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k
YW = Zajy(rf'(r)), teT,
j=0

where g; € R are scalars, v/ are iterates of a function T : T — T and T is a time scale
unbounded above. Under some specific choices of t, this dynamic equation involves
several significant particular cases such as linear autonomous differential equations
with several delays or linear autonomous higher-order difference equations. For
proportional T, we formulate an asymptotic result joint for two different time scales,
including a joint form of its proof. For a general 7, we investigate stability and
asymptotic properties of solutions on the continuous and discrete time scales
separately. Besides a related character of the relevant results, we discuss also a
possible related character of their proofs.
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1 Introduction

We consider the delay dynamic equation
k
¥V =) ay(dt), teT, (L1)
j=0

where a; are real scalars, 7/ are the jth iterates of an increasing function t : T — T with
19=id, t' =1, t(t) <t for t € T and T is a time scale unbounded above. If T has a finite
minimum m, we admit t(m) = m.

Qualitative analysis of delay dynamic equations on time scales has already been the sub-
ject of several investigations (see, e.g. [1-4] and [5]). In particular, these papers present
techniques which enable a joint analysis of delay differential and difference equations. Be-
sides the methods developed directly for delay dynamic equations, there are also some
proof procedures utilised originally either for delay differential or difference equations,
but they seem to be applicable without any extra difficulties also to a general dynamic
case (see, e.g. [6] and [7]).
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In this paper, we discuss common stability and asymptotic properties of the delay dy-
namic equation (1.1). Although (1.1) can be taken for a basic type of delay dynamic equa-
tions, its qualitative analysis has not been described yet. It might be surprising because
delay dynamic equations studied in the above mentioned papers mostly have more compli-
cated forms. A difficulty connected with qualitative analysis of (1.1) follows from the proof
methods utilised in its significant particular cases, which are of a quite different nature,
and their unification to a general dynamic case can be very complicated. Nevertheless,
considering (1.1) with unbounded lags, we describe the cases when a joint investigation of
(1.1) is possible.

This paper is organised as follows. In Section 2 we introduce several crucial particular
cases of (1.1). Section 3 is devoted to asymptotic estimation of the dynamic pantograph
equation. These estimates are generalised and improved in Section 4. Some final remarks
conclude the paper.

2 Preliminaries

Throughout this paper we adopt the standard time scale notation. In particular, p: T — T
is the backward jump operator, v : T — R is the backward graininess and the symbol y¥
means the nabla derivative of y: T — R. For precise introductions of these symbols and
other related matters, we refer to [8] and [9].

By a solution of (1.1), we mean a function y : T — R which is ld-continuous on
[t*(¢y), 00), has an ld-continuous nabla derivative on [y, 00) and satisfies (1.1) on [£g, 00)
for some ¢ € T. In this definition (as well as throughout the whole paper), we use the
classical interval notation without a specification of T (e.g. [4,b) means {t € T :a <t < b}).

We prefer to study (1.1) as a nabla dynamic equation (instead of its delta analogue) be-
cause, as stated above, our aim is to describe qualitative properties of (1.1) common to
different time scales. It is well known from numerical analysis of differential equations
that there are just discretisations based on backward (nabla) differences which enable to
retain the key properties of underlying differential equations.

The assumption

t:T—>T (2.1)

(implying v/ : T — T) is standardly employed in the papers on delay dynamic equations
(for some ideas about its possible removing, we refer to [10]). While for T = R this assump-
tion becomes trivial, for discrete time scales (i.e. time scales with a nonzero graininess) it
represents a considerable restriction. More precisely, a concrete choice of 7 significantly
influences the form of T (and vice versa). Therefore we distinguish the following cases.

(a) Equation (1.1) with constant lags.

If t(¢) =t — h, h > 0, then besides T = R the only ‘natural’ discrete time scale preserving
(2.1) is the set T = hZ = {nh : n € Z}. Using a scaling of the independent variable, we can
fix the lag /1 equal to 1; hence without loosing a generality, we put /2 = 1. Then, for T = R,
(1.1) becomes the linear autonomous differential equation with multiple delays

k
Y(6)=Y aplt—j), teR, 2.2)
=0
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while for T = 7Z, (1.1) turns into

k
YO -yt-1)=) aplt-j), teZ, (2.3)

j=0

which is a linear autonomous higher-order difference equation (both terms on its left-
hand side can be obviously joined to the right-hand side to obtain the standard general
form of such an equation, see, e.g. [11]).

A key property discussed in connection with (2.2) and (2.3) is their asymptotic stability;
more precisely, a formulation of necessary and sufficient conditions guaranteeing that any
solution y is tending to zero as t — co. The standard way to investigate this property
originates from the zero analysis of characteristic polynomials. If T = R then substituting
y(t) = exp(Art) into (2.2), we are led to the quasipolynomial

k
PAL)=A- Z ajexp(—jh).

j=0

If T = Z then putting y() = A” in (2.3), we obtain the classical polynomial
k
Qu =Y aptd
j=0

(where we replaced ag — 1 by ag and a; + 1 by a;). In the first case, we need to formulate
necessary and sufficient conditions ensuring that all zeros of P(1) lie in the left half of the
complex plane. In the second case, we seek necessary and sufficient conditions for all ze-
ros of Q(X) to be located inside the unique circle. The problem concerning zeros of the
quasipolynomial P(}) is original and must be solved by specific procedures (see, e.g. [12]).
The matter concerning zeros of Q(1) is a classical polynomial problem. In a theoretical
level, it can be solved by use of the Schur-Cohn test or the Jury criterion (see [13]). How-
ever, a formulation of explicit necessary and sufficient conditions (in terms of @; and k) is
still an open problem. From this viewpoint, a unification of both procedures and formula-
tion of explicit necessary and sufficient conditions for the asymptotic stability of the delay
dynamic equation

k
yV(t)= ap(t-j), teT, (2.4)
j=0

generalising (2.2) and (2.3), seem to be an extremely difficult matter. Therefore, we are
going to pay our attention to other types of delays.

(b) Equation (1.1) with proportional lags.

If 7(¢) = g7'¢, g > 1, then besides T = R} we consider the discrete time scale T = q_Z =
{q" : n € Z} U {0} to satisfy the condition (2.1). For these two settings, (1.1) becomes the
multipantograph equation

k
Y0 =) aplq’t), teR; (25)
j=0


http://www.advancesindifferenceequations.com/content/2013/1/155

Cermak Advances in Difference Equations 2013, 2013:155 Page 4 of 12
http://www.advancesindifferenceequations.com/content/2013/1/155

and its g-analogue

k
Vo) =Y apla’t), teq’, (2.6)
j=0

where

y(t) - y(q~'t)

Vay(t) = 1—q )t

is the backward Jackson derivative. There are different techniques how to analyse stabil-
ity and asymptotic properties of differential equations of the pantograph type. The most
frequent one is the method of Dirichlet series (see, e.g. [14] and [15]), which is, however,

not applicable to the corresponding dynamic equation

k
¥ (&)= ap(q’t), teT. (2.7)

Jj=0

Fortunately, among other techniques on pantograph differential equations, there exists a
method which can be extended also to (2.7). It originates from the pioneering paper [16]
on differential equations of this type, and in the next section we introduce its extended
modified version to prove an asymptotic result for (2.7).

(c) Equation (1.1) with general lags.

If the form of 7 is not specified, then (2.1) does not imply any concrete restriction. Nev-
ertheless, previous special dynamic equations (2.4) and (2.7) can inspire us to meet the

condition (2.1) ‘implicitly’ by considering the dynamic equation
k
70 =) ap(P @), teT, (2.8)
j=0

instead of (1.1). Indeed, if T = Z then (2.8) becomes (2.3), and for T = q_Z (2.8) becomes
(2.6). In other words, the role of delayed arguments in (2.8) is played by the backward
jump operator and its iterates. In Section 4, we give a precise asymptotic description for

the solutions of (2.8), including an asymptotic stability condition.

3 A dynamic equation with proportional delays
Let ag < 0 and ax # 0. We consider the polynomial

k
Q) = apr + Z |a;| A<

Jj=1

and make some simple observations on its real zeros. Since Q(0) = |a| > 0 and Q(1) —
—00 as A — 00, Q() has a positive real zero. We show its uniqueness. Let A, be a positive
zero of Q(A), i.e. Q(1,) = 0. Then it is easy to check that Q' (1) < 0, which along with

Q(0) > 0 implies that such a positive zero must be unique. We denote it by A, and add that
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0 < A, <1ifand only if
k
Z la;| < —aq. (3.1)
j=1

Using this notation, we have the following.

Theorem 3.1 Let y be a solution of (2.7), where ag < 0, ax #0, g > 1 and let T = R{ or
T = g%. Then

&) =0(") ast— oo, r=log,A,. (3.2)
Proof All necessary formulae of the basic time scales calculus utilised below (such as prod-

uct rule, quotient rule or integration by parts) can be found in [8], pp.331-333. Similarly,
we use the symbol &, (¢, £y) as the nabla exponential function satisfying

éZo (t! to) = aoéﬂo (t; tO)! éao (t(): tO) =1
(for its precise introduction and properties, we refer to [9], pp.49-55). In particular, the
assumption a < 0 implies 1 — aov(z) > 0 for all ¢ € T (positive regressivity), i.e. &, (¢ to) is
positive on T.

Let y satisfy (2.7) on [y, 00) for some £y € T, to > 0. Put z(t) = y(t)/t", t € T, t > g *¢,.
Substituting into (2.7), we have

k
2V (O + z(,o(t)) (t’)V = Z a,»z(q‘jt) (q’jt)r.
=0

Dividing by the integrating factor &,,(po(¢), t), one gets

[ 0O ]V YN (gt gty
) - .

éao (tr ty eao (p(t),to)

Now we put £ = g ¥ty, t; = q'ty and S; := sup{|z(t)| : t € [t_1,t;]}, i=1,2,.... Let u €
[¢;, ti+1] be arbitrary. Integrating the previous relation over [t;, #], we obtain

’

Zwu”  2(t)(&) /" Z]'.‘:lajz(qfft)(qut)r
S t0) - &agltinto) Sy Gl 10)

which implies

(t) €qo (1, 20) €ap (Lt, to) Z ]t) o4
A = nte) / eao(p(t) S
ie.
() &ay 1t 10) eao u, to) i lajl (g7t
[t =5 Weg (tnto) / 20 (P (D), o)

Page 5 of 12
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Since
k .
aot” + Z |a,»|(q”t)r =0, (3.3)
j=1

we can write

(t) €4 (1, to) eao u, L‘o) —aot”
| u)| <S; Vi,
u’eao(tz,to) 4 €ao(p(t),to)
ie.
N v
t;) €4, (1, £ a0 (U, L
l2(u)| < S 5 G °)+Se°u 0)/ [ ] £'Vt. (3.4)
u’ eao (ti, to) i eao(t to)
The integration by parts yields
o1 7Y 1 [y 1
— | 'Vi=| ——| - ') ———Vt. 35
[emw) el [0 e &3
Now let (3.1) hold. Then r < 0 and (¢")" is increasing for both the time scales T = R, and

T= q_Z, hence

u r\\V u _ r\V u
f (tr)v _ 1 Vi > (t ) |t=fi / _ ao Vi= (t ) |t=ti |:A 1 i| )
t €4, (p(8), t0) —agy 4 €4, (p(8), t0) —ag €40 (t, 20) .

We involve this estimate into (3.4) and obtain

A ,t tr v . 1 u tr v .
|Z(M)|§Si+Sieﬂ0(u 0) )V tl|:A ] 555(1— &V t; )
u’ €40 )]s,

—ag (& to —ao(tia)"

Since u € [¢;, t;11] was arbitrary,

v v
S SSi<1 ()Y =y, ) s, H( (&)Y = ) e=t, ) (3.6)

—ao tz+1) —ﬂo(tgﬂ)r

A straightforward calculation yields that

(tr)v |t=t[

_ -t
pRTRTE O(q ) asf{ — 00 (3.7)

for both the time scales T = R} and T = 4%, hence the product in (3.6) converges as i — 0o,
i.e. z is bounded. This proves the asymptotic property (3.2).

The case when (3.1) does not hold, i.e. the case r > 0, is a simplified version of the pre-
vious one. Since (¢)V is nonnegative in such a case, we can deduce from (3.5) that

u 1 v £ u
(el o=l
tm eao (t) tO) euo (t, tO) t;

and using the same way as above, we arrive at S;;; < S;. O
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Remark 3.2 The assumption T =R§ or T = q_Z was employed within the previous proof
only in a verification (¢")Y is increasing when r < 0, and in a check on the asymptotic esti-
mate (3.7). All other utilised proof procedures were independent of a given time scale. To
the author’s knowledge, the presented result is new for both the time scales (particularly,

for the differential equation (2.5) when T = R{).

4 A dynamic equation with general delays

In this section, we discuss the problem when a type of lags is not specified, i.e. we consider
the delay dynamic equation (1.1). Our aim is to extend the asymptotic result formulated
in Theorem 3.1.

Firstlet T = R, i.e. we consider the delay differential equation

k
Y®) =) ap(d®), tel (4.1)

Jj=0

where [ is a real interval unbounded above. A very useful method converting differential
equations with general lags into equations with prescribed lags is based on the utilisation
of suitable functional equations (see [17] and [18]). If the prescribed lags are constant,
then the corresponding functional equation is that of Abel (for an elegant application of
this approach in the oscillation theory of delay differential equations, we refer, e.g. to [19]).
In our case, the prescribed lags are proportional, hence along with (4.1), we consider also

the linearisation equation

o(t(®) =q7'0®), tel, (4.2)

which is called the Schréder equation. Let I = [m,00), T € C*(I), T(m) = m, t(¢t) < t for
all £ > m, v/ is positive and nonincreasing on I and g = 1/t'(m) > 1. Then there exists a
solution ¢ € C'(I) of (4.2), which is positive on (1, 00) and has a positive and nonincreas-
ing derivative on /. For this and other relevant results on the Schroder equation, we refer
to [20].

In the next assertion, we assume that 7 and ¢ have the properties stated above and A,

has the same meaning as in Theorem 3.1 (see the discussion preceding this theorem).

Theorem 4.1 Let y be a solution of (4.1), where ag < 0 and ay #0. Then
y(6)=0((¢(1))") ast— oo, r=log A (4.3)

Proof We give only its brief outline. It is enough to replace the function ¢" by (¢(¢))” and
follow the proof of Theorem 3.1. Indeed, if we put z(£) = y(t)/(¢(t))", t_, = T5(ty) and ¢; =
174(ty), where i = 1,2, ..., then the proof procedures presented above can be repeated step

by step. In particular, (3.3) is replaced by

k

ao(0®) + Y lajl(e(F®))" =0,

Jj=1
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which is satisfied just due to (4.2). Thus we arrive at

Snlssll‘[(l_%)fsll—[(l_ o)
=1

i —ao(p(tes1))” —aoq" ¢(te)

instead of (3.6). Since ¢’ is bounded,

/
t
¢t = O(q‘e) as { — oo.
p(te)
The remaining parts of the proof are identical with those stated above. g

Remark 4.2 If 7(¢) = g7't, then (4.2) is satisfied by the identity function. Consequently,
Theorem 4.1 is a direct generalisation of Theorem 3.1 (when T = R{). Moreover, the above
stated assumptions on t particularly imply that

T(t)<qt<1 foralltel, (4.4)

i.e. the lags ¢t — rf(t),j =1,2,...,k are unbounded as t — oo.

A reformulation of Theorem 4.1 and its proof for discrete time scales is not straight-
forward (e.g. we have used here the chain rule which is not valid on a general time scale).
Therefore, we do not follow this way and give a simple alternative proof of a related asser-
tion for discrete time scales. This assertion does not only extend, but even improves the
asymptotic property (4.3).

Considering discrete time scales only, we investigate the delay dynamic equation (2.8)
instead of (1.1). Therefore, instead of (4.2) we consider the Schroder equation

o(p®) =q'o(t), teT. (4.5)
Also, as a direct analogue to (4.4), we assume that
pV @) <q <1 forallteT. (4.6)

Since p is increasing, (4.5) has a positive and increasing solution ¢.

The reason why the asymptotic formula (4.3) (as well as (3.2)) does not seem to be quite
optimal, consists in the fact that (4.3) involves the zero analysis of the polynomial Q(%).
However, the polynomial Q(1), whose coefficients are in a direct correspondence with
coefficients of studied equations, may be more natural than Q(). Therefore, our next aim
is to clarify this correspondence. Before doing this, we state some preliminaries on zeros
of Q(A) and their relationship to the corresponding difference equation

k
> ao(s—j) =0. 4.7)
j=0

For any positive real 6, we introduce the set A(f) of all complex zeros of Q(1) with the
modulus 6. If A(f) is nonempty for a given 6, then by a characteristic solution of (4.7)
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corresponding to A(6), we understand a finite sum of solutions of (4.7) corresponding to
all values 1 € A(0). Of course, the form of such solutions depends on multiplicity of » and
it is described in details e.g. in [11].

Using this we have the following theorem.

Theorem 4.3 Let y be a solution of (2.8), where ay, ay # 0 and let T be a discrete time scale
such that agv(t) #1 for all t € T and (4.6) holds for some q > 1. Then there exists 0 > 0 such
that A(0) is nonempty and

y(8) = w(log, (t)) + O((¢®)") ast—oo, y= log, (0 - ¢), (4.8)

where w is a nontrivial characteristic solution of (4.7) corresponding to A(0), ¢ is a positive
and increasing solution of (4.5) and 0 < € < 0 is a suitable real scalar.

Proof Let y satisfy (2.8) on [£y, 00) for some ¢, € T. By the definition,

k
y(2) ;z;()ﬁ)(t)) _ Za;y(pj(t)), teT, t>t. (4.9)
j=0
Since
V(= PO —p*() _ v(p(t)

t—p(t) V()

it holds v(p(£)) < g7 'v(¢) in view of (4.6). Comparing with (4.5), one gets
@) =0(v(t)) ast— oo. (4.10)

Now put s = log, o(t) and z(s) = y(¢), t € T, t > 5. Then y(p(¢)) = z(s — 1) and, more
generally, y(0/(t)) = z(s - j) by use of (4.5). Thus (4.9) becomes

(5)—zls—1) ‘
%:;%Z(‘g_l)’ s€Z,s> sy,

s0 = log, ¢(to). Rewrite it as

k
[ao - b(s)]z(s) + [a1 + b(s)]z(s -1)+ Z ajz(s —j) = 0,
j=2
where
1 —s
b(s) = m :O(q ) ass— 00

due to (4.10). Equivalently,

k

aoz(s) + Z[ai +¢i(s)]z(s =) = 0, (4.11)

j-1
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where c;(s) are appropriate functions satisfying c;(s) = O(g~%) as s — 00, =1,2,..., k. Con-
sequently, (4.11) is the higher-order difference equation of Poincaré type. Its limiting equa-
tion is just (4.7) with the characteristic polynomial Q(1). Moreover, the limits 4; are ap-
proached at an exponential rate. Then, by Theorem 2.3 of [21], there exists 6 > 0 such that
A(#) is nonempty, and for some 0 < ¢ < 6, it holds

z(s) = w(s) + O((9 - 8)5) as s — 00,

where w is a nontrivial characteristic solution of (4.7) corresponding to A(f). Now, using
the backward substitution, we obtain (4.8). O

Let k be a zero of Q(1) and m, be its multiplicity. We call this zero maximal if « is (among
all other zeros of Q(1)) maximal in the modulus and if multiplicities of other possible zeros
of Q(A) having the maximal modulus do not exceed m, . Of course, Q(A) may have several
maximal zeros (with the same modulus and multiplicity).

Corollary 4.4 Lety be a solution of (2.8), where ay, ay # 0 and let T be a discrete time scale
such that agv(t) #1 for all t € T and (4.6) holds for some q > 1. Further, let k be a maximal
zero of Q(A) and m, be its multiplicity. Then

y(¢) = O(((p(t))a(long(t))mrl) ast— oo, = log, |k, (4.12)
where @ is a positive and increasing solution of (4.5).

Remark 4.5 As an immediate consequence, we get that under the assumptions of Theo-
rem 4.3, (2.8) is asymptotically stable (i.e. its any solution y tends to zero as ¢ — oo) if all
the zeros of Q()) are located inside the unite circle. In this connection, we have already
mentioned the Schur-Cohn criterion, which can be applied to any polynomial Q(A) with
concrete (fixed) coefficients and order. However, this criterion does not enable us to for-
mulate explicit stability conditions in terms of (general) coefficients a; and k. Such explicit

conditions are known only in a very few particular cases (see, e.g. [22, 23] and [24]).

Now we illustrate conclusions of Theorem 4.1 and Theorem 4.3 by a simple example
involving a type of delay not considered yet (to avoid a discussion on zeros of Q(1), we put
k=1).

Example 4.6 Let y be a solution of the dynamic equation
YV (t) = ay(t) + by(tm), teT, (4.13)

where a, b are nonzero real scalars. Because of a type of 7, we assume that T has a mini-
mum m = 1. Then g = 1/7'(m) = 2 and the corresponding Schroder equation (4.2) becomes

1

p(£?) = 72, (4.14)

which admits the solution ¢(£) = log, ¢ having the required properties. We distinguish two

cases:
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(i) If T =R (more precisely T = [1,00)) and a < 0, then by Theorem 4.1

B ((|b|)log210g2t)
¥y =0l — as t — 00. (4.15)

—a

(ii) If T ={2¥" :n € Z} U {1}, then (4.5) becomes (4.14) and by Theorem 4.3

b log, logy t logy logy t
y(t):c(——) +O(< —8) ) as t — 09,
a

where ¢ € R and 0 < ¢ < |b/a| are suitable scalars.

b

a

Remark 4.7 Equation (4.13) with T = R has been studied in [25] as the differential equa-
tion with advanced power argument, i.e. when 7(¢) = t¥, y > 1 (for extensions to the case of
a general advanced argument 7, see also [26]). It is interesting to observe that asymptotic
formulae derived in these papers are very close to the property (4.15).

5 Concluding remarks

Comparing results of Theorem 4.1 and Theorem 4.3 (resp. Corollary 4.4), one can observe
close similarities between stability and asymptotic properties of the differential equation
(4.1) and its dynamic discrete analogue (2.8). As regards their proofs, some common ideas
have been involved especially in the proof of Theorem 3.1, but Theorems 4.1 and 4.3 them-
selves had to be proved separately. In particular, the proof procedure of Theorem 4.3 is
not applicable to the continuous case, at least in the presented form. Our conjecture is
that the asymptotic estimate (4.12), which is slightly stronger that (4.3), is valid (perhaps
in a modified form) also for the corresponding differential equation (4.1). In particular, we
believe that the zero analysis of Q(A) instead of Q()) should be involved here similarly as
in the discrete case. However, an issue of the joint proof of such a property on a general
time scale (including the continuous one) seems to be a difficult task.
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