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Abstract
In this paper, we consider the properties of Green’s function for the singular nonlinear
fractional differential equation boundary value problem

Dα
0+u(t) = f (t,u(t)), 0 < t < 1,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

where 3 < α ≤ 4 is a real number and Dα
0+ is the standard Riemann-Liouville

differentiation. As an application of the properties of Green’s function, we give the
existence of multiple positive solutions for the above mentioned singular boundary
value problems. Our tools are Leray-Schauder nonlinear alternative and Krasnoselskii’s
fixed-point theorem on cones.
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1 Introduction
Fractional differential equations have been of great interest recently. This is due to the in-
tensive development of the theory of fractional calculus itself as well as its applications.
Apart from diverse areas of mathematics, fractional differential equations arise in rheol-
ogy, dynamical processes in selfsimilar and porous structures, fluid flows, electrical net-
works, viscoelasticity, chemical physics, and many other branches of science. For details,
see [–]. Now the boundary value problem for fractional differential equations attracts
lots of attention. Especially, Jiang and Yuan [] considered the nonlinear fractional differ-
ential equation Dirichlet-type boundary value problem and established the existence of
positive solutions for the corresponding BVP. Xu et al. [] dealt with the following equa-
tion:

Dα
+u(t) = f

(
t,u(t)

)
,  < t < ,

u() = u() = u′() = u′() = .
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Some properties of Green’s function for the above BVP were obtained. For other related
works on the fractional differential equation, see [–].
Motivated by the above mentioned works, we consider the properties of Green’s func-

tion for

Dα
+u(t) = f

(
t,u(t)

)
,  < t < , (.)

u() = u′() = u′′() = u′′′() = , (.)

where  < α ≤  is a real number and Dα
+ is the standard Riemann-Liouville differentia-

tion. As an application of Green’s function, we will give the existence of multiple positive
solutions for singular boundary value problems (.), (.). As far as we know, no contri-
butions concerning BVP (.), (.) exist.
The outline of this paper is as follows. In Section , we derive the corresponding Green’s

function and some of its properties. In Section , by using Leray-Schauder nonlinear alter-
native and Krasnoselskii’s fixed-point theorem in a cone, we offer criteria for the existence
of positive solutions for singular BVP (.), (.).

2 Backgroundmaterials and Green’s function
For the convenience of the reader, we present here the necessary definitions from frac-
tional calculus theory. These definitions can be found in the recent literature such as [].

Definition . [] The Riemann-Liouville fractional integral of order α >  of a function
y : (,∞)→R is given by

Iα+y(t) =


�(α)

∫ t


(t – s)α–y(s)ds

provided the right-hand side is pointwise defined on (,∞).

Definition . [] The Riemann-Liouville fractional derivative of order α >  of a contin-
uous function y : (,∞)→R is given by

Dα
+y(t) =


�(n – α)

(
d
dt

)n ∫ t



y(s)
(t – s)α–n+

ds,

where n = [α] + , [α] denotes the integer part of the number α, provided that the right-
hand side is pointwise defined on (,∞).

From the definition of the Riemann-Liouville derivative, we can obtain the statement.

Lemma . [] Let α > . If we assume that u ∈ C(, )∩ L(, ), then the fractional differ-
ential equation

Dα
+u(t) = 

has u(t) = Ctα– +Ctα– + · · · +CNtα–N , Ci ∈R, i = , , . . . ,N , as unique solutions, where
N is the smallest integer greater than or equal to α.
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Lemma . [] Assume that u ∈ C(, )∩L(, ) with a fractional derivative of order α > 
that belongs to C(, )∩ L(, ). Then

Iα+D
α
+u(t) = u(t) +Ctα– +Ctα– + · · · +CNtα–N

for some Ci ∈R, i = , , . . . ,N , N is the smallest integer greater than or equal to α.

In the following, we present Green’s function of the fractional differential equation
boundary value problem (.), (.).

Lemma . Given h ∈ C[, ] and  < α ≤ , the unique solution of

Dα
+u(t) = h(t),  < t < , (.)

u() = u′() = u′′() = u′′′() =  (.)

is

u(t) =
∫ 


G(t, s)h(s)ds,

where

G(t, s) =

⎧⎨
⎩

(t–s)α–+tα–(–s)α–[(α–)t(–s)–(α–)t+(α–)s]
�(α) , s ≤ t,

tα–(–s)α–[(α–)t(–s)–(α–)t+(α–)s]
�(α) , t ≤ s.

(.)

Here G(t, s) is called Green’s function of BVP (.), (.).

Proof We may apply Lemma . to reduce (.) to an equivalent integral equation

u(t) = Iα+h(t) +Ctα– +Ctα– +Ctα– +Ctα–

for some C,C,C,C ∈R. Consequently, the general solution of (.) is

u(t) =


�(α)

∫ t


(t – s)α–h(s)ds +Ctα– +Ctα– +Ctα– +Ctα–.

By (.), we get that C = C = , and

C =


�(α)

∫ 



[
(α – )( – s)α– – (α – )( – s)α–

]
h(s)ds,

C =
α – 
�(α)

∫ 


( – s)α–sh(s)ds.

Therefore, the unique solution of (.), (.) is

u(t) =


�(α)

∫ t


(t – s)α–h(s)ds

+


�(α)

∫ 


tα–

[
(α – )( – s)α– – (α – )( – s)α–

]
h(s)ds
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+
α – 
�(α)

∫ 


tα–( – s)α–sh(s)ds

=


�(α)

∫ t



{
(t – s)α– + tα–( – s)α–

[
(α – )t( – s) – (α – )t + (α – )s

]}
h(s)ds

+


�(α)

∫ 

t
tα–( – s)α–

[
(α – )t( – s) – (α – )t + (α – )s

]
h(s)ds

=
∫ 


G(t, s)h(s)ds.

This completes the proof. �

From the expression of G(t, s), we can obtain the following properties.

Lemma . Green’s function G(t, s) defined by (.) has the following properties:

Gtt(t, s)≤ ,  ≤ s ≤ t ≤ ; (.)

 ≤ �(α)Gt(t, s)≤ (α – )(α – )sα–( – s)α–, (t, s) ∈ (, )× (, ); (.)

(α – )sα–( – s)α–tα– ≤ �(α)G(t, s)≤ sα–( – s)α–, (t, s) ∈ (, )× (, ). (.)

Proof of (.)

�(α)Gtt(t, s)

= (α – )(α – )(t – s)α– + ( – s)α–
[
(α – )(α – )(α – )tα–( – s)

– (α – )(α – )(α – )tα– + (α – )(α – )(α – )tα–s
]

= (α – )(α – )
{
(t – s)α– + ( – s)α–tα–

[
(α – )t( – s) + (α – )(s – t)

]}
= (α – )(α – )

[
(t – s)α– – ( – α)(t – ts)α– – (α – )(t – s)(t – ts)α–

]
= (α – )(α – )

{
( – α)

[
(t – s)α– – (t – ts)α–

]
+ (α – )(t – s)

[
(t – s)α– – (t – ts)α–

]}

= (α – )(α – )
[
( – α)(α – )

∫ t–s

t–ts
xα– dx

+ (α – )(α – )(t – s)
∫ t–s

t–ts
xα– dx

]

= (α – )(α – )(α – )( – α)
∫ t–s

t–ts
xα–(x – (t – s)

)
dx

≤ ,  ≤ s ≤ t ≤ ,

where  < α ≤  and t – ts≥ t – s are used. Thus, (.) is verified. �

Proof of (.) By direct calculation, we get

Gt(t, s) =
α – 
�(α)

⎧⎪⎪⎨
⎪⎪⎩
(t – s)α– + tα–( – s)α–

× [
(α – )t( – s) – (α – )t + (α – )s

]
, s ≤ t,

tα–( – s)α–
[
(α – )t( – s) – (α – )t + (α – )s

]
, t ≤ s.
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On the one hand, for t ≥ s, from (.), we can get

 ≤ (α – )( – s)α–s

= �(α)Gt(, s)≤ �(α)Gt(t, s)≤ �(α)Gt(s, s)

= (α – )sα–( – s)α–
[
(α – )s( – s) – (α – )s + (α – )s

]
= (α – )sα–( – s)α–

[
(α – ) – (α – )s

]
≤ (α – )(α – )sα–( – s)α–.

On the other hand, for t ≤ s, we have

�(α)Gt(t, s) = (α – )tα–( – s)α–
[
(α – )t( – s) – (α – )t + (α – )s

]
≤ (α – )sα–( – s)α–(α – )s

= (α – )(α – )sα–( – s)α–

and

�(α)Gt(t, s) = (α – )tα–( – s)α–
[
(α – )t( – s) – (α – )t + (α – )s

]
≥ (α – )tα–( – s)α–

[
(α – )s – (α – )s + (α – )s

]
= (α – )tα–( – s)α–(α – )s ≥ .

Hence,

 ≤ �(α)Gt(t, s)≤ (α – )(α – )sα–( – s)α–, t ≤ s.

In summary, the property (.) holds. �

Proof of (.) For t ≤ s, we have

�(α)G(t, s) = tα–( – s)α–
[
(α – )t( – s) – (α – )t + (α – )s

]
≤ sα–( – s)α–(α – )s ≤ sα–( – s)α–

and

�(α)G(t, s) = tα–( – s)α–
[
(α – )t( – s) – (α – )t + (α – )s

]
≥ tα–( – s)α–

[
(α – )s – (α – )s + (α – )s

]
= (α – )stα–( – s)α–

≥ (α – )sα–( – s)α–tα–.

So, we have

(α – )sα–( – s)α–tα– ≤ �(α)G(t, s)≤ sα–( – s)α–, t ≤ s.
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For t ≥ s, we first prove that

�(α)G(t, s)≥ (α – )sα–( – s)α–tα–, s ≤ t. (.)

For fixed s ∈ (, ), let

z(t) = �(α)G(t, s) – (α – )sα–( – s)α–tα–, t ∈ [s, ].

Obviously, z(s)≥  and z′() ≥ . Equation (.) together with

∂

∂t
[
–(α – )sα–( – s)α–tα–

]
= –(α – )(α – )sα–( – s)α–tα– ≤ 

implies that z′′(t)≤ , t ∈ [s, ]. Hence (.) holds.
By (.) we know that �(α)G(t, s) is increasing in t on [s, ]. Hence, for s ≤ t,

�(α)G(t, s)≤ �(α)G(, s)

= ( – s)α– + ( – s)α–
[
(α – )( – s) – (α – ) + (α – )s

]
= ( – s)α– + ( – s)α–[– + s]

= ( – s)α–
(
( – s) –  + s

)
= ( – s)α–s( – s) ≤ ( – s)α–sα–.

In summary,

(α – )sα–( – s)α–tα– ≤ �(α)G(t, s)≤ sα–( – s)α–, s≤ t.

This completes the proof of property (.). �

As an application of properties of Green’s function, we will establish the existence of
positive solutions for BVP (.), (.) in Section , in which Leray-Schauder nonlinear al-
ternative and Krasnoselskii’s fixed-point theorem on cones are our main tools. For the
convenience of the reader, we recall the two famous theorems here.

Lemma . Assume that � is a relative subset of a convex set K in a normed space X. Let
A : �̄ → K be a compact map with  ∈ �. Then
(a) A has a fixed point in �̄, or
(b) there are x ∈ ∂� and  < λ <  such that x = λA(x).

Lemma . Let E be a Banach space, and let C ⊂ E be a cone in E.Assume that�,� are
open subsets of E with  ∈ � ⊂ �̄ ⊂ �, and let T : C ∩ (�̄ \ �) → C be a completely
continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ C ∩ ∂�; ‖Tu‖ ≥ ‖u‖, u ∈ C ∩ ∂�; or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ C ∩ ∂�; ‖Tu‖ ≤ ‖u‖, u ∈ C ∩ ∂�.

Then T has a fixed point in C ∩ (�̄ \ �).
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3 Positive solution of a singular problem
In this section, we establish the existence of positive solutions for singular BVP (.), (.).
Throughout this section, we always assume that f : [, ]× (,∞)→ [,∞) is continuous.
Given a ∈ L(, ), we write a �  if a ≥  for t ∈ [, ] and it is positive in a subset of
positive measure.
Let C[, ] be endowed with the maximum norm, ‖u‖ =max≤t≤ |u(t)|.

Theorem . Suppose that the following hypotheses hold:

(H) for each constant L > , there exists a continuous function φL �  such that f (t,u) ≥
φL(t) for all (t,u) ∈ [, ]× (,L];

(H) there exist continuous, nonnegative functions g(u) and h(u) such that

≤ f (t,u) = g(u) + h(u) for all (t,u) ∈ [, ]× (,∞),

where g(u) >  is nonincreasing and h(u)/g(u) is nondecreasing in u ∈ (,∞);
(H) there exists a constant K >  such that g(ab)≤ Kg(a)g(b) for all a,b > ;
(H)

∫ 
 s

α–( – s)α–g(sα–)ds <∞;
(H) there exists a positive number r such that

{
 +

h(r)
g(r)

}
K

�(α)
g
(
(α – )r



)∫ 


sα–( – s)α–g

(
sα–

)
ds < r.

Then BVP (.), (.) has at least one positive solution u with  < ‖u‖ < r.

Proof Choose n ∈ {, , . . .} such that n > 
(α–)r . For fixed n ∈ N = {n,n + , . . .}, con-

sider the family of integral equations

u(t) = λ

∫ 


G(t, s)fn

(
s,u(s)

)
ds, (.)

where λ ∈ [, ], and fn(t,u(t)) = f (t,max{u(t), tα–n }), t ∈ (, ). We claim that any solution
u(t) of (.) for any λ ∈ [, ] must satisfy ‖u‖ �= r. Otherwise, assume that u(t) is a solution
of (.) for some λ ∈ [, ] such that ‖u‖ = r. Note that by (.),

‖u‖ ≤ 
�(α)

λ

∫ 


sα–( – s)α–fn

(
s,u(s)

)
ds.

Hence, for all t ∈ [, ], by (.) again, we have

u(t) ≥ (α – )tα–

�(α)
λ

∫ 


sα–( – s)α–fn

(
s,u(s)

)
ds

≥ (α – )tα–


‖u‖ = (α – )rtα–


. (.)

http://www.advancesindifferenceequations.com/content/2013/1/159
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Thus, it follows from the choice of n, (.), (.), (H) and (H) that for all t ∈ [, ],

u(t) = λ

∫ 


G(t, s)fn

(
s,u(s)

)
ds

= λ

∫ 


G(t, s)f

(
s,u(s)

)
ds

≤ 
�(α)

∫ 


sα–( – s)α–g

(
u(s)

){
 +

h(u(s))
g(u(s))

}
ds

≤
{
 +

h(r)
g(r)

}


�(α)

∫ 


sα–( – s)α–Kg

(
(α – )r



)
g
(
sα–

)
ds

=
{
 +

h(r)
g(r)

}
K

�(α)
g
(
(α – )r



)∫ 


sα–( – s)α–g

(
sα–

)
ds. (.)

Therefore,

r = ‖u‖ ≤
{
 +

h(r)
g(r)

}
K

�(α)
g
(
(α – )r



)∫ 


sα–( – s)α–g

(
sα–

)
ds,

which contradicts (H) and the claim is proved.
It is easy to check from (.), (.) and (H) that the operator

Sn(t) =
∫ 


G(t, s)fn

(
s,u(s)

)
ds (.)

is completely continuous, where n ∈N. We omit the details here.
Now Lemma . guarantees that the integral equation u(t) = Sn(t) has a solution, de-

noted by un, in B̄r = {u ∈ C[, ] : ‖u‖ ≤ r}.
From (H), we know that there exists a function φr �  such that f (t,u) ≥ φr(t) for all

(t,u) ∈ [, ]× (, r],

un(t) =
∫ 


G(t, s)fn

(
s,u(s)

)
ds

≥ (α – )tα–

�(α)

∫ 


sα–( – s)α–φr(s)ds = δtα–, (.)

where δ := (α–)
�(α)

∫ 
 s

α–( – s)α–φr(s)ds > .
By using (.), (.) and a similar calculation as in (.), we have that for all n ∈N,

‖un‖ ≤ r

and

∥∥u′
n
∥∥ ≤

{
 +

h(r)
g(r)

}
(α – )(α – )K

�(α)
g(δ)

∫ 


sα–( – s)α–g

(
sα–

)
ds <∞.

The Arzela-Ascoli theorem guarantees that {un}n∈N has a subsequence {unk }k∈N converg-
ing uniformly on [, ] to a function u ∈ C[, ]. By the Lebesgue dominated convergence

http://www.advancesindifferenceequations.com/content/2013/1/159
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theorem, we have that

u(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds,

where (.) is used. Therefore, u(t) is a positive solution of BVP (.), (.). �

Theorem . Suppose that (H), (H), (H) and (H) are satisfied. Furthermore, assume
that (H) there exists a positive number R > r such that the following inequality holds:

α – 
�(α)

g(R)
∫ 


sα–( – s)α–

{
 +

h( (α–)s
α–R

 )

g( (α–)sα–R )

}
ds≥ R.

Then BVP (.), (.) has another solution ũ with r < ‖ũ‖ < R.

Proof To show the existence of ũ, we will use Lemma .. Define

K =
{
u ∈ C[, ] : u(t) ≥ (α – )tα–


‖u‖ for t ∈ [, ]

}
. (.)

It is obvious that K is a cone on C[, ]. Let

� =
{
u ∈ C[, ] : ‖u‖ < r

}
,

� =
{
u ∈ C[, ] : ‖u‖ < R

}
.

Next, the operator T : K ∩ (� \ �) → C[, ] is defined by

(Tu)(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds.

It is easy to check that the operator T maps K ∩ (� \ �) into K . In fact, for any u ∈
K ∩ (� \ �), we have from (.) that for t ∈ [, ],

‖Tu‖ ≤ 
�(α)

∫ 


sα–( – s)α–f

(
s,u(s)

)
ds

and

(Tu)(t) ≥ (α – )tα–

�(α)

∫ 


sα–( – s)α–f

(
s,u(s)

)
ds.

This implies that (Tu)(t) ≥ (α–)tα–
 ‖Tu‖, that is, T : K ∩ (� \ �) → K . In addition, by

a similar argument as in Theorem ., it is not difficult to prove that the operator T :
K ∩ (� \ �) → K is completely continuous. Now we prove that

‖Tu‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂�. (.)

http://www.advancesindifferenceequations.com/content/2013/1/159
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For any u ∈ K ∩ ∂�, from (.), (H), (H), (.) and (H), we have that for t ∈ [, ],

Tu(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds

≤ 
�(α)

∫ 


sα–( – s)α–g

(
u(s)

){
 +

h(u(s))
g(u(s))

}
ds

≤
{
 +

h(r)
g(r)

}


�(α)

∫ 


sα–( – s)α–Kg

(
(α – )r



)
g
(
sα–

)
ds

=
{
 +

h(r)
g(r)

}
K

�(α)
g
(
(α – )r



)∫ 


sα–( – s)α–g

(
sα–

)
ds

< r = ‖u‖.

Therefore, (.) holds. Next, we will prove that

‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂�. (.)

For any u ∈ K ∩ ∂�, from (.), (H), (H), (.) and (H), we have that

(Tu)() =
∫ 


G(, s)f

(
s,u(s)

)
ds

≥ α – 
�(α)

∫ 


sα–( – s)α–g

(
u(s)

){
 +

h(u(s))
g(u(s))

}
ds

≥ α – 
�(α)

g(R)
∫ 


sα–( – s)α–

{
 +

h( (α–)s
α–R

 )

g( (α–)sα–R )

}
ds

≥ R = ‖u‖.

This implies that (.) holds.
It follows from Lemma . that the operator T has a fixed point ũ ∈ K ∩ (� \ �).

Clearly, this fixed point ũ is a positive solution of BVP (.), (.) satisfying r < ‖ũ‖ ≤ R.
�

Example . Consider the boundary value problem

Dα
+u(t) = u–a(t) +μub(t), t ∈ (, ),

u() = u′() = u′′() = u′′′() = ,
(.)

where a > , b ≥  and μ >  is a given parameter.

Corollary . Assume that  < a < α–
α– , b ≥ .

(i) If b < , then (.) has at least one nonnegative solution for each μ > .
(ii) If b ≥ , then (.) has at least one nonnegative solution for each  < μ < μ, where

μ is some positive constant.
(iii) If b > , then (.) has at least two nonnegative solutions for each  < μ < μ.

http://www.advancesindifferenceequations.com/content/2013/1/159
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Proof We will apply Theorems . and . to obtain our desired results. Note that (H)
holds with φL(t) = L–a. Let

g(u) = u–a, h(u) = μub, K = .

Then (H) and (H) are satisfied. Since  < a < α–
α– , (H) is also satisfied. Now for (H) to

be satisfied, we need

μ <
Ar+a – 

ra+b

for some r > , where

A =
[
+a(α – )–a

�(α)

∫ 


s(α–)(–a)( – s)α– ds

]–

.

Therefore, (.) has at least one nonnegative solution for

 < μ < μ := sup
r>

Ar+a – 
ra+b

.

Note that if b < , μ = ∞. If b > , set

l(r) :=
Ar+a – 

ra+b
.

The function l(r) possesses a maximum at

r :=
(

a + b
(b – )A

) 
a+

>
(

A

) 
a+

,

thenμ = l(r) > .We have the desired results (i) and (ii). If b > , condition (H) becomes

μ ≥ R+a – B
CRa+b (.)

for some R > , where

B =
α – 
�(α)

∫ 


sα–( – s)α– ds,

C =
(α – )a+b+

a+b�(α)

∫ 


s(α–)(a+b+)( – s)α– ds.

Since b > , the right-hand side of (.) tends to  as R → +∞. Thus, for any given  <
μ < μ, it is always possible to find an R � r such that (.) is satisfied. Therefore, (.)
has another nonnegative solution ũ. This implies that (iii) holds. �
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