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Abstract
When modeling sound propagation, the use of fractional derivatives leads to models
that better describe observations of attenuation and dispersion. The wave equation
for viscous losses involving integer-order derivatives only leads to an attenuation
which is proportional to the square of the frequency. This does not always reflect
reality. The acoustic wave equation with loss operator is generalized to the concept of
variable-order derivatives in this work. The generalized equation is solved via the
Crank-Nicholson scheme. The stability and the convergence of this case are examined
in detail.
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1 Introduction
Fractional derivatives are well suited to describe wave propagation in complex media.
When introduced in classical wave equations, they allow the modeling of attenuation and
dispersion that better describes sound propagation in biological tissues. Fractional deriva-
tives have been used for modeling heat transfer or diffusion [, ], seismic data [] and
sound wave propagation, [–] only to name a few. When modeling sound propagation,
the use of fractional derivatives leads to models that better describe observations of atten-
uation and dispersion []. The wave equation for viscous losses involving integer-order
derivatives only leads to an attenuation which is proportional to the square of the fre-
quency. This does not always reflect reality. For instance, for biological tissues [] and
marine sediments [], the frequency dependency of attenuation and dispersion is more
complicated. Different forms of the wave equation have been proposed to reflect this com-
plexity [, , –].
Several simulators take a modified nonlinear wave equation as a starting point by re-

placing the traditional loss operator by fractional derivatives [, , ] or a convolution in
time [, ]. Their justification for modifying the standard wave equations is the ability
of fractional derivatives to lead to a dispersion equation that better describes attenuation
and dispersion. A wave equation based on fractional constitutive equations gives an al-
ternative to modeling absorption and dispersion in complex media like biological tissues.
However, in the case where the medium, through which these sounds are propagating, is
variable or heterogeneous, neither the wave equation described by integer order nor that
described by constant fractional order are suited for describing the phenomena. To solve
the above problems, the variable-order (VO) fractional acoustic wave equationmodels are
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suggested for use in this work. This present work is therefore devoted to the discussion
underpinning the description of the extension of an acoustic wave equation to the concept
of the variational-order derivative and the solution of the generalized equation using the
Crank-Nicholson scheme.

2 A possible modification of an acoustic wave equation
For the readers that are not acquaintedwith the concept of the variational-order derivative,
we start this section by presenting the basic definition of this derivative.

2.1 Variable-order differential operator
Let f : R → R, x → f (x) denote a continuous but necessary differentiable, let α(x) be a
continuous function in (, ]. Then its variable-order differential in [a,∞) is defined as

Dα(x)


(
f (x)

)
=


�( – α(x))

∫ x


(x – t)–α(t) df (t)

dt
dt. (.)

The above derivative is called the Caputo variational-order differential operator, in addi-
tion, the derivative of the constant is zero.

2.2 Statement of the problem
Attenuation of propagating waves in many materials follows a power law over several
decades of frequency variation [], Szabo and Wu []

α = αω
y,

where α and y are constants that characterize the medium. Such attenuation can be de-
scribed by wave equations with particular loss operators.
In this paper we consider only the acoustic wave equation with loss operator. A wave

equation with a loss operator L, which in the general case is a convolution, is

∇u –

c

∂u
∂t

+ Lu = , (.)

where c is a propagation velocity and u(x; y; z; t) is the particle displacement. As is well
established, the form of the loss operator is simple to justify from the underlying physics
for only a few values of y. One such case is classical visco-elasticity, which is used as a
first-order model, for instance, air and water. The loss operator is then []

Lu = τ
∂(∇u)

∂t
. (.)

It gives a power law with exponent y =  when ωτ � , where τ is medium-specific re-
laxation time. In  Szabo developed a wave equation for y ∈ [; ] which for y =  was
similar to an approximation to equation (.) where the viscoelastic loss term instead is a
third-order time derivative []

Lu =
(

τ

c

)
∂u
∂t

. (.)

http://www.advancesindifferenceequations.com/content/2013/1/167


Atangana Advances in Difference Equations 2013, 2013:167 Page 3 of 12
http://www.advancesindifferenceequations.com/content/2013/1/167

In  Chen and Holm reformulated the lossy wave equation in terms of a spatial frac-
tional derivative with a fractional Laplacian. Under these circumstances, the loss operator
was proposed as []

Lu∝ –
∂(–∇)y/u

∂t
. (.)

This operator covers exactly the loss operator of equation (.) for y = , not just its low-
frequency approximation. However, a disadvantage of these formulations is that they do
not guarantee a causal solution. Recently Wismer [] proposed a loss operator to be in
the form of

Lu = τ y– ∂
y–(∇u)
∂ty–

. (.)

The above proposed loss operator is equivalent to the loss operator of the viscoelastic
equation for y = . This operator is interesting as it turns out to be based on an underlying
fractional Kelvin-Voigt model despite the impressionWismer [] gives that it was found
by inspection just like the previous operators. Although thewave equations given heremay
successfully be applied for wave propagation simulation, most of them are nevertheless
derived through ad hoc procedures which are not directly linked to more basic physical
principles.
In this paper, we propose the loss operator to be converted to the concept of variational-

order derivative as follows:

Lu = τ
∂ρ(x,t)(u)
∂tρ(x,t)

, (.)

where ρ(x, t) is a smooth function with the range (, ] and ∂ρ(x,t)

∂tρ(x,t) is the variational-order
derivative. Therefore equation (.) can then be reformulated as follows:

∇u –

c

∂u
∂t

+ τ
∂ρ(x,t)(u)
∂tρ(x,t)

= . (.)

The above equation is then called the ‘variable-order derivative acoustic wave equation
with loss operator’. This new equation does not have obviously an exact analytical solution.
In particular, the equation cannot be solved analytically. It is therefore important to exam-
ine its solution numerically. The aim of the next section is then devoted to the discussion
underpinning the numerical solution of themodified equation using the Crank-Nicholson
scheme.

3 Numerical solution of a variable-order derivative acoustic wave equation
with loss operator

Numerical methods yield approximate solutions to the governing equation through the
discretization of space and time. Within the discredited problem domain, the variable in-
ternal properties, boundaries and stresses of the system are approximated. Deterministic,
distributed-parameter, numerical models can relax the rigid idealized conditions of an-
alytical models or lumped-parameter models, and they can therefore be more realistic
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and flexible for simulating fields conditions. The finite difference schemes for constant-
order time or space fractional diffusion equations have been widely studied [, ]. For
constant-order time fractional diffusion equations, the implicit difference approximation
scheme was proposed in []. The weighted average finite difference methods were in-
troduced in []. The matrix approach for fractional diffusion equations was proposed in
[], and Hanert proposed a flexible numerical scheme for the discretization of the space-
time fractional diffusion equation []. Lately, the numerical schemes for a VO space frac-
tional advection-dispersion equation was considered by the author of []. An investiga-
tion of the explicit scheme for aVOnonlinear space fractional diffusion equationwas done
in []. Before performing the numerical methods, we assume that equation (.) has a
unique and sufficiently smooth solution. To establish the numerical schemes for the above
equation, we let xl = lh,  ≤ l ≤ M, Mh = L, tk = kσ ,  ≤ k ≤ N , Nσ = T , h is the step and
τ is the time size,M and N are grid points.

3.1 Crank-Nicholson scheme [29]
We introduce the Crank-Nicholson scheme as follows. Firstly, the discretization of first-
and second-order space derivative is stated as follows:

∂u
∂x

=



((
u(xl+, tk+) – u(xl–, tk+)

(h)

)
+

(
u(xl+, tk) –	(xl–, tk)

(h)

))
+O(h), (.)

∂u(xl, tk+)
∂t

=



(
(u(xl+, tk+) – u(xl+, tk) + u(xl+, tk–))

h

+
(u(xl, tk+) – u(xl, tk) + u(xl, tk–))

h

)
+O

(
h

)
,

(.)
∂u
∂x

=



((
u(xl+, tk+) – u(xl, tk+) + u(xl–, tk+)

(h)

)

+
(
u(xl+, tk) – u(xl, tk) + u(xl–, tk)

(h)

))
+O

(
h

)
,

u =


(
u(xl, tk+) + u(xl, tk)

)
. (.)

The Crank-Nicholson scheme for the VO time fractional diffusion model can be stated as
follows:

∂ρk+l u(xl, tk+)

∂tρ
k+
l

=
σ –ρk+l

�( – ρk+
l )

(
u(xl, tk+) – u(xl, tk)

+
k∑
j=

[
u(xl, tk+–j) – u(xl, tk–j)

][
(j + )–ρk+l – (j)–ρk+l

])
. (.)

Now, replacing equations (.), (.), (.) and (.) in (.), we obtain the following:

τσ –ρk+l

�( – ρk+
l )

(
u(xl, tk+) – u(xl, tk)

+
k∑
j=

[
u(xl, tk+–j) – u(xl, tk–j)

][
(j + )–ρk+l – (j)–ρk+l

])
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+



((
u(xl+, tk+) – u(xl, tk+) + u(xl–, tk+)

(h)

)

+
(
u(xl+, tk) – u(xl, tk) + u(xl–, tk)

(h)

))

= –

c




((
u(xl+, tk+) – u(xl+, tk) + u(xl+, tk–)

(h)

)

+
(
u(xl, tk+) – u(xl, tk) + u(xl, tk–)

(h)

))
. (.)

For simplicity, let us put

bl,k+j = (j + )–αk+l – (j)–αk+l ; Tk+
l = –

�( – ρk+
l )σρk+l

τch
and

λ
l,k+
j = bl,k+j– – bl,k+j and u(xl, tk) = ukl .

Equation (.) becomes

uk+l
(
 + Tk+

l – cT
k+
l

)
= uk+l+

(
–cT

k+
l – Tk+

l
)
+ uk+l–

(
–cT

k+
l – Tk+

l
)

+ ukl
(
 + cT

k+
l + Tk+

l
)
+ uk–l

(
–Tk+

l
)
–

k∑
j=

[
uk+–jl – uk–jl

]
bl,k+j . (.)

4 Stability analysis of the Crank-Nicholson scheme
In this section, we analyze the stability conditions of the Crank-Nicholson scheme for the
generalized acoustic wave equation.
Let ζ k

l = ukl –Uk
l , here U

k
l is the approximate solution at the point (xl, tk) (k = , , . . . ,N ,

l = , , . . . ,M– ) and, in addition, ζ k = [ζ k
 , ζ k

 , . . . , ζ k
M–]T and the function ζ k(x) is chosen

to be

ζ k(x) =

{
ζ k
l if xl – h

 < x ≤ xl + h
 , l = , , . . . ,M – ,

 if L – h
 < x ≤ L.

(.)

Then the function ζ k(x) can be expressed in Fourier series as follows:

ζ k(x) =
m=∞∑
m=–∞

δm(m) exp[iπmk/L], (.)

δk(x) =

L

∫ L


ρk(x) exp

[
iπmx

L

]
dx. (.)

It was established by [] that

∥∥ρ∥∥
 =

m=∞∑
m=–∞

∥∥δk(m)
∥∥.
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Observe that for all k, l ≥ ,  ≤  – αk+
l < . Then the following properties of the coeffi-

cients Tk+
l , λl,k+

j and bk+l can be established.

() Tk+
l are negative for all l = , , . . . ,M – .

()  < λ
l,k
j ≤ λ

l,k
j– ≤  for all l = , , . . . ,M – . (.)

()  ≤ bl,kj ≤ ,
k–∑
j=

bl,k+j+ =  – λ
l,k+
k for all l = , , . . . ,M – .

If we assume that ζ k
l in equation (.) can be put in the delta-exponential form as fol-

lows:

ζ k
l = δk exp[iϕlk], (.)

where ϕ is a real spatial wave number, now replacing the above equation (.) in (.) we
obtain

δ

(
 +  sin

(
ϕh


)
T 
l – c sin


(

ϕh


)
T 
l

)

= δ

(
 + cT


l sin


(

ϕh


)
+ T 

l sin

(

ϕh


))
; k = ,

δk+

(
 +  sin

(
ϕh


)
Tk+
l – cT

k+
l sin

(
ϕh


))
(.)

= +δk

(
 + cT

k+
l sin

(
ϕh


)
+ Tk+

l sin
(

ϕh


)
– λ

l,k+


)

–
k–∑
j=

λ
l,k+
j+ δk–j + λ

l,k+
k δ for k ≥ .

Now, according to (), Tk+
l are negative for all l = ,  . . . ,M–. Then from above equation

(.), we have the following

δ = +δ
( + cT 

l sin
( ϕh

 ) + T 
l sin

( ϕh
 ))

( +  sin( ϕh
 )T


l – c sin

( ϕh
 )T


l )
,

δk+ =
δk( + cTk+

l sin( ϕh
 ) + Tk+

l sin( ϕh
 ) – λ

l,k+
 ) –

∑k–
j= λ

l,k+
j+ δk–j + λ

l,k+
k δ

( +  sin( ϕh
 )T

k+
l – cTk+

l sin( ϕh
 ))

(.)

for k ≥ .

Our next investigation here is to show that for all k = , , . . . ,N –, the solution of equation
(.) satisfies the following condition:

|δk| < |δ|.

To achieve this, we make use of the recurrence technique on the natural number k.

http://www.advancesindifferenceequations.com/content/2013/1/167
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For k =  and remembering thatTk+
l are negative for all l = , , . . . ,M–, then we obtain

|δ|
|δ| =

∣∣∣∣ ( + cT 
l sin

( ϕh
 ) + T 

l sin
( ϕh

 ))
( +  sin( ϕh

 )T

l – c sin

( ϕh
 )T


l )

∣∣∣∣ < . (.)

Assume that form = , , . . . ,k, the property is verified. Then

|δk+|

=
∣∣∣∣ ( + cTk+

l sin( ϕh
 ) + Tk+

l sin( ϕh
 ) – λ

l,k+
 )δk –

∑k–
j= λ

l,k+
j+ δk–j + λ

l,k+
k δ

( +  sin( ϕh
 )T

k+
l – cTk+

l sin( ϕh
 ))

∣∣∣∣. (.)

Making use of the triangular inequality, we obtain the following inequality:

|δk+|

≤
(∣∣∣∣

(
 + cT

k+
l sin

(
ϕh


)
+ Tk+

l sin
(

ϕh


)
– λ

l,k+


)∣∣∣∣|δk|

+
∣∣∣∣
k–∑
j=

λ
l,k+
j+

∣∣∣∣|δk–j| + ∣∣λl,k+
k

∣∣|δ|
)

/∣∣∣∣ +  sin
(

ϕh


)
Tk+
l – cT

k+
l sin

(
ϕh


)∣∣∣∣. (.)

Using the recurrence hypothesis, we have

|δk+| ≤
|( + cTk+

l sin( ϕh
 ) + Tk+

l sin( ϕh
 ))||δ| + |∑k–

j= λ
l,k+
j+ ||δ|

| +  sin( ϕh
 )T

k+
l – cTk+

l sin( ϕh
 )|

,

|δk+| ≤ |( + cTk+
l sin( ϕh

 ) + Tk+
l sin( ϕh

 ))||δ|
| +  sin( ϕh

 )T
k+
l – cTk+

l sin( ϕh
 )|

,

(.)

|δk+| ≤ |( + cTk+
l sin( ϕh

 ) – Tk+
l sin( ϕh

 ))||δ|
| +  sin( ϕh

 )T
k+
l – cTk+

l sin( ϕh
 )|

,

|δk+| ≤ |δ|,

which completes the proof.

5 Convergence analysis of the Crank-Nicholson scheme
If we assume that u(xl, tk) (l = , , . . . ,M, k = , , . . . ,N – ) is the exact solution of our
problem at the point (xl, tk), by letting �k

l = u(xl, tk) – ukl and �k = (,�k
 ,�k

, . . . ,�k
M–),

substituting this in equation (.), we obtain

�
l
(
 + T 

l – cT

l
)
+�

l+
(
cT


l + T 

l
)
+�

l–
(
cT


l + T 

l
)
= E

l ,

�k+
l

(
 + Tk+

l – cT
k+
l

)
+�k+

l+
(
cT

k+
l + Tk+

l
)
+�k+

l–
(
cT

k+
l + Tk+

l
)

(.)

=
k∑
j=

[
�

k+–j
l –�

k–j
l

]
λ
l,k+
j + Ek+

l , k ≥ .
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The expression Ek+
l is given in the following form:

τσ –ρk+l

�( – ρk+
l )

(
u(xl, tk+) – u(xl, tk) +

k∑
j=

[
u(xl, tk+–j) – u(xl, tk–j)

]
bk+l

)

+



((
u(xl+, tk+) – u(xl, tk+) + u(xl–, tk+)

(h)

)

+
(
u(xl+, tk) – u(xl, tk) + u(xl–, tk)

(h)

))

+

c




((
u(xl+, tk+) – u(xl+, tk) + u(xl+, tk–)

(h)

)

+
(
u(xl, tk+) – u(xl, tk) + u(xl, tk–)

(h)

))
= Ek+

l .

From equations (.) and (.), we have

∂u(xl, tk+)
∂x

+ hV =



(
(u(xl+, tk+) – u(xl, tk+) + u(xl–, tk+))

h

+
(u(xl+, tk) – u(xl, tk) + u(xl–, tk))

h

)
,

∂αk+l 	(rl, tk+)

∂tα
k+
l

+ σV =
t–ρk+l

�( – ρk+
l )

(
u(xl, tk+) – u(xl, tk)

+
k∑
j=

[
u(xl, tk+–j) – u(xl, tk–j)

]
λ
l,k
j

)
,

∂u(xl, tk+)
∂t

+ hV =



(
(u(xl+, tk+) – u(xl+, tk) + u(xl+, tk–))

h

+
(u(xl, tk+) – u(xl, tk) + u(xl, tk–))

h

)
.

Then the expression Ek+
l can be in the following form:

Ek+
l =

t–ρk+l

�( – ρk+
l )

(
∂αk+l 	(rl, tk+)

∂tα
k+
l

+
∂u(xl, tk+)

∂x
+

∂u(xl, tk+)
∂t

)

+Vσ
+ρk+l +Vhσρkl +Vhσρkl .

From the above we have that

Rk+
l ≤ K

(
σ +ρk+l + hσρkl

)
, (.)

where V, V, V and K are constants. Taking into account the Caputo-type fractional
derivative, the detailed error analysis on the above schemes can refer to the work in []
and further work by [].

http://www.advancesindifferenceequations.com/content/2013/1/167
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Lemma  ‖�k+‖∞ ≤ K(σ +ρlk+ +hταlk)(�l,k+
j )– is true for (k = , , , . . . ,N –),where

‖wk‖∞ =max≤l≤M–(�k), K is a constant. In addition,

ρk+ =

{
min≤l≤M– ρ

k+
l if τ < ,

max≤l≤M– ρ
k+
l if τ > .

This can be achieved via the recurrence technique on the natural number k.
When k = , we have the following:

∣∣�
l
∣∣ ≤ ∣∣�

l
∣∣( + T 

l – cT

l
)
+

∣∣�
l+

∣∣(cT 
l + T 

l
)
+

∣∣�
l–

∣∣(cT 
l + T 

l
)
,∣∣�

l
(
 + T 

l – cT

l
)
+�

l+
(
cT


l + T 

l
)
+�

l–
(
cT


l + T 

l
)∣∣ (.)

=
∣∣E

l
∣∣ ≤ K

(
σ +ρlk+ + hσρlk

)(
λ
l,k+
j

)–.
Now, suppose that ‖�i+‖∞ ≤ K(σ +ρl i+ + hσρl i)(λl,i+

j )–, i = , . . . ,N – . Then

∣∣�k+
l

∣∣ = ∣∣�k+
l

∣∣( + Tk+
l – cT

k+
l

)
+

∣∣�k+
l+

∣∣(cTk+
l + Tk+

l
)
+

∣∣�k+
l–

∣∣(cTk+
l + Tk+

l
)
,∣∣�k+

l
(
 + Tk+

l – cT
k+
l

)
+�k+

l+
(
cT

k+
l + Tk+

l
)
+�k+

l–
(
cT

k+
l + Tk+

l
)∣∣

=

∣∣∣∣∣Rk+
l +

k∑
i=

(
�k–i

l
)
λ
l,k+
j

∣∣∣∣∣
≤ ∣∣Rk+

l
∣∣ + k∑

i=

∣∣�k–i
l

∣∣λl,k+
j

≤ K
(
σ +ρk+l + hσρkl

)
+

k∑
i=

∥∥�k–i
l

∥∥∞λ
l,k+
j

≤ K
(
σ +ρk+l + hσρkl

)(
λ
l,k+
j + λ

l,k+
 – λ

l,k+
j

)(
λ
l,k+
j

)–
≤ V

(
σ +ρk+l + hσρkl

)(
λ
l,k+


)(
λ
l,k+
j

)–,∣∣�+k
l

∣∣ ≤ V
(
σ +ρk+l + hσρkl

)(
λ
l,k+
j

)–,
which completes the proof.

Theorem TheCrank-Nicholson scheme is convergent,and there exists a positive constant
K such that

∣∣ukl – u(xl, tk)
∣∣ ≤ K

(
σ + h

)
, l = , , . . . ,M – ,k = , , . . . ,N . (.)

The interested can find the solvability of the Crank-Nicholson scheme in the work done
by []. Therefore the details of the proof will not be presented in this paper.

6 Numerical simulation
In this section we show the numerical simulation of the acoustic wave equation with
variational-order derivative loss operator. In the simple case, we consider the variational
order of equation (.) to be in the form of ρ(x, t) = + sin(xt), where (x, t) ∈ [–, ]× [, t].
The approximate solution of the main problem has been depicted in Figure  which is

http://www.advancesindifferenceequations.com/content/2013/1/167
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Figure 1 Numerical solution of the main problem for ρ(x, t) = 1 + sin(xt), where (x, t) ∈ [–1, 1]×[0, t].

Figure 2 Numerical solution of the main problem ρ(x, t) = 1 + cos(xt), where (x, t) ∈ [–1, 1]×[0, t].

Figure 3 Simulation for a different constant fractional-order derivative.

http://www.advancesindifferenceequations.com/content/2013/1/167
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plotted in Mathematica. This figure shows the movement of the sound through the de-
formable medium. Figure  shows the simulation for a different constant fractional-order
derivative as a function of t for a fixed value of x = ..
In the simple case, we consider the variational order of equation (.) to be in the form

of ρ(x, t) =  + cos(xt), where (x, t) ∈ [–, ]× [, t]. The approximate solution of the main
problemhas been depicted in Figure , which is plotted inMathematica. This figure shows
the movement of the sound through the deformable medium.

7 Conclusion
The wave equation for viscous losses involving integer-order derivatives only leads to an
attenuation which is proportional to the square of the frequency. This does not always
reflect reality. The acoustic wave equation with loss operator was generalized using some
approaches of variational calculus. Since the modified equation is difficult to solve ana-
lytically, we make use of the numerical scheme to solve this new equation. The numerical
used in solving this new equation is the Crank-Nicholson scheme. The convergence and
the stability of this scheme in this case were presented in details.
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