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Abstract
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1 Introduction
This paper is devoted to the study of the half-linear differential equation

[
r(t)�

(
x′)]′ + c(t)�(x) = , �(x) = |x|p– sgnx, (.)

where r, c are continuous functions, r is positive, and p > . An equation of this form ap-
peared for the first time in []. Nevertheless, as the basic pioneering papers in the field of
half-linear differential equations, we mention [, ]. During the last decades, these equa-
tions have been widely studied in the literature. A detailed description and a comprehen-
sive literature overview concerning the topic can be found in [] (see also [, Chapter ]).
The name half-linear equationswas introduced in []. This term ismotivated by the fact

that the solution space of these equations is homogeneous (likewise in the linear case),
but it is not additive. There are several differences between linear equations and half-
linear equations. Especially, some tools widely used in the theory of linear equations are
not available for half-linear equations (e.g., see [] for the Wronskian identity and [] for
the Fredholm alternative). In fact, these differences are caused, more or less, by the lack
of the additivity. On the other hand, many results from the theory of linear equations
are extendable to their half-linear counterparts. Since the linear Sturmian theory extends
verbatim to the half-linear case (for details, we refer to [, Section .]), we can classify
Eq. (.) as oscillatory or non-oscillatory. We say that Eq. (.) is oscillatory if zeros of any
solution tend to infinity. Otherwise, Eq. (.) is called non-oscillatory.
In this paper, we analyze a topic from the theory of half-linear equations and, at the same

time, from the theory of (asymptotically) almost periodic functions. The importance of
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the investigation of half-linear equations lies among others in the fact that various phe-
nomena in physics and chemistry are studied through half-linear equations and through
partial differential equations with p-Laplacian (half-linear equations can be regarded as
equations with one-dimensional p-Laplacian). We refer to [] and the last section of this
paper (with references given therein). Similarly, many phenomena in nature have an oscil-
latory character and their models lead to the research of asymptotically almost periodic
functions. There exist many remarkable books concerning (asymptotically) almost peri-
odic differential equations and their applications. See, e.g., [–].
Actually, we are interested in the conditional oscillation of half-linear differential equa-

tions with asymptotically almost periodic coefficients. We say that the equation

[
r(t)�

(
x′)]′ + γ c(t)�(x) =  (.)

with positive coefficients is conditionally oscillatory if there exists a constant � >  such
that Eq. (.) is oscillatory for all γ > � and non-oscillatory for γ < �. The constant � is
called an oscillation constant (more precisely, oscillation constant of c with respect to r).
For results about the conditional oscillation of half-linear equations, we refer to [, ]
and to [, Section ..] (see also []). The conditional oscillation of linear equations is
studied, e.g., in [, ].
Our goal is to find the explicit oscillation constant for Eq. (.), where c(t) = t–ps(t) and

r, s are asymptotically almost periodic functions. We point out that the main motivation
of our research comes from [, , ]. In [, ], the oscillation constant is found for
linear equations with periodic coefficients. Using the notion of the principal solution, the
main result of [] is generalized in [], where periodic half-linear equations are consid-
ered. For the discrete counterpart, we refer to [], where the problem is solved for linear
difference equations with almost periodic coefficients. It means that the presented result
is stronger than the known one in the discrete case because we consider asymptotically
almost periodic half -linear equations.
We consider the asymptotically almost periodic functions r, s in Eq. (.), because the

known results do not cover two important cases - the almost periodic case, which is the
basic generalization of the pure periodicity in applications, and perturbations vanishing
at infinity. In this sense, our result is superior to the results of [, , ].
Besides already given references, let us mention a short literature overview connected

to the above announced result. The conditional oscillation of linear equations is treated in
[]. We also refer to [–] which generalize []. An oscillation criterion for second-
order half-linear equations is proved, e.g., in []. The oscillation properties of second-
order linear dynamic equations are studied in [] and the oscillation and non-oscillation
behavior of second-order half-linear dynamic equations is investigated in [–].
The oscillation of solutions of almost periodic linear equations is discussed in [–].

In [], half-linear equations with (the Besicovitch) almost periodic coefficients are con-
sidered and an oscillation theorem is obtained. In [], a necessary and sufficient condition
for a second-order equation with the Besicovitch almost periodic coefficient to be oscil-
latory is given. Oscillation properties of these equations are mentioned in [, Section .]
and [, Section ..] as well. Other properties of half-linear equations with almost peri-
odic coefficients are treated, e.g., in [].
The paper is organized as follows. The notion of asymptotic almost periodicity is re-

called in the next section. Necessary background from the theory of half-linear equations

http://www.advancesindifferenceequations.com/content/2013/1/122


Hasil and Veselý Advances in Difference Equations 2013, 2013:122 Page 3 of 15
http://www.advancesindifferenceequations.com/content/2013/1/122

is presented in Section . In these two sections, we mention only basic definitions and
results which we will use later. In Section , we prove the main result and we illustrate it
by some examples. Our paper is finished by concluding remarks given in Section .
Henceforth, for given p > , the symbol q will denote the number which is conjugated

with p, i.e., p + q = pq. As usually, R+ stands for all positive reals and R
+
 :=R

+ ∪ {}.

2 Asymptotic almost periodicity
At first, we recall the definition of almost periodicity.

Definition  A continuous function f :R → R is called almost periodic if for every ε > ,
there exists a number p(ε) >  with the property that any interval of length p(ε) of the real
line contains at least one point s for which

∣∣f (t + s) – f (t)
∣∣ < ε, t ∈ R.

Note that we mentioned the so-called Bohr definition of almost periodic functions and
that it is possible to introduce almost periodic functions in different ways. As the basic
definition of almost periodic functions in the literature, one can often find the Bochner
definition which is equivalent with the Bohr one and which is embodied in the next theo-
rem.

Theorem. Let f :R →R be a continuous function.Then f is almost periodic if and only
if from any sequence of the form {f (t + sn)}n∈N, where sn are real numbers, one can extract
a subsequence which converges uniformly with respect to t ∈ R.

Proof See, e.g., [, Theorem .]. �

As a direct generalization of almost periodicity, we consider the notion of asymptotic
almost periodicity.

Definition  We say that a continuous function f :R+
 →R is asymptotically almost peri-

odic if it can be represented in the form f (t) = f(t)+ f(t), t ∈R
+
, where f is almost periodic

and f has the property that limt→∞ f(t) = .

Again, equivalent definitions of asymptotic almost periodicity (based on the Bohr and
Bochner concept) are used in the literature. We formulate them in the following two the-
orems. For the proofs of these theorems, we refer to [, Theorem ., parts ), )] (see
also [, Theorem ..]).

Theorem . A continuous function f : R+
 → R is asymptotically almost periodic if and

only if for every ε > , there exist numbers p(ε) >  and P(ε) >  with the property that any
interval I ⊂R of length p(ε) contains at least one point s for which

∣∣f (t + s) – f (t)
∣∣ < ε, t, t + s ≥ P(ε).

Theorem . A continuous function f : R+
 → R is asymptotically almost periodic if and

only if from any sequence of the form {f (t + sn)}n∈N, where sn are positive real numbers
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satisfying limn→∞ sn = ∞, one can extract a subsequence which converges uniformly with
respect to t ∈ R

+
.

Now we mention two well-known common properties of almost periodic and asymp-
totically almost periodic functions, which we will need later. To prove them, it suffices to
consider Theorems . and . (or consider, e.g., the proof of [, Theorem .]).

Corollary . If f is an (asymptotically) almost periodic function and F : R → R is uni-
formly continuous on the range of f , then the function F ◦ f is (asymptotically) almost peri-
odic as well.

Corollary . The sum and the product of two (asymptotically) almost periodic functions
are (asymptotically) almost periodic.

Since asymptotically almost periodic functions are evidently bounded, from Corol-
lary ., we also obtain the following.

Corollary . If f is an asymptotically almost periodic function satisfying

inf
{
f (t); t ∈ R

+

}
> ,

then the function g :R+
 →R

+, defined by the formula g(t) = f α(t), is asymptotically almost
periodic for arbitrarily given α ∈ R.

It remains to recall the notion of themean value for asymptotically almost periodic func-
tions.

Theorem . If f is an asymptotically almost periodic function, then the limit

M(f ) := lim
t→∞


t

∫ a+t

a
f (s) ds (.)

is finite and exists uniformly with respect to a ∈R
+
.

Proof The theorem follows, e.g., from [, Theorem .] (see also [, Remark .]). �

Definition  Let f be asymptotically almost periodic. The number M(f ) introduced in
(.) is called themean value of f .

Remark  For any positive asymptotically almost periodic function f with the property
that lim supt→∞ f (t) > ,we haveM(f ) > . To verify this fact, it suffices to useTheorem..

3 Half-linear differential equations
To prove the main result, we use the concept of the Riccati equation for half-linear equa-
tions. More precisely, applying the transformation

w(t) = r(t)�
(
x′(t)
x(t)

)
, �(x) = |x|p– sgnx,
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Hasil and Veselý Advances in Difference Equations 2013, 2013:122 Page 5 of 15
http://www.advancesindifferenceequations.com/content/2013/1/122

to Eq. (.), we obtain the half-linear Riccati equation

w′(t) + c(t) + (p – )r–q(t)
∣∣w(t)∣∣q =  (.)

whenever x(t) 
= . We remark that the connection between Eq. (.) and Eq. (.) is de-
scribed in the below given Theorem ..
We also need the following two theorems. The first one is a well-known consequence

of the half-linear Roundabout theorem which is proved, e.g., in [, Theorem ..] (or see
directly [, Theorem ..]). For the second one, we can refer to [, Theorem ..].

Theorem. Equation (.) is non-oscillatory if and only if there exists a function w which
solves Eq. (.) on some interval [T ,∞).

Theorem . Suppose that

∫ ∞
r–q(t) dt = ∞ (.)

and that Eq. (.) is non-oscillatory. Then the lower limit

lim inf
t→∞

∫ t r–q(ϕ)(
∫ ϕ c(τ ) dτ ) dϕ∫ t r–q(ϕ) dϕ

> –∞ (.)

if and only if

∫ ∞
r–q(t)

∣∣w(t)∣∣q dt < ∞ (.)

for every solution w of Eq. (.).

We focus our attention to Eq. (.) in the form

[
r(t)�

(
x′)]′ + γ

s(t)
tp

�(x) = , (.)

where γ ∈ R
+ and r, s are positive asymptotically almost periodic functions. The Riccati

equation associated to Eq. (.) has the form

w′(t) + γ
s(t)
tp

+ (p – )r–q(t)
∣∣w(t)∣∣q = . (.)

For ζ (t) = –w(t)tp–, we express

ζ ′(t) =
[
–w(t)tp–

]′ = –
[
w′(t)tp– + (p – )w(t)tp–

]

=

t

[
(p – )ζ (t) + γ s(t) + (p – )

|ζ (t)|q
rq–(t)

]
,

i.e., we obtain the so-called adapted Riccati equation

ζ ′(t) =

t

[
(p – )ζ (t) + γ s(t) + (p – )

|ζ (t)|q
rq–(t)

]
. (.)

http://www.advancesindifferenceequations.com/content/2013/1/122
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In fact, we will use only partial cases of Theorems . and .. For reader’s convenience,
we mention the corresponding corollaries for Eq. (.) and Eq. (.).

Corollary . Let Eq. (.) be non-oscillatory. There exists a negative solution ζ of the
adapted Riccati equation (.) on some interval [t,∞).

Proof We apply Theorem ., where (.) is satisfied (consider the boundedness of r).
Inequality (.) is valid, because r, s are positive functions and γ ∈ R

+. Thus, (.) holds
for all solutions w of Eq. (.). Let us consider an arbitrary solution w of Eq. (.) defined
on [t,∞) satisfying w(t) >  (see Theorem .). We know that w is decreasing which
follows immediately from (.). By combination of (.) and (.), we obtain w(t) →  as
t → ∞. Especially, w(t) > , t ≥ t. This observation implies the existence of a negative
solution ζ of Eq. (.) on [t,∞). �

Corollary . If there exists a negative function ζ which solves the adapted Riccati equa-
tion (.) on some interval [T ,∞), then Eq. (.) is non-oscillatory.

Proof The statement of the corollary follows directly from Theorem .. �

4 Oscillation constant
Now we can formulate and prove the announced result.

Theorem . Let γ ∈ R
+ be given and let r and s be arbitrary positive asymptotically

almost periodic functions satisfying

inf
{
r(t); t ∈R

+

}
> , lim sup

t→∞
s(t) > . (.)

Let

� := q–p
[
M

(
r–q

)]–p[M(s)
]–. (.)

Consider the equation

[
r(t)�

(
x′)]′ + γ

s(t)
tp

�(x) = , �(x) = |x|p– sgnx. (.)

If γ > �, then Eq. (.) is oscillatory. If γ < �, then Eq. (.) is non-oscillatory.

Proof In the both cases of the theorem, we consider γ 
= �. Let α,T ∈R
+ be such that


α

∫ t+α

t
s(τ ) dτ >

M(s)


> , t ≥ T , (.)

∣∣∣∣� – q–p
(

α

∫ t+α

t


rq–(τ )

dτ
)– p

q
(

α

∫ t+α

t
s(τ ) dτ

)–∣∣∣∣ < |� – γ |


, t ≥ T , (.)

i.e.,

∣∣∣∣γ – q–p
(

α

∫ t+α

t


rq–(τ )

dτ
)– p

q
(

α

∫ t+α

t
s(τ ) dτ

)–∣∣∣∣ > |γ – �|


, t ≥ T . (.)

http://www.advancesindifferenceequations.com/content/2013/1/122
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The existence of such numbers follows from Corollary ., Theorem ., and Remark .
We denote

r+ := sup
{
r(t); t ∈ R

+

}
, s+ := sup

{
s(t); t ∈R

+

}
,

r– := inf
{
r(t); t ∈ R

+

}
> .

(.)

Let γ > �. By contradiction, we suppose that Eq. (.) is non-oscillatory. Corollary .
says that the adapted Riccati equation has a negative solution ζ , which exists on some
interval [t,∞).Without loss of generality, we can assume that t = T . We recall (see (.))

ζ ′(t) =

t

[
(p – )ζ (t) + γ s(t) + (p – )

|ζ (t)|q
rq–(t)

]
, t > t. (.)

Especially, we know that

ζ ′(t) >
p – 
t

[
ζ (t) +

|ζ (t)|q
(r+)q–

]
, t > t. (.)

Since q > , from (.) it follows the existence of K >  for which

ζ (t) ∈ (–K , ), t ≥ t. (.)

Indeed, ζ ′(t) >  if we assume that ζ (t)≤ –r+.
In addition, considering (.) and (.), we have

∫ t+a

t

∣∣ζ ′(τ )
∣∣dτ ≤ p – 

t

∫ t+a

t

∣∣ζ (τ )∣∣ + |ζ (τ )|q
(r–)q–

dτ +
aγ s+

t
≤ Ca

t
, t ≥ t,a > ,

where

C := (p – )
[
K +

Kq

(r–)q–

]
+ γ s+. (.)

Therefore,

∣∣ζ (t) – ζ (t)
∣∣ ≤

∫ t

t

∣∣ζ ′(τ )
∣∣dτ ≤ C(t – t)

t
, t ≥ t ≥ t, (.)

i.e.,

∣∣ζ (t + σ ) – ζ (t + τ )
∣∣ ≤ C|t + σ – t – τ |

t

=
C|τ – σ |

t
≤ Cα

t
, τ ,σ ∈ [,α], t ≥ t. (.)

We denote

ξ (t) :=

α

∫ t+α

t
ζ (τ ) dτ , t ≥ t.

http://www.advancesindifferenceequations.com/content/2013/1/122
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Since (.) holds for all σ ∈ [,α], we obtain

∣∣ξ (t) – ζ (t + τ )
∣∣ ≤ Cα

t
, t ≥ t, τ ∈ [,α]. (.)

We also put

X(t) := (p – )
(
p
α

∫ t+α

t


rq–(τ )

dτ
)– 

q
, t ≥ t, (.)

Y (t) :=
∣∣ξ (t)∣∣

(
p
α

∫ t+α

t


rq–(τ )

dτ
) 

q
, t ≥ t. (.)

Henceforth (in this part of the proof ), we will consider t ≥ t. We have

ξ ′(t) =

α

∫ t+α

t
ζ ′(τ ) dτ =


α

∫ t+α

t


τ

[
(p – )ζ (τ ) + γ s(τ ) + (p – )

|ζ (τ )|q
rq–(τ )

]
dτ

≥ 
t + α

[
(p – )ξ (t) +

γ

α

∫ t+α

t
s(τ ) dτ +

p – 
α

∫ t+α

t

|ζ (τ )|q
rq–(τ )

dτ
]

=


t + α

[
(p – )ξ (t) +

Xp(t)
p

+
Yq(t)
q

+
γ

α

∫ t+α

t
s(τ ) dτ –

Xp(t)
p

+
p – 

α

∫ t+α

t

|ζ (τ )|q
rq–(τ )

dτ –
Yq(t)
q

]
(.)

if ξ ′(t) >  for an arbitrarily given t ≥ t, or

ξ ′(t)≥ 
t

[
(p – )ξ (t) +

Xp(t)
p

+
Yq(t)
q

+
γ

α

∫ t+α

t
s(τ ) dτ –

Xp(t)
p

+
p – 

α

∫ t+α

t

|ζ (τ )|q
rq–(τ )

dτ –
Yq(t)
q

]

if ξ ′(t) < .
Since

(p – )ξ (t) = –(p – )
∣∣ξ (t)∣∣ = –X(t)Y (t),

we obtain

(p – )ξ (t) +
Xp(t)
p

+
Yq(t)
q

=
Xp(t)
p

+
Yq(t)
q

–X(t)Y (t)≥ , (.)

which follows from Young’s inequality.
Next, applying (.), (.), and (.), we compute

γ

α

∫ t+α

t
s(τ ) dτ –

Xp(t)
p

=
γ

α

∫ t+α

t
s(τ ) dτ –

(p – )p

p

(
p
α

∫ t+α

t


rq–(τ )

dτ
)– p

q

http://www.advancesindifferenceequations.com/content/2013/1/122
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=
γ

α

∫ t+α

t
s(τ ) dτ – q–p

(

α

∫ t+α

t


rq–(τ )

dτ
)– p

q 
α

∫ t+α

t s(τ ) dτ

α

∫ t+α

t s(τ ) dτ

=

α

∫ t+α

t
s(τ ) dτ

[
γ – q–p

(

α

∫ t+α

t


rq–(τ )

dτ
)– p

q
(

α

∫ t+α

t
s(τ ) dτ

)–]

>
M(s)


γ – �


> ,

i.e.,

γ

α

∫ t+α

t
s(τ ) dτ –

Xp(t)
p

>M(s)
γ – �


. (.)

The function y = |x|q is continuously differentiable on [–K , ], and hence there exists
L >  satisfying

∣∣|ξ |q – |ζ |q∣∣ ≤ L|ξ – ζ |, ξ , ζ ∈ [–K , ].

Using the fact that this function has the Lipschitz property and using (.), we obtain

p – 
α

∫ t+α

t

|ζ (τ )|q
rq–(τ )

dτ –
Yq(t)
q

=
p – 

α

∫ t+α

t

|ζ (τ )|q
rq–(τ )

dτ –
|ξ (t)|q

q
q(p – )

α

∫ t+α

t


rq–(τ )

dτ

= –
p – 

α

∫ t+α

t

|ξ (t)|q – |ζ (τ )|q
rq–(τ )

dτ ≥ –
p – 

α


(r–)q–

∫ t+α

t
L|ξ (t) – ζ (τ )|dτ

≥ –
p – 

α


(r–)q–

αL
Cα

t
= –

CLα(p – )(r–)–q

t
.

For sufficiently large t ≥ t, it is valid

p – 
α

∫ t+α

t

|ζ (τ )|q
rq–(τ )

dτ –
Yq(t)
q

> –M(s)
γ – �


. (.)

Altogether (consider (.), (.), (.), (.)), there exists t̂ ≥ t for which we have

ξ ′(t) >


t + α

[
 +M(s)

γ – �


–M(s)

γ – �



]
=


t + α

M(s)
γ – �


, t ≥ t̂,

which implies that

ξ (t)→ ∞ as t → ∞, i.e., lim sup
t→∞

ζ (t) = ∞.

This contradiction proves that Eq. (.) is oscillatory for γ > �.
In the second part of the proof, we have to show that Eq. (.) is non-oscillatory for

γ < �. We will consider arbitrarily given γ < � and the solution ζ of the adapted Riccati
equation determined by the Cauchy problem (.), ζ (T) = ξ, where

ξ := –
[

p
α(p – )

∫ T+α

T


rq–(τ )

dτ
]–p

.

http://www.advancesindifferenceequations.com/content/2013/1/122
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As in the first part of the proof (see (.)), we can estimate

ζ ′(t) >
p – 
t

[
ζ (t) +

|ζ (t)|q
(r+)q–

]

for all t from the domain of ζ . Thus, there exists K >  such that ζ (t) > –K for all consid-
ered t. Analogously (see (.)), we can also prove

∣∣ζ (t) – ζ (t)
∣∣ ≤

∫ t

t

∣∣ζ ′(τ )
∣∣dτ

≤
(p – )[K + Kq

(r–)q– ] + γ s+

T
(t – t), t ≥ t ≥ T (.)

if ζ (t), ζ (t) < . Hence, we can assume that T is so large that it is true

∣∣ζ (t) – ζ (t)
∣∣ < –

ξ


, t + α ≥ t ≥ t ≥ T

if ζ (t), ζ (t) < . Especially, provided that ζ (t) ≤ ξ/ for some t ≥ T , we have ζ (τ ) <  for
all τ ∈ [t, t + α]. Thus, we can define

ξ (t) :=

α

∫ t+α

t
ζ (τ ) dτ

for all considered t ≥ T such that ζ (t)≤ ξ/. From (.) it follows

∣∣ξ (t) – ζ (t + τ )
∣∣ ≤ Cα

T
(.)

for all considered t ≥ T and τ ∈ [,α], where C is introduced in (.).
We prove that ζ (t)≤ –δ for some δ >  and for all considered t ≥ T . On the contrary, we

will assume that such a number δ does not exist. This assumption implies the existence
of t > T such that ξ ′(t) >  and ξ (t) = ξ. We estimate the value ξ ′(t) by the following
expression:

ξ ′(t) =

α

∫ t+α

t


τ

[
(p – )ζ (τ ) + γ s(τ ) + (p – )

|ζ (τ )|q
rq–(τ )

]
dτ

≤ 
t

[
(p – )ξ (t) +

γ

α

∫ t+α

t
s(τ ) dτ +

p – 
α

∫ t+α

t

|ζ (τ )|q
rq–(τ )

dτ
]

=

t

[
(p – )ξ (t) +

Xp(t)
p

+
Yq(t)
q

+
γ

α

∫ t+α

t
s(τ ) dτ –

Xp(t)
p

+
p – 

α

∫ t+α

t

|ζ (τ )|q
rq–(τ )

dτ –
Yq(t)
q

]
, (.)

where X(t) and Y (t) are defined in (.) and (.), respectively.
Assume that


α

∫ T+α

T


rq–(τ )

dτ =

α

∫ t+α

t


rq–(τ )

dτ .

http://www.advancesindifferenceequations.com/content/2013/1/122
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In this case, considering Xp(t) = Yq(t), we have

Xp(t)
p

+
Yq(t)
q

= Xp(t)
(

p
+

q

)
= X+ p

q (t)

= X(t)
(
Yq(t)

) 
q = X(t)Y (t) = –(p – )ξ (t)

and, consequently, we obtain

(p – )ξ (t) +
Xp(t)
p

+
Yq(t)
q

= .

We consider T , α as sufficiently large numbers for which (.) and (.) are satisfied. Anal-
ogously, we can require that T and α are so large that

∣∣∣∣ α
∫ T+α

T


rq–(τ )

dτ –

α

∫ t+α

t


rq–(τ )

dτ
∣∣∣∣ < ε

for arbitrarily given ε > . Note that t > T . Thus, for sufficiently large T , we can assume
that

(p – )ξ (t) +
Xp(t)
p

+
Yq(t)
q

<
M(s)(� – γ )


. (.)

We compute

γ

α

∫ t+α

t
s(τ ) dτ –

Xp(t)
p

=
γ

α

∫ t+α

t
s(τ ) dτ –

(p – )p

p

(
p
α

∫ t+α

t


rq–(τ )

dτ
)– p

q

=

α

∫ t+α

t
s(τ ) dτ

[
γ – q–p

(

α

∫ t+α

t


rq–(τ )

dτ
)– p

q
(

α

∫ t+α

t
s(τ ) dτ

)–]
.

Therefore, using (.), (.), and (.), we have

γ

α

∫ t+α

t
s(τ ) dτ –

Xp(t)
p

<
M(s)


γ – �


< . (.)

Similarly as in the first part of the proof (see (.)), we can show

p – 
α

∫ t+α

t

|ζ (τ )|q
rq–(τ )

dτ –
Yq(t)
q

≤ p – 
T

CLα

(r–)q–
.

Assume that

T >
(p – )

M(s)(� – γ )
CLα

(r–)q–
,

which implies

p – 
α

∫ t+α

t

|ζ (τ )|q
rq–(τ )

dτ –
Yq(t)
q

<
M(s)(� – γ )


. (.)
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Finally, considering (.), (.), (.), and (.), we obtain the following contradic-
tion:

ξ ′(t) <
M(s)(γ – �)

t
< ,

which means that there exists δ >  satisfying

ζ (t)≤ –δ, t ≥ T .

Especially, this negative solution exists for all t ≥ T . From Corollary . it follows that Eq.
(.) is non-oscillatory for γ < �. �

Remark Our result is ‘backward compatible’ with previous results about the conditional
oscillation of half-linear equations. More precisely, if the functions r and s in Eq. (.) are
α-periodic ones (with the same period α), our constant � reduces to the one from []. If
they are replaced by constants r, s ∈ R

+, then � = q–pr/s, which gives the classical result
for half-linear Euler-type equations (see, e.g., [] or [, Section ..]).

Example  Let a > , α,β 
= , and c > /. We can use Theorem . for the equation

[
t

 + t(cos[at] sin[at] + c)
�

(
x′)]′

+ γ
arctan(sin[αt]) + | sin[αt]| + | cos[βt]|√

t
�(x) = ,

whose coefficients are asymptotically almost periodic (it suffices to consider directly Def-
inition  and Corollaries ., .) and where p = / (i.e., q = ). It holds

M
(
r–

)
=M

((
cos[at] sin[at] + c +


t

))
=
c + 


,

M(s) =M
(
arctan

(
sin[αt]

)
+

∣∣sin[αt]∣∣ + ∣∣cos[βt]∣∣) = 
π
.

Thus, the equation is oscillatory for γ
√
(c + ) >

√
π and, at the same time, non-

oscillatory for γ
√
(c + ) <

√
π .

The statement of Theorem . is a new result also for p =  (even for linear equations
with almost periodic coefficients).

Corollary . Consider the equation

[
r(t)x′]′ + γ

s(t)
t

x = , (.)

where γ ∈ R
+ and r, s are positive almost periodic functions satisfying (.). Then the os-

cillation constant is

� =
[
M

(
r–

)
M(s)

]–, (.)

i.e., Eq. (.) is oscillatory for γ > � and non-oscillatory for γ < �.

http://www.advancesindifferenceequations.com/content/2013/1/122


Hasil and Veselý Advances in Difference Equations 2013, 2013:122 Page 13 of 15
http://www.advancesindifferenceequations.com/content/2013/1/122

If the functions r and s in Eq. (.) are periodic with the same period, then the oscilla-
tion constant given in (.) reduces to the known one (see []). For constant functions r,
s, we obtain � = r/(s), which corresponds to the famous result of Kneser []. Note that
the main result of [] cannot be used for general periodic functions r, s (which do not
have any common period). This situation is illustrated by the following example.

Example  Let continuous functions f , g : [–, ] →R
+ be given. Let us consider the equa-

tion

[
f (sin t)x′]′ + γ

g[sin(
√
t)]

t
x = .

The almost periodicity of the functions r(t) = f (sin t), s(t) = g[sin(
√
t)] is obvious. It is

also seen that (.) is satisfied and that

M
(
r–

)
=


π

∫ π

–π

dt
f (sin t)

, M(s) =
√


π

∫ π/
√


–π/
√

g
[
sin(

√
t)

]
dt.

Hence, we obtain the oscillation constant

� =
[√


π

∫ π

–π

dt
f (sin t)

∫ π/
√


–π/
√

g
[
sin(

√
t)

]
dt

]–

.

5 Concluding remarks
There exist positive almost periodic functions f , g :R →R for which


α

∫ α


f (t) dt <M(f ),


α

∫ α


g(t) dt >M(g), α > .

Such functions can be constructed using, e.g., [, Theorem .]. Based on this fact, we
conjecture that there exist almost periodic functions r, s, r, s satisfying (.) such that
Eq. (.) determined by the coefficients r, s and γ = � (see (.)) is oscillatory and Eq.
(.) with the coefficients r, s and γ = � is non-oscillatory. Thus, in general, we conjec-
ture that it is not possible to decide whether Eq. (.) is oscillatory or non-oscillatory for
γ = �.
The statement of Theorem . remains valid also for γ ∈ R. Indeed, if γ ≤ , then the

equation

[
r–�

(
x′)]′ +  · �(x) = 

is a non-oscillatory majorant of Eq. (.) (consider (.), (.)).
Since the asymptotic almost periodicity of a function f implies the asymptotic almost

periodicity of |f | (consider, e.g., Corollary .), we can also apply Theorem . in the
case when the function s in Eq. (.) changes its sign. More precisely, for Eq. (.) with
γ ∈ R and asymptotically almost periodic functions r and s, we obtain the following
result by the Sturm comparison theorem. If inf{r(t); t ∈ R

+
} > , limt→∞ s(t) 
= , and

γ < q–p(M(r–q))–p(M(|s|))–, then Eq. (.) is non-oscillatory.
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Let us illustrate the connection between (ordinary) half-linear differential equations an-
alyzed in this paper and partial differential equations with p-Laplacian. We refer, e.g., to
[–]. For example, consider the equation

div
(
A(x)‖∇u‖p–∇u

)
+

〈�b(x),‖∇u‖p–∇u
〉
+ c(x)�(u) = , (.)

where x ∈ R
n, �b is a continuous non-zero n-vector function, A is an elliptic n× n matrix

function with differentiable components, c is a Hölder continuous function, and div, ∇ ,
‖ · ‖, and 〈·, ·〉 stand for the divergence operator, the nabla operator, the Euclidean norm,
and the usual scalar product in R

n, respectively. Let l > , S(a) = {x ∈ R
n,‖x‖ = a}, dσ be

the element of the surface of the sphere S(t), and λmin(x) be the smallest eigenvalue of the
matrix A(x). According to [, Theorem ], we have the following result. If the functions

r(t) =
(

l
l – 

)p– ∫
S(t)

∥∥A(x)∥∥p
λ
–p
min(x) dσ ,

s(t) =
tp

γ

∫
S(t)

[
c(x) –

lp–

λ
p–
min(x)

‖�b(x)‖p
pp

]
dσ

satisfy the requirements of Theorem . and γ > � (see (.)), then Eq. (.) is oscillatory.
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Acknowledgements
The first author is supported by Grant P201/10/1032 of the Czech Science Foundation. The second author is supported
by the Operational Programme ‘Education for Competitiveness (POSTDOC II.)’ under the project CZ.1.07/2.3.00/30.0037.
The project is co-financed by the European Social Fund and the state budget of the Czech Republic.

Received: 28 December 2012 Accepted: 17 April 2013 Published: 30 April 2013

References
1. Beesack, PR: Hardy’s inequality and its extensions. Pac. J. Math. 11(1), 39-61 (1961)
2. Elbert, Á: A half-linear second order differential equation. Colloq. Math. Soc. János Bolyai 30, 158-180 (1979)
3. Mirzov, JD: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems. J. Math. Anal. Appl. 53(2),

418-425 (1976)
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