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1 Introduction

In this paper, we are concerned with the following reaction-diffusion system:

-Au=ula-u)-vll-e7%), xeQ,
-Av=vic-v+d(1l-e7%), x€9, (1.1)
u=v=0, x €0,

where € is a bounded domain in RN (N > 1) with smooth boundary 3%, u, v represent the
population density of prey and predator, respectively. a is the natural growth rate of prey, d
is the conversion rate of a consumed prey to a predator, y is the efficiency of the predator
for capturing prey. 4, ¢, d and y are constants with 4, d positive and y non-negative; ¢
may change sign and ¢ > 0 indicates the predator has other food sources. This is a prey
dependent predator-prey model with the Ivlev-type functional response 1 — e "%, which
was originally introduced by Ivlev in [1].

The predator-prey model has long been one of the dominant themes due to its universal
existence and importance. Both ecologists and mathematicians are interested in the Ivlev-
type predator-prey model; see [2—9] for example. The existence and uniqueness of limit
cycle for the Ivlev response predator-prey system were studied in [2, 3]. The conditions for
the permanence of the Ivlev system and the existence and stability of a positive periodic
solution were investigated in [4]. The dynamical behavior analysis of the Ivlev response
predator-prey systems was discussed in [1, 5-7]. To our knowledge, there are few works
on such a type of functional response in the reaction-diffusion system. Under Neumann
boundary conditions, the spatial pattern formation of the model was carried out by using
Hopf bifurcation in [8]. Under Dirichlet boundary conditions, a sufficient and necessary
condition for the existence of positive solutions to the model was obtained in [9].
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Now, we introduce some notations and basic facts which will be often used later. Let X
be the Banach space

X= {u eCYQ):ux)=0,x¢ BQ}.

LetP={ueX:u>0in Q2 and d,u < 0 on IR} be the usual positive cone in X, where v is
the outward unit normal vector on 32 and 9, = 8/dv. For g(x) € C(), let A1(g) < A2(g) <

A3(g) < --- be all eigenvalues of the following problem:
-A¢ +qx)p =Arp inQ, ¢=0 ondQ.

It follows from [10] that A1(g) is simple and X;(g) is strictly increasing in the sense that
q1 < q> and q1 # q, implies A1(q1) < A1(g2). When g(x) = 0, we denote A;(0) by A; for the
sake of convenience. Moreover, we denote by ®; (> 0) the eigenfunction corresponding to
1 with normalization ||®; |3 = 1.

For any a > A, it is well known that the problem
—Au=(@a-u)u ing, u=0 ondQ

has a unique positive solution which we denote by 6,. It is also known that the mapping
a — 0, is strictly increasing, continuously differentiable in (1;,00), and that §, — 0 uni-
formly on Q as @ — ;. Moreover, 0 < 8, < a in Q. Therefore, if a > A;, then (1.1) has a
semi-trivial solution (6,,0). Similar results hold with respect to another semi-trivial solu-
tion (0,0,) whenever ¢ > 1. We extend the definition of 6, by taking 6. = 0 if ¢ < ;.

This work mainly aims at establishing the existence, multiplicity and uniqueness of posi-
tive solutions to (1.1). More precisely, a sufficient and necessary condition for the existence
of positive solutions is given when ¢ < A;, and when ¢ > A;, the multiplicity of positive so-
lutions is obtained under the assumption that y is suitably large. If y is suitably small, then
we get the uniqueness of positive solutions in one dimension.

The rest of this paper is organized as follows. In Section 2, by calculating the indices
of fixed points, we obtain sufficient conditions for the existence of positive solutions to
(1.1). In Section 3, by investigating the bifurcation of positive solutions emanating from the
semi-trivial solution (6,, 0; c), we give a sufficient and necessary condition for the existence
of positive solutions to (1.1) and establish the multiplicity result of positive solutions when
y is suitably large. In Section 4, assuming that Q = (p,¢) is an interval, we find that (1.1)

has at most one positive solution when y2(c + d) < 2.

2 The existence of positive solutions
In this section, we establish the existence and nonexistence of positive solutions to (1.1).
A necessary condition and a priori estimate are firstly given. The proofs are standard and

will be omitted.

Lemma 2.1 If (1.1) has a positive solution, then we have

a>M and c+d>A\.
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Lemma 2.2 Assume that (u,v) is a positive solution of (1.1). Then (u,v) satisfies
O<u<6,<a, O<v<Opg<c+d inQ.

In addition, v > 6, if ¢ > 1.

Next, we set up the fixed point index theory for later use. Let E be a real Banach space and
W be a closed convex set of E. For y € W, define W, = {x e E: y + yx € W for some y > 0}
and Sy = {x € W, : —x € W,}. Let F: W — W be a compact operator with a fixed point
y € W, and denote by L the Fréchet derivative of F at y. Then L maps W/, into itself. We say
that L has property o on W), if there exist ¢ € (0,1) and w € W,\S, such that w — tLw € S,..

For an open subset U C W, define indexy (F, U) = index(F, U, W) = degy, (I — F,U,0),
where [ is the identity map. If y is an isolated fixed point of F, then the fixed point index
of F at y in W is defined by index (F,y) = index(F, U(y), W), where U(y) is a small open
neighborhood of y in W.

Lemma 2.3 (See [11]) Assume that I — L is invertible on Wy.
(i) IfL has property o on Wy, then indexy (F,y) = 0.
(i) IfL does not have property a on W),, then indexy (F,y) = (-1)°, where o is the sum of

algebra multiplicities of the eigenvalues of L which are greater than 1.

Denote by r(L) the spectral radius of a linear operator L.

Lemma 2.4 (See [12]) Let q(x) € C(2) and let M be a positive constant such that —q(x) +
M > 0 on Q. Then we have the following conclusions:

() A(g) <0 = rl(=A + M) (~q(x) + M)] > 1;

(i) 21(q()) > 0 = r(~A + M) (~q(x) + M)] < 1;

(iii) 21(g(x)) = 0=>r[(-A + M) (—q(x) + M)] = 1.

NN

Now we introduce the following notations:
(i) E:=Co(Q) ® Co(2), where Co(Q) = {u € C(Q) : u(x) = 0 on IQY;
(i) W :=P, @ Py, where P = {u € Cy(2) : u(x) > 0 in Q};
(iii) D:={(u,v) €E:u<a,v<c+d};
(iv) D' :=(intD)NW.
From Lemma 2.2, we see that all the non-negative solutions of (1.1) must be in D. For
any 7 € [0,1], define a positive compact operator A, : D' — W by

= (= o (tula—u)—v(l-e ") + Mu
A‘[(M,V)_( A+M) (TV(C—V+d(1—e_yu))+MV>’

where M is large such that max{a + (c + d)y,d} < M. It follows from the standard elliptic
regularity theory that A, is a completely continuous operator. Observe that (1.1) has a
positive solution in W if and only if A := A; has a positive fixed point in D'. If a,¢ > A1,
then (0,0), (6,,0), (0, 6,) are the only non-negative fixed points of A which are not positive.
The corresponding indices in W can be calculated in the following lemmas.

Lemma 2.5 Assume that a > \.
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(i) Indexy (A, D) =1.

(i) Ifc# M, then indexw (A, (0,0)) = 0.
(i) If ¢ > ri(=d(1 — e77%)), then indexw (A, (6,,0)) = 0.
(iv) Ifc < M(=d(1 — e77%)), then indexw (A, (6,,0)) = 1.

Proof (i) Since A, has no fixed point on D', the degree degy, (I — A.,D’,0) is well defined.
It is easy to see that all fixed points of A, are in D’. Therefore, by the homotopy invariance

of degree, degy, (I — A;,D’,0) is independent of 7. Then

indexy (A, D') = degy, (I - A, D',0) = degy, (I - A;,D',0)
=degy (I - Ay, D',0). (2.1)

Observing that (1.1) has only the trivial solution (0, 0) when 7 = 0, we have
degyy, (I — Ao, D',0) = indexy (Ao, (0,0)). (2.2)

Let L = A;(0,0). Then

L=(-A+M)™? (M O).
0 M

It is easy to see that (L) < 1 by Lemma 2.4. This implies that I — L is invertible on W(o,o)
and L does not have property & on W ). By Lemma 2.3, indexy (Ay, (0,0)) = 1. It follows
from (2.1) and (2.2) that indexy (A, D’) = 1.

(ii) It is easy to observe that W) = W, Sio,0) = {(0,0)}. Let L = A’(0,0). Then

M
L=(a+m (47 0.
0 c+M

Assume that L(&, 1) = (£, 1) for some (£,7) € W (o). Then
—-A& =at, —An=cn, x€K, E=n=0, xe€ad.

Since a # A1, ¢ # A1, we have £ = = 0. Thus I — L is invertible on W g ).

Note that a > A;. By Lemma 2.4, we know that r, := r[(-A + M) (a + M)] > 1, and r,
is the principal eigenvalue of the operator (~A + M) (a + M) with the corresponding
eigenfunction ¢ > 0. Set ¢y = 1/r,. Then ty € (0,1) and (I — £,L)(¢,0) = (0,0) € S(,0)- This
shows that L has property o. By Lemma 2.3, indexy (A4, (0,0)) = 0.

(iii) Let y = (6,,0). Then W, = {(£,n) € E,n > 0}, S, = {(§,0) : £ € C5(Q)}. Set L =
A'(6,,0). Then we have

L=(-A+M)" (“ WM e ) .
0 c+dl-e?%)+ M
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Assume that L(&, n) = (¢, n) for some (&,7) € Wy. Then

“AE—(a-20)E+(1—e?%)=0, x€9Q,
—An—(c+d1-e"%))py=0, xeQ,
~§:77:0, x € 0Q.

If ¢ # Ai(—d(1 — e77%)), then n = 0. And we further have £ = 0. Thus I — L is invertible
onW,.

Note that ¢ > A;(-d(1 - e77%)). By Lemma 2.4, we know that r, := r[(-A + M) (c + d(1 -
e77%) + M)] > 1 is the principal eigenvalue of the operator (—A + M)~ (c + d(1 — e™7%) + M)
with the corresponding eigenfunction ¥ > 0. Set ty = 1/r.. Then £, € (0,1), (0,%) € Wy\Sy

and
(I-tL) 0) _ to(~A + M) (L-e7%)y
") T\ -nea s Myt erd-e ) s My

) (to(—A + M1 -eVeﬂ)l/f) s,
0

This shows that L has property «. By Lemma 2.3, indexw (A4, (6,,,0)) = 0.

(iv) Since ¢ # Ai(-d(1 — e ?%)), I — L is invertible on Wy. We claim that L does not
have property @ on Wy. Note that ¢ < A;(-d(1 — e77%)). By Lemma 2.4, we know that
re:=r[(=A + M) c+d(1 - e7%) + M)] < 1. Suppose that L has property o on Wy. Then
there exist ¢; € (0,1) and (¢, Y1) € Wy\Sy such that (I — t;L)(¢1, Y1) € S,. Therefore,

Y1 — (A + M) (c+d(1-€e7%) + M)y =0.

Since ¥, > 0, 1/t; > 1 is a principal eigenvalue of the operator (-A + M)™(c + d(1 -
e7%) + M), which is contradiction to r, < 1. Thus L does not have property o« on W,.
By Lemma 2.3, indexw (A, (6,,0)) = (-1)°, where o is the sum of the multiplicities of all
real eigenvalues of L which are greater than 1.

Assume that A > 1 is an eigenvalue of L with a corresponding eigenfunction (&, ). Then
simple calculations yield

—AE + ME =1[(a—20,+ M)E —(L—e %) =0, xeQ,
—-An+Mn= %[c +d(1l-ev%)p=0, x €, (2.3)
E=n=0, x € 0.

If n #0, then from the second equation of (2.3), we obtain
0= (MA-1/2) -Vr(c+d(1-e7%))) > 1(-d(1-e7%)) —c>0.

This contradiction shows that n = 0. Thus & # 0. From the first equation of (2.3), we have
0 = Ay (M1 -1/2) = 1/A(a - 26,)) > M(-a +26,) > 0.

This contradiction shows that L has no eigenvalues being greater than 1. Consequently,
o = 0. Hence, indexy (A, (6,,0)) = 1. O
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Similarly, we can obtain the following lemma.

Lemma 2.6 Assume that ¢ > Aq.
(i) Ifa> ri(y0.), then indexw (A, (0,6.)) = 0.
(i) Ifa < A(y6,), then indexy (A, (0,6,)) = 1.

By the additivity property of the index, the existence of positive solutions to (1.1) is ob-
tained.

Theorem 2.1 (i) If a > 11(y0.), ¢ > A1, then (1.1) has at least a positive solution.
(i) If a > Ay, M (=d(1 — e77%)) < ¢ < Ay, then (1.1) has at least a positive solution.

Proof Argue by contradiction. Suppose that (1.1) has no positive solution.
(i) If a > A, and Ay (~d(1 — e77%)) < ¢ < A1, then by Lemma 2.5 and the additivity property
of the index, we have

1 = indexy (A, D’) = indexy (A4, (0,0)) + indexyy (A, (64,0)) = 0.

The contradiction implies that (1.1) has at least a positive solution in D'.
(ii) If @ > 21 (y0.) and ¢ > A4, then by Lemmas 2.5, 2.6 and the additivity property of the

index, we have
1= indexW(A, D/) = indexW(A, (0,0)) + indexW(.A, (Ga,O)) + indexW(.A, (0,95)) =0.
The contradiction implies that (1.1) has at least a positive solution in D’. d

3 Bifurcation and multiplicity of positive solutions

In this section, by discussing the bifurcations of positive solutions by using & and ¢ as the
main bifurcation parameters, respectively, we establish the multiplicity of positive solu-
tions when y is suitably large. First, we show that (1.1) has no positive solution when c is
sufficiently large.

Lemma 3.1 If (1.1) has a positive solution, then there exists a sufficiently large constant
M > 0 such that 1 (-d(1 —e %)) < c < M.

Proof Suppose that (1.1) has a positive solution (u, v). Then by Lemma 2.2, we have
c= Al(v - d(l — e‘V”)) > )q(—d(l - e"’g")).

Moreover, since the function f(s) = (1 — e~*)/s is strictly decreasing with respect to s > 0,
considering the equation of u, we find

1-e7¥ 1-¢g70a
oz:)q(u+yv ) >k1( 95). (3.1)
yu 0,

Choose c large enough. Then for fixed a, we have A;((1 - e7%)/6,6,) > a, which is a con-
tradiction to (3.1). O
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Fixing a > A; and taking ¢ as a bifurcation parameter, we shall obtain positive solutions
bifurcating from the semi-trivial solution (6,, 0).

Theorem 3.1 Assume that a > Ay. Let ¢ = A (-d(1 — e77%)). Then (8,,0;¢) is a bifurcation
point of the positive solution to (1.1). Moreover, there exists a constant § > 0 and a C*-curve
(u(s), v(s); c(s)) : (0,8) — X x X X R such that

(i) (u(s),v(s)) is a positive solution of (1.1) with c = c(s) for each s € (0,8] and

ws) =0, +s(¢+0()),  vs)=s(¥ + (), (3.2)

where  is a positive eigenfunction corresponding to ¢ with Jo Yrdr=1,
¢=(A+a-20)(A-e7")P) <0, (§,¥) € Z, Z D span{($, )} = X x X;
(i) ¢(0) =¢, (u(0),v(0)) = (P4, 0), and ¢(0) = ¥(0) = 0.

By the classic Crandall-Rabinowitz bifurcation theorem in [13], one can obtain Theo-
rem 3.1 easily. So the proof is omitted here. One can refer to [14, 15] for similar arguments.
Now we state a sufficient condition for the existence of positive solutions as follows.

Theorem 3.2 If the following relationship holds:
a>n(yb:) and c> )Ll(—d(l - e"’e“)), (3.3)
then (1.1) has at least a positive solution.

Proof Fixing a > A and taking c as the main bifurcation parameter, we can obtain a su-
percritical bifurcating branch of positive solutions to (1.1), which emanates from the semi-
trivial solution (6, 0) at the value of ¢ = A;(~d(1 —e 7%)). The existence was given in Theo-
rem 3.1. It suffices to show the bifurcation direction. To this end, substitute (z(s), v(s); c(s))
given by (3.2) into the second equation of (1.1), divide by s, differentiate with respect to s
and set s = 0, which leads to

—AY'(0) = [E +d(1- e”’e")]d//(O) + [c’(O) -U+ dye_”&“lp]w.

Now, multiply by ¥ and integrate over 2 to get

- /Q Y (0)AY dx = /Q 1/7[2 +d(1- e_”ea)]l/f’(O) dx + /Q[c'(O) —U+ dye_”aﬂ]t/}Z dx.
Hence, we have

c(0) = /Q Vidx—dy fQ e "% py? dx.

Noting that ¢ < 0, we obtain ¢'(0) > 0, which shows that the bifurcating branch is super-
critical.

In the following, we shall investigate the global structure of bifurcation solutions given
by Theorem 3.1 and then the relationship in (3.2) can be obtained. By the global bifurcation
theorem in [10], we can extend the local bifurcation positive solution to the global one. One
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can see [15, 16] for similar arguments. From Lemma 3.1, we know that the parameter c is
bounded. And from a priori estimates given by Lemma 2.2, it follows that |||« and ||v||
are also bounded. Hence, we claim that the continuum of positive solutions bifurcating
from (6,,0;¢) cannot remain in the interior of P x P, which implies that there must exist
¢ (> ¢), at which one of the components of the continuum of positive solutions vanishes.
Let ¢, be a strictly increasing sequence converging to ¢ € (¢, 00) for which (1.1) has at least
a positive solution (u,, v,) such that u, — 0 or v, — 0 as n — oo. If we denote by (i, V)

the limit of (u,,v,) as n — 00, then we have the following three cases:
i) (@@7)=(0,6:), (i) (&, 9) = (6,,0), (iii)  (@,9) = (0,0).

Since (0, 0) is non-degenerate, (iii) is excluded. Set v, = v,,/||V||o. Then v, satisfies

AV, = (cn—vn+d(1—e"’””))v,,, illoo =1 in £, v,=0 onadQ.
Letting n — 00, we have
~AV=(C+d(1-e7%))7, I7lee =1 in <, 7=0 ondQ.

It follows from ¥ € P — {0} that ¢ = A, (~d(1 — e %)) = ¢, which contradicts the global bifur-
cation theorem. (ii) is also excluded. Hence, we know that (i) holds true. Set zz,, = u,,/ || 44| 0o -
Then #,, satisfies

- 1—e7iny | - -
—-Au, = <a—un—vn7)un, l2tylloo =1 in €2, u,=0 onodS.
Uy

Letting n — 00, we have
“Aii=(a-y0)i, |lille=1 inQ,  #=0 ond<.

It follows from # € P — {0} that a = A1(y6;). Now, we know that ¢ is uniquely determined
by a = 11(y6.). Observe that ¢ < ¢ implies that a > A1(y6,.). Hence, if a > A;(y6,) and ¢ > ¢,
then (1.1) has at least a positive solution. O

Remark 3.1 The condition (3.3) is better than those obtained in Theorem 2.1. In particu-
lar, (3.3) includes the case ¢ = A;. Note that Theorem 2.1 tells us nothing when ¢ = ;. Since
I — L is not invertible on W o) when ¢ = A;, Lemma 2.3 is not satisfied and so we cannot
use it to get the index of the fixed point (0, 0).

Fix a > A and take c as the bifurcation parameter, then by the proof of Theorem 3.2,
we can obtain a supercritical bifurcating branch from the point (1;(-d(1 — e7%));6,,0).
Moreover, resorting to the global bifurcation theory, we get the maximal continuum of
positive solutions, which tells us the range of the parameter c is A;(-d(1 — e77%)) <c < ¢,
where ¢ is determined uniquely by a = A, (y6;). Hence, a sufficient and necessary condition
for the existence of positive solutions can be stated in the following remark.

Remark 3.2 Assume a > A;. Then (1.1) has a positive solution if and only if A;(-d(1 -
e77%)) < ¢ < ¢, where ¢ is determined uniquely by a = A,(y6;).
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In the case ¢ > A1, Theorem 3.2 tells us that if a > A1(y6,), then (1.1) has at least a positive
solution. A natural question is whether (1.1) has a positive solution if a € (A1, A1(y6,)]. In
fact, making use of bifurcation theory and degree theory, we can solve this problem and
further establish the multiplicity of positive solutions to (1.1) when y is suitably large. We
first take a as a bifurcation parameter and give the bifurcation solutions emanating from
the semi-trivial solution (0, 6,).

Theorem 3.3 Assume c > Ay. Then (0,0,; 11(y0.)) is a bifurcation point of the positive solu-
tion to (1.1). Moreover, there exist a constant § > 0 and a C'-curve (a(s); U(s), V(s)) : (0,8) —
R x X x X such that

(i) (U(s), V(s)) is a positive solution of (1.1) with a = a(s) for each s € (0,8] and

Uis) =s(P+ D(s)),  V(s)=6.+s(V+V(s)),

where ® is the positive eigenfunction corresponding to A (y6,) with A P2dx =1,
U =dy(=A - c+260.)10.D) >0, (®,V) € Z, Z & span{(P, ¥)} = X x X;

(ii) a(0) = A1(y6c), (U(0), V(0)) = (0,6,), and ®(0) = ¥(0) = 0;

(ili) a(s) has the derivative a’(0) = p(y), where p(y) is defined by

-~ 1 -
p(y):y/ \I»’Cbzdx——yZ/ 6,D3 dx. (3.4)
Q 2 Q

Using the above theorem, we can obtain the following multiplicity result of positive so-
lutions to (1.1).

Theorem 3.4 Assume that ¢ > M. Let yo = 2 [, W > dx/ [, 0.3 dx. If ¥ > yo, then there
exists a constant a, € (A, A1(y0.)) such that (1.1) has at least two positive solutions for
each a € (ay, M (y6.)) and has at least one positive solution for a > 1i(y0,).

Proof 1t follows from Theorem 3.2 that (1.1) has at least one positive solutions for each
a > A1(y6.). So we only have to show that (1.1) has at least two positive solutions for each
a € (a., M(y6.)) and has at least one positive solution for a = A1(y6,).

Let D, = {(u,v) € W : ||(4,v) — (0,0,)]|g < €}. Note that the direction of the bifurcation
of (1.1) emanating from the semi-trivial solution (0, 6,) is determined by the sign of p(y)
given in (3.4). If y > y,, then we see that p(y) < 0 and the bifurcation is subcritical. So
there exists a positive constant a, € (A1, A1(y6.)) such that for each a € (a,, A1(y6,)), (1.1)
has a unique positive solution (u,,v,) € D.. To prove the existence of a positive solution
when a = A1(y6,) and two positive solutions when a € (a,, A1(y6,)), it suffices to show that
for each a € (a,, A1(y6,)], (1.1) has a positive solution in D'\ D,.

Define 7, : D' — W by

Folu,v)=(-A + M) w(a—u) —tv(l — e %) + Mu
\% V)= vic-v+ ‘L'd(l_eﬂ/@a)) v ]’

where t € [0,1], D', W and M are defined in Section 2. It follows from standard ellip-
tic regularity theory that F; is a completely continuous operator. Obviously, (1.1) has
non-negative solutions if and only if the operator F; has fixed points in D'. It is easy to
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check that F; has no fixed point on a(D'\D,) for € [0,1]. Hence, indexy (F;,D'\D,) =
constant. In particular, indexy (F1, D'\ D) = indexy (Fo, D'\ De). For small € > 0, Fy has
only three fixed points (0,0), (6,,0) and (8,,0,) in D'\D.. It is well known that (6,,6,) is
linearly stable while (0,0) and (6,,0) are unstable, which implies indexw (Fo, (64, 6.)) =1
and indexy (Fy, (0,0)) = indexy (Fo, (6,,0)) = 0. Hence, we have

indexy (F1, D'\ D) = indexy (Fo, D'\De) =0+0+1=1.

On the other hand, /7 has only two non-negative fixed points (0,0) and (6,,0) which are
not positive in D'\ D,. By Lemma 2.5, both indexw (F3,(0,0)) and indexy (F1, (6,,0)) are
zero. Thus one can assert that /7 has a fixed point in D'\ D, other than (0,0) and (6,,0),
which shows that (1.1) has a positive solution in D'\ D,. This completes the proof. d

4 The uniqueness of positive solutions
The main result in this section is the following.

Theorem 4.1 Assume Q = (p,q) for some real numbers p < q. If y2(c + d) < 2, then for
every (a, c) satisfying (3.3), the following boundary value problem:

—u' =u(a—-u)-v(l-e7*), xe(pq),
—V'=(c-v+d(l-e"))v, x€(pq), (4-1)
u(p) = ulq) =v(p) =v(q) =0

has exactly one positive solution.

The proof will be finished in several steps. The technique we used here can be found in
the papers [17, 18]. The basic ingredient is non-degeneration of positive solutions, which

is summarized as the following lemma.

Lemma 4.1 Let (u.,v.) be an arbitrary positive solution of (4.1). Then the linearized prob-
lem of (4.1) at (ux, v4),

_¢// = (ﬂ - 2”* - )/V*eiyu* )¢ — (1 — e’V”*)l/f, X € (p, q)’
" =(c-2v, +d(l —e ") + dyvie "¢, x€(p,q), (4.2)
Pp)=9@)=vp)=¥(@) =0

has only the trivial solution (0,0). In other words, any positive solution is non-degenerate.

Proof Since (u,, v,) is a positive solution of (4.1), by the Krein-Rutman theorem, we have

— e Yux
Al(u* + M —a) = Al(v* —d(l —e"’”*) - c) =0.

Uy
The linearized problem (4.2) can be written as
0"+ Quy+ yvie" —a)p = —(1-e"") Y,  x€(pq),

—W/ + (2V* - d(l - e—yu*) - C)l// = dyv*e’V”*q), X € (p, q),
d(p)=9(q) =¥ () =v¥(q) =0.


http://www.advancesindifferenceequations.com/content/2013/1/164

Guo et al. Advances in Difference Equations 2013, 2013:164 Page 11 of 14
http://www.advancesindifferenceequations.com/content/2013/1/164

From the monotonicity of A;(-), it follows that
M2vi—d(1-e7) —c)> (v —d(1-e"") =) =0. (4.3)

If y%(c + d) < 2, then we claim that

V*(l - e—yu*)

Uy +yvie " >y + ——=, (4.4)
Uy
Thus
1—e V¥
A (ZM* +yvee T — a) > A (u* + M - a) =0. (4.5)
Uy

Now we shall prove that (4.4) is true. Let (u,) = u? + yu,v,e " —v,(1—e77"). It suffices

to show A (u,) > 0. Obviously, #(0) = 0 and /' (i) = u4(2 — y?v,e77%). Reminding v, < c +d

given by Lemma 2.2, we get /' (u,) > 0 and thus /(u,) > 0. This shows that (4.4) holds true.
Define the operators L; and L, by

Ligp ==y + Quy + yvie ™ —a)p, ¢ X,
Ly =—y"+ Qv —d(l-e7™) -0y, ¥ eX.

So (4.2) can be written as
Lip=—(1-e")y, Ly =dyvie”™¢. (4-6)

By (4.3) and (4.5), L; and L, have inverses, say L;', L;!, which are compact and order-
preserving, i.e., L;'(P—{0}) C intP for i = 1,2. Now we shall show that the only solution to
(4.6) is (0, 0), which completes the proof of this lemma. To this end, we argue by contra-
diction, assuming that there exists a solution (¢, ¥) #(0,0) to (4.2). From (4.6), it follows
that

¢ =L [(1-e7")L; (dyvie " ¢)]. (4.7)

Since the right-hand side of (4.7) defines a compact strongly order-preserving operator,
we find that ¢ must change sign in (p, g). Similarly, ¥ must change sign in (p, g). Moreover,
¢ and ¥ cannot vanish on an interval of positive length by the maximum principle, i.e.,
the zeros of ¢, { are isolated each from the others. In fact, if ¢ vanishes on an interval,
then ¢’ = 0 at the boundary of such an interval where ¢ > 0 or ¢ < 0, which contradicts
the maximum principle. Thus there exists a partition of (p, g), say

Q={p=xo<x1<xy<--<xy_1 <%, =4},
and we can choose ¢ such that

dx) >0, xe @ Xopi1)k>0,2k+1<n,
¢(X) < 0) X € (ka—lyka)rk > 1; 2k <mn, (48)

o(x)=0, x=x,0<k<nm.
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Here we claim that

Yxak) >0, Y(xaka1) <0, Xop, %241 € Q- {p, gl (4.9)
Since the principal eigenvalues of L; and L, on any subinterval of (p, g) are strictly positive,
the generalized maximum principle will be used to show this claim. By hypothesis, ¢(x) >
0,x€e (xo,xl) and ([5(960) = ¢(x1) =0. Thus

Lyy(x) =dyv.e 7" ¢p(x) >0, x € (xg,x1).

We claim that ¥ (x1) < 0. In fact, if ¥ (x1) > 0, then by the generalized maximum principle,
we have ¥ (x) > 0, x € (x9,%1). Thus

Lip(x) =—(1-€e7")yY(x) <0, «x € (x0,x1).

Therefore ¢(x) < 0, x € (x0,%1), which contradicts (4.8). So ¥ (x;) < 0.
Again by hypothesis, ¢(x) < 0, x € (x1,%7) and ¢(x1) = ¢p(x2) = 0. Thus

Loyr(x) =dyv,e " ¢(x) <0, x € (x1,%).

We claim that ¥ (x;) > 0. In fact, if ¥ (x;) < 0, then by the generalized maximum principle,
we have ¥ (x) < 0, x € (x1,%3). Thus

L) =—(1—-e7"™ )y (x) >0, x € (x,x).
Therefore ¢(x) > 0, x € (x1,x2), which contradicts (4.8). So ¥ (x3) > 0. Arguing recursively,

we show (4.9) holds.
According to the parity of n, either

¢(x)>0, x¢€(x2uq)  Ylxau)>0 (4.10)
or

¢(x) <0, x€ ¥usi1,9) ¥ (%2x41) < O (4.11)
is satisfied. Assume (4.10) holds. Then

Lyy(x) =dyvie " ¢(x) >0, x € (x,9)-

Since ¥ (x9¢) > 0 and v(g) = 0, by the generalized maximum principle, we have (x) > 0,
x € (%2x,q). Thus

Lip(x) = —(1-e7")Y(x) <0, x € (xa,9).

Therefore ¢(x) < 0, x € (xax, q), which contradicts (4.8). Similarly, if (4.11) holds, we also
get a contradiction. The proof of Lemma 4.1 is complete. d
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Applying the implicit function theorem, we can show that if (4.1) has exactly one positive
solution, which in addition is non-degenerate, then the following problem:

—u" =ula—u)—v(l - 6_(y+€)u); x € (p,q),
V' =(c—v+d(l-e ")y,  xe(pq), (4.12)
u(p) = u(q) =v(p) =v(g) =0

has also exactly one positive solution provided ¢ is small enough. The proof is omitted.

Lemma 4.2 Suppose that (3.3) is satisfied and (4.1) has exactly one positive solution
(t44, Vi), which is non-degenerate. Then there exists €y = €(a,c,d,y) > 0 such that for ev-
ery € € (—€g, €g) the problem (4.12) has exactly one positive solution (u(€), v(€)). Moreover,
(%(0),v(0)) = (44, vi) and the mapping € — (u(€),v(€)), from a neighborhood of € =0 in R
to X2, belongs at least to the class C'.

Proof of Theorem 4.1 Consider the set
r:= {)9 € [0, y]: (4.1) with y = 8 has a unique positive solution, V8 € [0, )9]}.

Since (4.1) with y = 0 is uncoupled, if it has a positive solution, then it has exactly one.
Thus 0 €T, ie, I' is not empty. By Lemma 4.2, we know that I' is open in [0, y]. Now
we shall show that I' is closed in [0, y]. Hence I' = [0, y], which completes the proof. To
show this, consider a sequence {y,},>1 in I' satisfying y,, — y < y as n — oo. Since the
mapping ¥ — A1(y6,) is increasing in y, both (3.3) and y2(c + d) < 2 are satisfied for
y =y and y = y,, n > 1. Let (u,,v,) be the unique positive solution of (4.1) with y = y,,.
By passing to a subsequence if necessary, (u,, v,) converges to (i, V) as n — 00. From the
proof of Theorem 3.2, it follows that (&, V) is in the interior of P x P. Since (3.3) is satisfied
for y = y, we know that (i, V) is a positive solution of (4.1) with y = 7. In fact, the problem
(4.1) with y = y has exactly one positive solution. Otherwise the application of the implicit
function theorem would imply that (4.1) with y = y, has at least two positive solutions for
sufficiently large 7, contradicting the fact that y,, € I'. Hence y € I'" and T" = [0, y]. This
finishes the proof. d
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