b′
i
L ) for (t,u,u) ∈ [, ]× [b′

i,γ b′
i]× [–γ b′

i,γ b′
i];

(iii) f (t,u,u) > ϕp(
a′
i

N ) for (t,u,u) ∈ [, ]× [,a′
i]× [–a′

i,a′
i].

Then the fractional differential equation () has at least n distinct positive solutions.

5.3 Existence of arbitrary 2n – 1 solutions
In this subsection, the existence of at least three or arbitrary odd positive solutions to
p-Laplacian differential equation () are established.
Define the nonnegative continuous convex functionals φ and β , concave functional λ

and functional ϕ on P by

φ(u) =max
{
sup
t∈[,]

u, sup
t∈[,]

∣∣u′∣∣},
β(u) = ϕ(u) = sup

t∈[,]
u,

and

λ(u) = inf
t∈[,]

∣∣u′∣∣.

Theorem  Assume that all assumptions of Lemma  hold and there exist constants a∗,
b∗, d∗ such that  < a∗ < b∗ < k

k
d∗. In addition, f (t,u,u) satisfies the following conditions:

(i) f (t,u,u) ≤ ϕp( d
∗
L ) for all (t,u,u) ∈ [, ]× [,d∗]× [–d∗,d∗];

(ii) f (t,u,u) > ϕp( b
∗
N ) for all (t,u,u) ∈ [, ]× [b∗,d∗]× [–d∗,d∗];

(iii) f (t,u,u) < ϕp( a
∗
M ) for all (t,u,u) ∈ [, ]× [,a∗]× [–d∗,d∗].

Then the fractional differential equation () has at least three distinct positive solutions u,
u, u such that

‖xi‖ ≤ d∗ for i = , , , b∗ < inf
t∈[,]

u, a∗ < sup
t∈[,]

u,

inf
t∈[,]

u < b∗ with sup
t∈[,]

u < a∗.
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Proof of Theorem  It suffices to show that all conditions of Lemma  hold with respect
to the completely continuous operator A.
For arbitrary u ∈ P, we have λ(u) ≤ ϕ(u) and ‖u‖ = φ(u). This implies that the inequality

() of Lemma  is satisfied.
In the following, we show that A : P(φ,d∗) → P(φ,d∗).
For any u ∈ P(φ,d∗), from φ(u) = ‖u‖ ≤ d∗ and the assumption (i), we have

‖Au‖ ≤ k
k – k

m

m –m

λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

=
d∗

L
k

k – k
m

m –m

λ�(q)
�(α + q – )

= d∗.

It remains to show that assumptions (i)-(iii) of Lemma  are fulfilled with respect to the
operator A.
Let u ≡ kb∗, where k = k

k
. It is obvious that k > , u = kb∗ > b∗ and β(u) = kb∗. We see

that b∗ < k
k
d∗ that φ(u) = kb∗ < d∗. So we have

{
u ∈ P

(
φ,β ,λ,b∗,kb∗,d∗) : λ(x) > b∗} = ∅.

For any u ∈ P(φ,β ,λ,b∗,kb∗,d∗), we get b∗ ≤ u ≤ d∗ and –d∗ ≤ u′ ≤ d∗ for all t ∈ [, ]. It
follows from the assumption (ii) that

λ(Au) = (Au)′()

≥ b∗

N
k

k – k
m

m –m

λ

�(α – )

∫ 


( – τ )α–τ dτ

=
b∗

N
k

k – k
m

m –m

λ�(q)
�(α + q – )

= b∗,

which implies that assumption (i) of Lemma  is satisfied.
For any u ∈ P(φ,λ,b∗,d∗) with β(Au) > kb∗, we have b∗ ≤ u ≤ d∗ and –d∗ ≤ u′ ≤ d∗ for

t ∈ [, ]. So we have

λ(Au) > b∗.

This implies that assumption (ii) of Lemma  is fulfilled.
Since ϕ() =  < a∗, we have  /∈ R(φ,ϕ,a∗,d∗). If

u ∈ R
(
φ,ϕ,a∗,d∗) with ϕ(u) = sup

t∈[,]
u = a∗,

it reduces to

 ≤ u≤ a∗ and – d∗ ≤ u′ ≤ d∗ for all t ∈ [, ].
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Hence, we have

λ(Au) =
m

m –m

λ

�(α – )

∫ 


( – τ )α–ϕq

(∫ τ


f
(
s,u,u′)ds

)
dτ

≤ a∗

M
m

m –m

λ

�(α – )

∫ 


( – τ )α–τ dτ

= a∗.

All assumptions of Lemma  are satisfied. Consequently, we complete the proof. �

Corollary  Assume that all assumptions of Lemma  hold and the condition (i) in Theo-
rem  is replaced by (i′), then the conclusion of Theorem  also holds.

Similar to the proof of Theorem  by mathematical induction, we have the following.

Theorem  Assume that all assumptions of Lemma  hold and there exist constants a∗
i ,

b∗
i , d∗

i such that

 < a∗
 < b∗

 <
k
k

d∗
 < a∗

 < b∗
 <

k
k

d∗
 < a∗

 < · · · < a∗
n, n ∈N,

where i = , , . . . ,n. In addition, f satisfies the following conditions:
(i) f (t,u,u) ≤ ϕp(

d∗
i
L ) for all (t,u,u) ∈ [, ]× [,d∗

i ]× [–d∗
i ,d∗

i ];
(ii) f (t,u,u) > ϕp(

b∗
i
N ) for all (t,u,u) ∈ [, ]× [b∗

i ,d∗
i ]× [–d∗

i ,d∗
i ];

(iii) f (t,u,u) < ϕp(
a∗
i
M ) for all (t,u,u) ∈ [, ]× [,a∗

i ]× [–d∗
i ,d∗

i ].
Then the fractional differential equation () has at least n –  positive solutions.

6 Examples
In this section, we present two simple examples to illustrate our theoretical results. In
Example , it shows the difference between two cases in Section .

Example  Consider

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(CD 
 u(t))

′
= f (t,u(t),u′(t)), t ∈ (, ),

ku() – ku() = ,

mu() –mu() = ,

x′′() = .

()

Case : when f (t,u,u′) takes the form as

f
(
t,u,u′) = u + u′ for

(
t,u,u′) ∈ [, ]× [,∞)× (–∞, +∞).

It is easy to see that

∫ t


f
(
s,u,u′)ds =

∫ t



(
u + u′)ds = t

(
u + u′) ≤ t max

t∈[,]
∣∣u′(t)

∣∣,
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then a(t) =  and a(t) = t. Moreover, we see that

∫ 


s ds =  <

k – k
k

m –m

m
.

It follows fromTheorem  that the fractional differential equation () has at least one pos-
itive solution. However, it is difficult for us to obtain the existence of at least one positive
solution to the fractional differential equation () by using theorems of the super-linearity
and sub-linearity in our paper.
Case : when f (t,u,u′) takes the form as

f
(
t,u,u′) =

⎧⎪⎪⎨
⎪⎪⎩
–eu′+ for u′ ∈ (–∞, –),

u′ for u′ ∈ [–, ],

eu′– for u′ ∈ (, +∞).

By using the continuity of f , we obtain that the operator A is completely continuous. It
is easy to check that f =  and f∞ = ∞. According to Theorem , we see that fractional
differential equation () has at least one positive solution. But it is difficult for us to know
the existence of positive solution to the fractional differential equation () if we use The-
orem .

Example  Consider

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(CD 
 u(t)|CD 

 u(t)|) ′
= f (t,u(t),u′(t)), t ∈ (, ),

u() – u() = ,

u() – u() = ,

x′′() = ,

()

where

f
(
t,u,u′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

 �()
�(  )

for u ∈ [, ],
�()
�(  )

(u – ) for u ∈ (, ),

 �()
�(  )

for u ∈ [, +∞).

Since p = , q = 
 , α = 

 , k = , k = ,m = ,m = , λ = , a straightforward calculation
gives

N =
m

m –m

k
k – k

λ�(q)
�(α + q – )

=



�(  )
�()

,

and

L =
k

k – k
m

m –m

λ�(q)
�(α + q – )

= 
�(  )
�()

.
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Taking a = , b = , d =  and c = , we see that  < a < b < d < 
 c and

f
(
t,u,u′) < ϕ

(
a
L

)
= 

�()
�(  )

for
(
t,u,u′) ∈ [, ]× [, ]× [–, ],

f
(
t,u,u′) > ϕ

(
b
N

)
= 

�()
�(  )

for
(
t,u,u′) ∈ [, ]× [, ]× [–, ],

f (t,u,u) < ϕ

(
c
L

)
= ,

�()
�(  )

for
(
t,u,u′) ∈ [, ]× [, ]× [–, ].

By means of Theorem , we obtain that the fractional differential equation () has at
least three distinct positive solutions u, u, u such that

 < ‖u‖ < ,  < inf
t∈[,]

u,  < u with inf
t∈[,]

u < .
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