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Abstract
In this paper, we study the controllability problem of the semi-discrete internally
controlled one-dimensional wave equation with the finite element method. We
derive the observability inequality and prove the exact controllability for the
semi-discrete internally controlled wave equation, with the controls taken from a
finite dimensional space.
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1 Introduction
In this paper, we discuss the topic related to the controllability for the semi-discrete in-
ternally controlled one-dimensional wave equations. First of all, we introduce certain no-
tations. Let ω be an open and nonempty subset of (, ). Define an operator E : L(ω) →
L(, ) by

E(f )(x) =

{
f (x) if x ∈ ω,
 if x ∈ (, ) \ ω

for any f ∈ L(ω). Let T > . The controlled wave equation, which we study in this paper,
is as follows:⎧⎪⎨⎪⎩

∂tty(x, t) – ∂xxy(x, t) = Eu(x, t), (x, t) ∈ (, )× (,T),
y(, t) = y(, t) = , t ∈ (,T),
y(x, ) = y(x), ∂ty(x, ) = y(x), x ∈ (, ),

(.)

where the initial value (y, y) belongs to H
(, ) × L(, ) and u(·) is a control function

taken from the space L(,T ;L(ω)).
System (.) is said to be exactly controllable from the initial value (y, y) ∈ H

(, ) ×
L(, ) in time T if there exists a control function u(·) ∈ L(,T ;L(ω)) such that the solu-
tion of (.) matches that (y(T), ∂ty(T)) = (, ). We have already known that the control-
lability property for the above continuous one-dimensional wave equation holds for any
given T >  (see []).
In this work, we mainly focus on the issue of the controllability property of (.) under

numerical approximation schemes with the finite element method. To this end, now we
introduce the basis functions of the finite element space. Let h be a small enough positive
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number. Corresponding to each given h, we take nodal points xi, with i = , , . . . ,Nh, over
the interval [, ] such that

 = x < x < · · · < xNh– < xNh = 

and

h = max
≤j≤Nh

hj, where hj = (xj – xj–).

Let

ω = (xk ,xk+p) for some k and p with k ≥ ,p≥  and (k + p) <Nh. (.)

Then we can define the basis function φj by

φj(x) =

⎧⎪⎪⎨⎪⎪⎩
x–xj–
hj

, x ∈ [xj–,xj],
xj+–x
hj+

, x ∈ [xj,xj+],
, x ∈ [, ] \ [xj–,xj+].

(.)

Corresponding to the state space L(, ), we build the finite element space as

Vh
 = span{φ,φ, . . . ,φNh–}.

Obviously, it is a subspace of H
(, ). Let Ph be the L-projection from L(, ) to Vh

 ,
namely

〈Phv, vh〉 = 〈v, vh〉, ∀v ∈ L(, ), vh ∈ Vh
 .

Corresponding to the control space L(ω), we define the finite element space by

Ṽ h =
{
wh;wh = χωvh for some vh ∈ Vh


}
.

Throughout this paper, χω will be treated as an operator from L(, ) to L(ω), by setting
χω(f ) = f |ω for all f ∈ L(, ). Clearly, Ṽ h is a subspace of H(ω).
Write Eh for the restriction of the operator E over Ṽ h, and project equation (.) into the

following controlled ordinary differential equations:{
y′′
h(t) –
hyh(t) = Ph ◦ Eh(uh(t)), t > ,
yh() = yh, y′

h() = yh .
(.)

Here, the initial value (yh, yh ) belongs to Vh
 ×Vh

 , the control uh(·) is taken from the space
L(,+∞; Ṽ h), and the operator –
h : Vh

 → Vh
 is defined by

〈–
hvh,wh〉 =
∫

�

∇vh · ∇wh dx for any vh,wh ∈ Vh
 . (.)

In this paper, we mainly deal with the controllability for semi-discrete system (.). The
main result of the paper is presented as follows.
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Theorem . For each T > , controlled system (.) is exactly controllable in time T .
Namely, there exists a control function vh(·) ∈ L(,+∞; Ṽ h) such that the solution of (.)
satisfies (yh(T), y′

h(T)) = (, ).

Remark . In this paper, ourmain purpose is to discuss whether or not the semi-discrete
internally controlled systems have the exactly controllable property which the original
controlled systems have. This is a very valuable problem in control theory. In [], the
authors established such a controllability result for the semi-discrete one-dimensional
boundary controlledwave equation by the numerical approximationmethod. The authors
also got that the semi-discrete systems are not uniformly controllable as the discretization
parameter h goes to zero. The main differences between [] and our paper are as follows.
In [], the authors focused on a one-dimensional boundary controlled wave equation and
they obtained the controllability for the semi-discretewave system,with the controls taken
from an infinite dimensional space. In our paper, we discuss an internally controlled one-
dimensional wave equation. In this case, we obtain the exact controllability of the semi-
discrete wave equation, with the controls taken from a finite dimensional space. Regarding
other works related to this problem, we would like to mention [, ], and [].

The rest of the paper is structured as follows. In Section , we give a sufficient condition
for controllability. By making use of this sufficient condition presented in Section , we
provide the proof of Theorem . in Section .

2 The controllability and observability property
We first introduce the following auxiliary system.

{
y′′
h(t) –
hyh(t) = Ph ◦ E(u(t)), t > ,
yh() = yh, y′

h() = yh ,
(.)

where the initial data (yh, yh ) ∈ Vh
 × Vh

 . Clearly, it is a controlled system governed by
ordinary differential equations. However, the control functions for this system are taken
from the infinite dimensional space L(,T ;L(ω)).
In this section, we discuss some controllability result for system (.). More concisely,

a sufficient condition for the exact controllability property of (.) will be presented. The
proofs of the following Lemmas ., . and . can be found in [].
For any (ϕh

,ϕh
 ) ∈ Vh

 ×Vh
 , consider the following homogeneous equation:

{
ϕ′′
h (t) –
hϕh(t) = , t > ,

ϕh() = ϕh
, ϕ′

h() = ϕh
 .

(.)

Lemma . The control u ∈ L(,T ;L(ω)) drives the initial data (yh, yh ) of controlled sys-
tem (.) to zero in time T if and only if

∫ T



∫
ω

ϕhudxdt =
∫ 


ϕh
 yh()dx –

∫ 


ϕh
y

′
h()dx (.)

for all (ϕh
,ϕh

 ) ∈ Vh
 ×Vh

 , where ϕh is the corresponding solution of equation (.).
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Next, we define a functional J from Vh
 ×Vh

 to R by setting

J
(
ϕh
,ϕ

h

)
=



∫ T



∫
ω

|ϕh| dxdt +
∫ 


ϕh
y

′
h()dx –

∫ 


ϕh
 ()yh()dx, (.)

where ϕh is the solution of (.) with initial data (ϕh
,ϕh

 ) ∈ Vh
 ×Vh

 .
We have the following result.

Lemma. Suppose that (ϕ̂h
, ϕ̂h

 ) ∈ Vh
 ×Vh

 is aminimizer ofJ . If ϕ̂h is the corresponding
solution of equation (.) with initial (ϕ̂h

, ϕ̂h
 ), then

u = χωϕ̂h (.)

is a control which drives the initial data (yh, yh ) of controlled system (.) to zero in time T .

To get the sufficient condition that ensures the existence of a minimizer for J , we need
to give the following definition.

Definition . Equation (.) is observable in time T if there exists a positive constant L
such that the following inequality holds:

L
∥∥(

ϕh
,ϕ

h

)∥∥

H
(,)×H–(,) ≤

∫ T



∫
ω

|ϕh| dxdt (.)

for any (ϕh
,ϕh

 ) ∈ Vh
 ×Vh

 , where ϕh is the solution of (.) with initial data (ϕh
,ϕh

 ).

Inequality (.) is called observability inequality. The following conclusion shows that
observability inequality (.) is the sufficient condition for the exact controllability of sys-
tem (.).

Lemma . Suppose equation (.) is observable in time T .Then the functionalJ defined
by (.) has a unique minimizer (ϕ̂h

, ϕ̂h
 ) ∈ Vh

 ×Vh
 .

3 The proof of Theorem 1.1
Before giving the proof of the main result, we first present some preliminary lemmas.
Assume that all distinct eigenvalues of the operator –
h are λh

 ,λh
, . . . ,λh

q ,  < λh
 < λh

 <
· · · < λh

q . For any given eigenvalue λh
s , s ∈ {, , . . . ,q}, let ls be its multiplicity andWh

s be its
eigenspace, with an orthogonal basis {ehs,, ehs,, . . . , ehs,ls}. It is easy to see that the family

{
eh,, . . . , e

h
,l , . . . , e

h
q,, . . . , e

h
q,lq

}
forms an orthogonal basis of Vh

 . The following two results are quoted from []. They will
be used later.

Lemma . For any non-zero vector ξh in the space Vh
 , we have ξh =

∑q
s= rsf hs , where f hs ,

s ∈ {, , . . . ,q}, is a normalized eigenfunction in the eigenspaceWh
s , and r, r, . . . , rq are real

numbers satisfying
∑q

s= rs = ‖ξh‖, where ‖ · ‖ denotes the usual norm of L(, ).
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Theorem . Suppose that Xh is an eigenfunction to the operator –
h, and ω is an open
and nonempty subset of (, ). Then χωXh �= .

Now, we will prove the controllability for system (.).

Theorem . For each T > , the solution of semi-discrete system (.) satisfies the follow-
ing inequality:

L
∥∥(

ϕh
,ϕ

h

)∥∥

L(,)×L(,) ≤
∫ T



∫
ω

|ϕh| dxdt. (.)

Remark . Since Vh
 ×Vh

 is a finite dimensional space, thus all norms of this space are
equivalent, and then we can get that inequality (.) implies observability of semi-discrete
system (.).

Proof For any given T > , consider the following function F : Vh
 ×Vh

 → R defined by

F
(
ϕh
,ϕ

h

)
=

∫ T



∫
ω

|ϕh| dxdt,

where ϕh is the solution of (.) with initial data (ϕh
,ϕh

 ). Clearly, F is continuous. To
prove inequality (.), it suffices to show that we can find a positive constant L(h,T), where
L(h,T) only depends on h and T , such that

min
{
F
(
ϕh
,ϕ

h

)
;
∥∥(

ϕh
,ϕ

h

)∥∥

L(,)×L(,) = 
} ≥ L(h,T). (.)

To this end, we will give a proof by contradiction. Suppose that there is a unit vector
(wh

,wh
 ) in Vh

 ×Vh
 such that F(wh

,wh
 )=. Since ‖(wh

,wh
 )‖L(,)×L(,) = , at least one of

wh
 and wh

 is not . Without loss of generality, we can assume that wh
 �= . According to

Lemma ., wh
 can be presented by

wh
 =

q∑
s=

ξsf hs ,

where f hs , with s ∈ {, , . . . ,q}, is a normalized eigenfunction in the eigenspace Wh
s , and

ξ, ξ, . . . , ξq are real numbers satisfying

q∑
s=

ξ 
s =

∥∥wh

∥∥
L(,) �= .

Now, noting that V 
h is anNh – dimensional space, we can choose f hq+, . . . , f hNh– which are

normalized eigenfunctions of –
h such that f h , . . . , f hq , f hq+, . . . , f hNh– constitute a complete
standard orthogonal basis of V 

h . Let λh
 , . . . ,λh

Nh– be Nh –  corresponding eigenvalues to
eigenfunctions f h , . . . , f hq , f hq+, . . . , f hNh–.
Now, for (wh

,wh
 ) ∈ Vh

 ×Vh
 , we can write

wh
 =

Nh–∑
s=

ηsf hs

http://www.advancesindifferenceequations.com/content/2013/1/160
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and we can rewrite

wh
 =

Nh–∑
s=

ξsf hs ,

where ξq+ = · · · = ξNh– = . By the classical theory of ODEs, equation (.) has a unique
solution

ϕh(t) =
Nh–∑
s=

{
ξs cos

(√
λh
s t

)
+

ηs√
λh
s
sin

(√
λh
s t

)}
f hs . (.)

This, together with the definition of the function F and the assumption that F(wh
,wh

 ) = ,
indicates that

 = F
(
wh
,w

h

)

=
∫ T



∫
ω

|ϕh| dxdt

=
∫ T



∥∥∥∥∥
Nh–∑
s=

{
ξs cos

(√
λh
s t

)
+

ηs√
λh
s
sin

(√
λh
s t

)}
χωf hs

∥∥∥∥∥


L(ω)

dt.

Hence, we necessarily have that

Nh–∑
s=

{
ξs cos

(√
λh
s t

)
+

ηs√
λh
s
sin

(√
λh
s t

)}
χωf hs =  in L(ω) for all t ∈ [,T]. (.)

In the following, we are going to prove that

ξs =  for each s ∈ {, , . . . ,q}, (.)

which leads to a contradiction to the assumption that wh
 �= , and then we can complete

the proof of (.).
By taking t =  in (.) and noting ϕh() = wh

, we can get

Nh–∑
s=

ξsχωf hs =
q∑
s=

ξsχωf hs =  in L(ω),

where we use the fact that ξq+ = · · · = ξNh– = . Calculating the derivations twice to (.)
and taking t = , we can get

Nh–∑
s=

λh
s ξsχωf hs =

q∑
s=

λh
s ξsχωf hs =  in L(ω).

Thus, by induction, we can get that

q∑
s=

(
λh
s
)r

ξsχωf hs =  in L(ω), (.)

where r = , , , . . . .

http://www.advancesindifferenceequations.com/content/2013/1/160
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Noting that f hs �= , s = , , . . . ,q, are the eigenfunctions of –
h, we can see from Theo-
rem . that χωf hs �=  for s = , , . . . ,q. Therefore, we can assume, without loss of general-
ity, that χωf h , . . . ,χωf hα with  ≤ α ≤ q are linear independent in L(ω), and

span
{
χωf h , . . . ,χωf hα

}
= span

{
χωf h , . . . ,χωf hq

}
.

With regard to the number α, there are only two possibilities: it either is equal to q or is
less than q. If α = q, (.) follows immediately from (.). If α < q, we have the following
presentation:

χωf hj =
α∑
s=

ajsχωf hs , j = α + , . . . ,q, (.)

where ajs, s = , , . . . ,α, j = α + , . . . ,q, are real numbers. Since χωf hj �=  for all j = α +
, . . . ,q, we derive, from (.), the following fact:

For each j ∈ {α + , . . . ,q}, there is a number s(j) ∈ {, . . . ,α} such that ajs(j) �= . (.)

On the other hand, combining (.) with (.) leads to

 =
q∑
s=

(
λh
s
)r

ξsχωf hs

=
α∑
s=

(
λh
s
)r

ξsχωf hs +
q∑

j=α+

(
λh
j
)r

ξjχωf hj

=
α∑
s=

((
λh
s
)r

ξs +
q∑

j=α+

(
λh
j
)r

ξjajs

)
χωf hs in L(ω).

Since χωf h , . . . ,χωf hα are linear independent in L(ω), it follows from the above identity
that

 =
(
λh
s
)r

ξs +
q∑

j=α+

(
λh
j
)r

ξjajs for all s = , . . . ,α, r = , , , . . . . (.)

Because λh
 , . . . ,λh

q are distinct positive numbers, we can deduce immediately from (.)
that

ξs =  for all s = , . . . ,α

and that

ξjajs =  for all s = , . . . ,α, and all j = α + , . . . ,q.

In the above second identity, corresponding to each j ∈ {α + , . . . ,q}, we can take s as the
number s(j) given in (.). Then it follows that ξj =  for all j ∈ {α + , . . . ,q}. Hence, we
prove (.) and finish the proof for this theorem. �
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Proof of Theorem . According to Lemma ., Lemma ., and Theorem ., we have
that system (.) is controllable in time T . Suppose that (ϕ̂h

, ϕ̂h
 ) ∈ Vh

 ×Vh
 is a minimizer

of J . If ϕ̂h is the corresponding solution of equation (.) with initial data (ϕ̂h
, ϕ̂h

 ), then

u = χωϕ̂h (.)

is a control which drives the initial data (yh, yh ) of controlled system (.) to zero in time T .
It is easy to see that χωϕ̂h ∈ L(,+∞; Ṽ h). This completes the proof of this theorem. �
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