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Abstract
The paper considers the oscillation of a second-order nonlinear dynamic equation
with positive and negative coefficients of the form

[
r(t)x�(t)

]�
+ p(t)f (x(ξ (t))) – q(t)h(x(δ(t))) = 0

on an arbitrary time scale T. We obtain some oscillation criteria for the equation by
developing a generalized Riccati substitution technique. Our results extend and
improve some known results in the literature. Several examples are given to illustrate
our main results.
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1 Introduction and preliminaries
In this paper, we investigate the oscillation of a second-order nonlinear dynamic equation
with positive and negative coefficients of the form

[
r(t)x�(t)

]� + p(t)f
(
x
(
ξ (t)

))
– q(t)h

(
x
(
δ(t)

))
=  ()

on an arbitrary time scale T with supT = ∞, subject to the following conditions:

(C) t ∈ T and [t,∞)T := {t ∈ T : t ≥ t} is a time scale interval in T;
(C) r ∈ Crd( [t,∞)T , (,∞)) and

∫ ∞
t


r(t)�t = ∞;

(C) p,q ∈ Crd( [t,∞)T , [,∞));
(C) ξ , δ ∈ Crd(T,T), limt→∞ ξ (t) = limt→∞ δ(t) = ∞, δ has the inverse function δ– ∈

Crd(T,T), v := δ– ◦ ξ ∈ Crd(T,T), ξ�, v� ∈ Crd( [t,∞)T , (,∞)), ξ (t), v(t) ≤ t for t ∈
[t,∞)T, ξ ( [t,∞)T) = [ξ (t),∞)T and v( [t,∞)T) = [v(t),∞)T, where
ξ ( [t,∞)T) := {ξ (t) : t ∈ [t,∞)T} and v( [t,∞)T) := {v(t) : t ∈ [t,∞)T};

(C) f ,h ∈ C(R,R), there exist positive constants L, L and M such that f (u)/u ≥ L,  <
h(u)/u≤ L and |h(u)| ≤ M for u �= , and Lp(t) – Lq(v(t))v�(t) >  for t ∈ [t,∞)T;

(C)
∫ ∞
t [ 

r(s)
∫ s
v(s) q(u)�u]�s < ∞ for every sufficiently large t ∈ T.

Recall that a solution of () is a nontrivial real function x such that x ∈ C
rd( [tx,∞)T ,R)

and rx� ∈ C
rd( [tx,∞)T ,R) for a certain tx ≥ t and satisfying () for t ≥ tx. Our attention is
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restricted to those solutions of () which exist on [tx,∞)T and satisfy sup{|x(t)| : t > t∗} > 
for any t∗ ≥ tx. A solution x of () is said to be oscillatory if it is neither eventually positive
nor eventually negative; otherwise, it is nonoscillatory. Equation () is said to be oscillatory
if all its solutions are oscillatory.
For convenience of the readers and completeness of the paper, we recall the following

basic concepts and results for the calculus on time scales. More details can be found in [,
].
A time scaleT is an arbitrary nonempty closed subset of the real numbersR.We assume

throughout that T has the topology that it inherits from the standard topology on the
real numbers R. Some examples of time scales are as follows: the real numbers R, the
integers Z, the positive integers N, the nonnegative integers N, [, ] ∪ [, ], [, ] ∪ N,
hZ := {hk : k ∈ Z,h > } and qZ := {qk : k ∈ Z,q > } ∪ {}. But the rational numbers Q, the
complex numbersC and the open interval (, ) are not time scales.Many other interesting
time scales exist, and they give rise to plenty of applications (see []).
For t ∈ T, the forward jump operator and the backward jump operator are defined by

σ (t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T : s < t} ()

respectively, where we put inf∅ = supT (i.e., σ (t) = t if T has a maximum t) and sup∅ =
infT (i.e., ρ(t) = t if T has a minimum t), here ∅ denotes the empty set. It is easy to see

ρ(t)≤ t ≤ σ (t) for t ∈ T.

Let t ∈ T. If σ (t) > t, we say that t is right-scattered, while if ρ(t) < t, we say that t is
left-scattered. Points that are right-scattered and left-scattered at the same time are called
isolated. Also, if t < supT and σ (t) = t, then t is called right-dense, and if t > infT and
ρ(t) = t, then t is called left-dense. The graininess function μ : T → [,∞) is defined by

μ(t) := σ (t) – t. ()

We also need below the set Tκ : If T has a left-scattered maximumm, then Tκ = T– {m}.
Otherwise, Tκ = T. Let f : T →R, then we define the function f σ : Tκ →R by

f σ (t) := f
(
σ (t)

)
for all t ∈ Tκ ,

i.e., f σ := f ◦ σ .
For a,b ∈ T with a < b, we define the time scale interval [a,b]T in T by

[a,b]T := {t ∈ T : a ≤ t ≤ b}.

Open time scale intervals and half-open time scale intervals etc. are defined accordingly.
Fix t ∈ Tκ and let f : T→R. Define f �(t) to be the number (provided it exists) with the

property that given any ε > , there is a neighborhood U of t such that

∣∣[f (σ (t)) – f (s)
]
– f �(t)

[
σ (t) – s

]∣∣ ≤ ε
∣∣σ (t) – s

∣∣ for all s ∈ U .
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In this case, we say that f �(t) is the (delta) derivative of f at t and that f is (delta) differen-
tiable at t.
If the time scale T is the real numbers R, then the usual derivative is retrieved, that is,

f �(t) = f ′(t) for t ∈R.

If the time scale T is taken to be the integers Z, then the delta derivative reduces to the
usual forward difference, that is,

f �(t) = �f (t) = f (t + ) – f (t) for t ∈ Z.

Assume that f : T→ R and let t ∈ Tκ . If f is (delta) differentiable at t, then

f
(
σ (t)

)
= f (t) +μ(t)f �(t). ()

If μ(t) �= , then from () we have

f �(t) =
f (σ (t)) – f (t)

μ(t)
. ()

A function f : T → R is said to be right-dense continuous (rd-continuous) provided it
is continuous at each right-dense point in T and its left-sided limits exist (finite) at all
left-dense points in T. The set of all such rd-continuous functions is denoted by

Crd(T) = Crd(T,R).

The set of functions f : T →R that are (delta) differentiable and whose (delta) derivative
is rd-continuous is denoted by

C
rd(T) = C

rd(T,R).

We will make use of the following product and quotient rules for the (delta) derivatives
of the product fg and the quotient f /g of two (delta) differentiable functions f and g :

(fg)� = f �g + f σ g� = fg� + f �gσ ()

and

(
f
g

)�

=
f �g – fg�

ggσ
=
f �

gσ
–
g�f
ggσ

, ()

where gσ = g ◦ σ and ggσ �= .
For a,b ∈ T and a (delta) differentiable function f , the Cauchy (delta) integral of f � is

defined by

∫ b

a
f �(t)�t = f (b) – f (a).
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The integration by parts formula reads

∫ b

a
f (t)g�(t)�t = f (b)g(b) – f (a)g(a) –

∫ b

a
f �(t)gσ (t)�t ()

or ∫ b

a
f σ (t)g�(t)�t = f (b)g(b) – f (a)g(a) –

∫ b

a
f �(t)g(t)�t. ()

The infinite integral is defined as

∫ ∞

a
f (s)�s = lim

t→∞

∫ t

a
f (s)�s.

The calculus on time scales was introduced by Hilger [] with the motivation of pro-
viding a unified approach to continuous and discrete calculus. The theory of dynamic
equations on time scales not only unifies the theories of differential equations and differ-
ence equations, but it is also able to extend these classical cases to cases ‘in between’, e.g.,
to the so-called q-difference equations. Dynamic equations on time scales have an enor-
mous potential for modeling a variety of applications; see, for example, the monograph by
Bohner and Peterson []. For advances in dynamic equations on time scales, one can see
the book by Bohner and Peterson [].
In recent years, there has been much research activity concerning the oscillation,

nonoscillation and asymptotic behavior of solutions of various dynamic equations and
differential equations. For instance, Došlý and Hilger [] considered the second-order
Sturm-Liouville dynamic equation

[
r(t)x�(t)

]� + p(t)xσ (t) =  for t ∈ T, ()

where σ is the forward jump operator on T, xσ := x ◦σ , r(t) �= , r and p are rd-continuous
functions and lims→t– r(s) �=  at all left-dense and right-scattered points. They estab-
lished a necessary and sufficient condition for the oscillation of () by using the so-called
trigonometric transformation.
Medico and Kong [, ] also investigated the oscillation of (). They supposed that

r,p ∈ Crd(T,R) with r(t) > . Medico and Kong [] gave some Kamenev-type and interval
criteria for the oscillation of (). Their results covered those for differential equations and
offered new oscillation criteria for difference equations. Medico and Kong [] extended
the work in [] by modifying the class of kernel functions and deriving new criteria of Sun
type (see []).
Saker [] obtained some oscillation criteria for the second-order nonlinear dynamic

equation

[
r(t)x�(t)

]� + p(t)f
(
xσ (t)

)
=  ()

on time scales in terms of the coefficients and the graininess function, where r and p are
positive real-valued rd-continuous functions,

∫ ∞
t


r(t)�t = ∞ or

∫ ∞
t


r(t)�t < ∞, and f :

R →R such that xf (x) >  and f (x)/x≥ K >  for x �= .
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Erbe and Peterson [] also discussed the oscillation of (), where r(t) > . When no ex-
plicit sign assumptions are made with respect to the coefficient p, they established some
sufficient conditions for the oscillation of () when lim inft→∞

∫ t
T p(t)�t >  for suffi-

ciently large T .
Zhang andZhu [] studied the oscillation of the second-order nonlinear dynamic equa-

tions

x��(t) + p(t)f
(
x(t – ξ)

)
=  ()

and

x��(t) + p(t)f
(
xσ (t)

)
=  ()

on a time scale T, where ξ ∈ R, t – ξ ∈ T, p : T → [,∞) is a real-valued rd-continuous
function, f : R → R is continuous, f (u) is nondecreasing, f (–u) = –f (u) for u ∈ R, and
uf (u) >  for u �= . They established the equivalence of the oscillation of () and
(), from which they obtained some oscillation criteria and a comparison theorem
for ().
Şahiner [] got some sufficient conditions for the oscillation of the second-order non-

linear delay dynamic equation

x��(t) + p(t)f
(
x
(
ξ (t)

))
=  ()

on a time scale interval [t,∞)T, where p ∈ Crd(T,R) is a positive function, ξ ∈ Crd(T,T)
is an increasing function such that ξ (t) < t and limt→∞ ξ (t) = ∞, and f ∈ C(R,R) satisfies
f (x)/x≥ L for a certain positive constant L and for all x �= .
Erbe et al. [] were concerned with the oscillation of the second-order nonlinear delay

dynamic equation

[
r(t)x�(t)

]� + p(t)f
(
x
(
ξ (t)

))
=  for t ∈ [t,∞)T , ()

where r and p are real rd-continuous positive functions defined on T, the so-called de-
lay function ξ satisfies ξ : [t,∞)T → T is rd-continuous, ξ (t) ≤ t for t ∈ [t,∞)T,
limt→∞ ξ (t) = ∞, and f :R → R is a continuous function satisfying uf (u) >  for all u �= 
and |f (u)| ≥ K |u|. The authors obtained some new oscillation criteria which improved the
results established by Zhang and Zhu [] and Şahiner [].
Jia et al. [] also dealt with the oscillation of (), where p ∈ Crd(T,R), T is a time scale,

and f : R → R is continuously differentiable and satisfies f ′(x) >  and xf (x) >  for x �= .
Jia et al. [] obtained several Kiguradze-type oscillation theorems for ().
Karpuz and Öcalan [] studied the asymptotic behavior of a delay dynamic equation

having the following form:

[
x(t) +A(t)x

(
α(t)

)]� + B(t)F
(
x
(
β(t)

))
–C(t)G

(
x
(
γ (t)

))
= ϕ(t) for t ∈ [t,∞)T ,

where T is a time scale unbounded from above, F ,G ∈ Crd(R,R), A,ϕ ∈ Crd( [t,∞)T ,R),
B,C ∈ Crd( [t,∞)T , [,∞)R), and α, β and γ are delay functions. The authors also ex-
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tended their results to the equation of the form

[
x(t) +A(t)x

(
α(t)

)]� + B(t)F
(
x
(
β(t)

))
= ϕ(t) for t ∈ [t,∞)T ,

where B ∈ Crd( [t,∞)T ,R) is allowed to oscillate.
In [], Karpuz et al. discussed the neutral delay dynamic equation

[
x(t) +A(t)x

(
α(t)

)]� + B(t)F
(
x
(
β(t)

))
–C(t)F

(
x
(
γ (t)

))
= ϕ(t) for t ∈ [t,∞)T ,

where supT = ∞, A ∈ Crd( [t,∞)T ,R), B,C ∈ Crd( [t,∞)T , (,∞)R), F ∈ Crd(R,R), and
α,β ,γ ∈ Crd( [t,∞)T ,T) are strictly increasing and unbounded functions. The authors
weakened the assumptions on the coefficients that are assumed to hold in the literature
and improved some known results by providing necessary and sufficient conditions for the
solutions of the equation to oscillate or to converge to zero. The coefficient associatedwith
the neutral part was considered in three distinct ranges, in one of which the coefficient is
allowed to oscillate.
Karpuz et al. [] obtained some necessary and sufficient conditions for every solution

of the higher-order neutral functional differential equation

(
y(t) – p(t)y

(
r(t)

))(n) + q(t)G
(
y
(
g(t)

))
– u(t)H

(
y
(
h(t)

))
= f (t)

to oscillate or to tend to zero as t tends to infinity, where n ≥  is an integer, q >  and
u≥ . Both bounded and unbounded solutions were considered in this paper.
For some recent other results on the oscillation, nonoscillation and asymptotic behavior

of solutions of different types of dynamic equations, we refer the reader to the papers [–
] and the references cited therein.
The results in [–, –] are very valuable. But these results also have some disadvan-

tages. For example, the oscillation criteria of Došlý and Hilger [] are unsatisfactory since
additional assumptions have to be imposed on the unknown solutions.
The results of Zhang and Zhu [] are valid only when the graininess function μ(t) is

bounded, which is a restrictive condition (e.g., the results cannot be applied to T = qN :=
{qk : k ∈N,q > }, where μ(t) = (q – )t is unbounded; see []).
For (), Şahiner proved that if there exists a delta differentiable function ϕ such that for

some positive constant k ∈ (, ),

lim sup
t→∞

∫ t

t

[
p(s)ϕσ (s)

ξ (s)
σ (s)

–
σ (s)(ϕ�(s))

Lkξ (s)ϕσ (s)

]
�s = ∞, ()

then every solution of () oscillates. We observe that the condition () depends on an
additional constant k ∈ (, ), which implies that the results are not sharp. As a special case
(take ϕ(s) = s), he deduced that if

lim sup
t→∞

∫ t

t

[
p(s)ξ (s) –


Lkξ (s)

]
�s = ∞, ()
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then every solution of () oscillates. However, Erbe et al. [] showed that the dynamic
equation

x��(t) +
β

tξ (t)
x
(
ξ (t)

)
= 

is oscillatory if β > 
 , but () does not give this result.

The restriction f ′(x) >  for x �=  is required in []. This condition does not hold and
cannot be applied in the case when f (x) = x(  +


+x ), since f

′(x) = (x–)(x–)
(+x) changes sign

four times.
The results in [, ] cannot be applied to higher-order delay dynamic equations with

positive and negative coefficients. The results in [] fail to be applied to general time
scales.
Besides the above-mentioned disadvantages, it is clear that ()-() are some special

cases of (), and that the results in [–, –] cannot be applied to general cases of ().
Therefore, it is of great interest to investigate the oscillation of (). To the best of our knowl-
edge, nothing is known regarding the oscillatory behavior of () on time scales up to now.
Following the trend shown in [–, –], in this paper we deal with the oscillation of ().
We obtain some oscillation criteria for () by developing a generalized Riccati substitution
technique. Our results are essentially new and extend and improve some results in [–,
–]. We also illustrate our main results with several examples.
In what follows, for convenience, whenwewrite a functional inequality or equality with-

out specifying its domain of validity, we assume that it holds for all sufficiently large t.

2 Lemmas
Lemma . (Substitution [, Theorem .]) Assume that η : T → R is strictly increasing
and that T̃ := η(T) := {η(t) : t ∈ T} is a time scale. If f : T→R is an rd-continuous function,
η is differentiable with rd-continuous derivative, and a,b ∈ T, then∫ b

a
f (t)η�(t)�t =

∫ η(b)

η(a)

(
f ◦ η–)(s)�̃s,

where η– is the inverse function of η and �̃ denotes the derivative on T̃.

Lemma . (Existence of antiderivatives [, Theorem .]) Every rd-continuous function
has an antiderivative. In particular if t ∈ T, then F defined by

F(t) :=
∫ t

t
f (τ )�τ for t ∈ T

is an antiderivative of f .

Lemma . (Chain rule [, Theorem .]) Assume that ϑ : T → R is strictly increasing
and that T̃ := ϑ(T) := {ϑ(t) : t ∈ T} is a time scale. Let ϕ : T̃ → R. If ϑ�(t) and ϕ�̃(ϑ(t))
exist for t ∈ Tκ , then

(ϕ ◦ ϑ)� =
(
ϕ�̃ ◦ ϑ

)
ϑ�,

where �̃ denotes the derivative on T̃.
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3 Main results
Theorem . Assume that (C)-(C) hold. Furthermore, suppose that there exists a posi-
tive function a ∈ C

rd( [t,∞)T ,R) such that for every sufficiently large T ,

lim sup
t→∞

∫ t

T

{
a(s)

[
Lp(s) – Lq

(
v(s)

)
v�(s)

]
–
(a�

+ (s))r(ξ (s))
a(s)ξ�(s)

}
�s = ∞, ()

where a�
+ (s) :=max{a�(s), }. Then every solution of () is oscillatory.

Proof Suppose that x is a nonoscillatory solution of ().Without loss of generality, wemay
assume that x is an eventually positive solution of (). For every sufficiently large t ∈ T,
define the function z by

z(t) := x(t) +
∫ ∞

t

[

r(s)

∫ s

v(s)
q(u)h

(
x
(
δ(u)

))
�u

]
�s, ()

where v is defined as in (C). From (C) and the boundedness of h, we see that z(t) is well
defined for every sufficiently large t ∈ T. It follows from () that

z(t) ≥ x(t) >  ()

and

z�(t) = x�(t) –

r(t)

∫ t

v(t)
q(u)h

(
x
(
δ(u)

))
�u. ()

Therefore, there exists a sufficiently large t ∈ [t,∞)T such that for t ∈ [t,∞)T,

r(t)z�(t) = r(t)x�(t) –
∫ t

v(t)
q(u)h

(
x
(
δ(u)

))
�u

= r(t)x�(t) –
∫ t

v(t)
q(u)h

(
x
(
δ(u)

))
�u +

∫ v(t)

v(t)
q(u)h

(
x
(
δ(u)

))
�u. ()

Making the substitution s = v(u), from Lemma . and (C), we have

∫ t

t
q
(
v(u)

)
h
(
x
(
ξ (u)

))
v�(u)�u =

∫ v(t)

v(t)
q(s)h

(
x
(
ξ
(
v–(s)

)))
�̃s

=
∫ v(t)

v(t)
q(s)h

(
x
(
δ(s)

))
�̃s for t ∈ [t,∞)T , ()

where v– is the inverse function of v. According to the condition v( [t,∞)T) = [v(t),∞)T
in (C), we get that the derivative � on T is equal to the derivative �̃ on T̃ := v( [t,∞)T)
in (). Hence, from () we conclude

∫ t

t
q
(
v(u)

)
h
(
x
(
ξ (u)

))
v�(u)�u =

∫ v(t)

v(t)
q(s)h

(
x
(
δ(s)

))
�s for t ∈ [t,∞)T . ()
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From () and (), it follows that for t ∈ [t,∞)T,

r(t)z�(t) = r(t)x�(t) –
∫ t

v(t)
q(u)h

(
x
(
δ(u)

))
�u

+
∫ t

t
q
(
v(u)

)
h
(
x
(
ξ (u)

))
v�(u)�u. ()

By Lemma . and (), we obtain for t ∈ [t,∞)T,

[
r(t)z�(t)

]� =
[
r(t)x�(t)

]� – q(t)h
(
x
(
δ(t)

))
+ q

(
v(t)

)
h
(
x
(
ξ (t)

))
v�(t). ()

From () and (), it follows that

[
r(t)z�(t)

]� = –p(t)f
(
x
(
ξ (t)

))
+ q

(
v(t)

)
h
(
x
(
ξ (t)

))
v�(t). ()

Hence, from (C), (C) and (), we conclude

[
r(t)z�(t)

]� ≤ –p(t)Lx
(
ξ (t)

)
+ q

(
v(t)

)
Lx

(
ξ (t)

)
v�(t)

:= –Q(t)x
(
ξ (t)

)
()

< ,

where Q(t) := Lp(t) – Lq(v(t))v�(t). Thus, there exists t ∈ [t,∞)T such that r(t)z�(t)
is strictly decreasing on [t,∞)T and is either eventually positive or eventually negative.
Since r(t) >  for t ∈ [t,∞)T, z�(t) is also either eventually positive or eventually negative.
We claim

z�(t) >  for t ∈ [t,∞)T . ()

Assume that () does not hold, then there exists t ∈ [t,∞)T such that z�(t) < . Since
r(t)z�(t) is strictly decreasing on [t,∞)T, it is clear that r(t)z�(t) ≤ r(t)z�(t) := –c < 
for t ∈ [t,∞)T. Thus, we obtain z�(t) ≤ –c 

r(t) for t ∈ [t,∞)T. By integrating both sides
of the last inequality from t to t, we get

z(t) – z(t) ≤ –c
∫ t

t


r(s)

�s for t ∈ [t,∞)T .

Noticing (C) and letting t → ∞, we see limt→∞ z(t) = –∞. This contradicts (). There-
fore, () holds. From () and (), we have

x�(t) ≥ z�(t) > . ()

Define the function w by the generalized Riccati substitution

w(t) := a(t)
r(t)z�(t)
x(ξ (t))

. ()
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It is easy to see that there exists t ∈ [t,∞)T such that w(t) >  for t ∈ [t,∞)T. Using ()
and (), from () we get

w� =
(
rz�

)� a
x ◦ ξ

+
(
rz�

)σ

(
a

x ◦ ξ

)�

=
(
rz�

)� a
x ◦ ξ

+
(
rz�

)σ

[
a�

(x ◦ ξ )σ
–

(x ◦ ξ )�a
(x ◦ ξ )(x ◦ ξ )σ

]
≤ (

rz�
)� a

x ◦ ξ
+ a�

+
wσ

aσ
– a

wσ

aσ

(x ◦ ξ )�

x ◦ ξ
, ()

where a�
+ is defined as in Theorem .. From () and () we have

w� ≤ –Qa + a�
+
wσ

aσ
– a

wσ

aσ

(x ◦ ξ )�

x ◦ ξ
. ()

From (C) and Lemma ., we find

(x ◦ ξ )� =
(
x�̃ ◦ ξ

)
ξ�. ()

According to the condition ξ ( [t,∞)T) = [ξ (t),∞)T in (C), we see that the derivative �

on T is equal to the derivative �̃ on T̃ := ξ ( [t,∞)T) in (). Thus, from () we have

(x ◦ ξ )� =
(
x� ◦ ξ

)
ξ�. ()

Hence, from () and () we obtain

w� ≤ –Qa + a�
+
wσ

aσ
– a

wσ

aσ

(x� ◦ ξ )ξ�

x ◦ ξ
. ()

It follows from () that x� ◦ ξ ≥ z� ◦ ξ > . Thus, from () we find

w� ≤ –Qa + a�
+
wσ

aσ
– a

wσ

aσ

(z� ◦ ξ )ξ�

x ◦ ξ
. ()

Since r(t)z�(t) is strictly decreasing on [t,∞)T and ξ (t) ≤ t ≤ σ (t), we get (r ◦ ξ )(z� ◦
ξ ) ≥ (rz�)σ and z� ◦ ξ ≥ (rz�)σ /(r ◦ ξ ) > . Therefore, from () and then from () we
conclude

w� ≤ –Qa + a�
+
wσ

aσ
– a

wσ

aσ

(rz�)σ

(r ◦ ξ )
ξ�

(x ◦ ξ )

= –Qa + a�
+
wσ

aσ
–
aξ�

r ◦ ξ

(
wσ

aσ

) (x ◦ ξ )σ

x ◦ ξ
. ()

From (C) we see that ξ (t) is strictly increasing on [t,∞)T. Since t ≤ σ (t), we have
ξ (t) ≤ ξσ (t). In view of (), we obtain (x ◦ ξσ )(t) ≥ (x ◦ ξ )(t) > . Hence, from () there
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exists a sufficiently large t ∈ [t,∞)T such that

w� ≤ –Qa + a�
+
wσ

aσ
–
aξ�

r ◦ ξ

(
wσ

aσ

)

= –Qa +
(a�

+ )(r ◦ ξ )
aξ�

–
[
a�
+


√
r ◦ ξ

aξ�
–

√
aξ�

(r ◦ ξ )
wσ

aσ

]

≤ –Qa +
(a�

+ )(r ◦ ξ )
aξ�

on [t,∞)T . ()

Integrating both sides of the last inequality from t to t, we obtain

w(t) –w(t) ≤ –
∫ t

t

[
a(s)Q(s) –

(a�
+ (s))r(ξ (s))
a(s)ξ�(s)

]
�s for t ∈ [t,∞)T .

Since w(t) >  for t ∈ [t,∞)T, we have∫ t

t

[
a(s)Q(s) –

(a�
+ (s))r(ξ (s))
a(s)ξ�(s)

]
�s≤ w(t) –w(t) < w(t) for t ∈ [t,∞)T .

Therefore, we conclude

lim sup
t→∞

∫ t

t

[
a(s)Q(s) –

(a�
+ (s))r(ξ (s))
a(s)ξ�(s)

]
�s ≤ w(t) < ∞,

which contradicts (). Thus, the proof is complete. �

Theorem . Assume that (C)-(C) hold. Furthermore, suppose that there exists a posi-
tive function a ∈ C

rd( [t,∞)T ,R) such that for every sufficiently large T ,

lim sup
t→∞

∫ t

T

{
a(s)

[
Lp(s) – Lq

(
v(s)

)
v�(s)

]
– εa�

+ (s)
}
�s = ∞, ()

where ε >  is an arbitrary constant and a�
+ (s) := max{a�(s), }. Then all the solutions of

() are oscillatory.

Proof Assume that x is a nonoscillatory solution of (). Without loss of generality, we may
assume that x is an eventually positive solution of (). Proceeding as in the proof of The-
orem ., we obtain (). It follows from () that

w� ≤ –Qa + εa�
+ on [t,∞)T , ()

where ε := wσ /aσ > . Integrating both sides of () from t to t, we have

w(t) –w(t) ≤ –
∫ t

t

[
a(s)Q(s) – εa�

+ (s)
]
�s for t ∈ [t,∞)T . ()

In view of the fact that w(t) >  for t ∈ [t,∞)T, we get∫ t

t

[
a(s)Q(s) – εa�

+ (s)
]
�s ≤ w(t) –w(t) < w(t) for t ∈ [t,∞)T .

http://www.advancesindifferenceequations.com/content/2013/1/168
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Thus, we find lim supt→∞
∫ t
t
[a(s)Q(s) – εa�

+ (s)]�s ≤ w(t) < ∞, which contradicts ().
Hence, the proof is complete. �

Theorem . Assume that (C)-(C) hold and that there exist a positive function a ∈
C
rd( [t,∞)T ,R) and functions G, g ∈ Crd(D,R), where D := {(t, s) ∈ T × T : t ≥ s ≥ t},

such that

G(t, t) =  for t ≥ t and G(t, s) >  for (t, s) ∈ D,

where D := {(t, s) ∈ T×T : t > s ≥ t}. Furthermore, suppose that G has an rd-continuous
delta partial derivative G�s (t, s) on D with respect to the second variable and satisfies

G�s (t, s) +G(t, s)
a�
+ (s)
aσ (s)

=
g(t, s)
aσ (s)

√
G(t, s) for (t, s) ∈D ()

and

lim sup
t→∞


G(t,T)

∫ t

T

{
G(t, s)a(s)

[
Lp(s) – Lq

(
v(s)

)
v�(s)

]
–
[g+(t, s)]r(ξ (s))

a(s)ξ�(s)

}
�s = ∞ ()

for every sufficiently large T , where a�
+ (s) := max{a�(s), } and g+(t, s) := max{g(t, s), }.

Then all the solutions of () are oscillatory.

Proof Assume that x is a nonoscillatory solution of (). Without loss of generality, assume
that x is an eventually positive solution of (). Proceeding as in the proof of Theorem .,
we have (). Multiplying () by G(t, s) and then integrating from t to t, we obtain∫ t

t
G(t, s)Q(s)a(s)�s≤ –

∫ t

t
G(t, s)w�(s)�s +

∫ t

t
G(t, s)

a�
+ (s)
aσ (s)

wσ (s)�s

–
∫ t

t
G(t, s)�(s)

[
wσ (s)

]
�s, ()

where �(s) := a(s)ξ�(s)
r(ξ (s))[aσ (s)] . Making use of the formula (), we conclude

–
∫ t

t
G(t, s)w�(s)�s =

[
–G(t, s)w(s)

]s=t
s=t

+
∫ t

t
G�s (t, s)wσ (s)�s

=G(t, t)w(t) +
∫ t

t
G�s (t, s)wσ (s)�s. ()

From () and (), we have∫ t

t
G(t, s)a(s)Q(s)�s

≤ G(t, t)w(t)

+
∫ t

t

{[
G�s (t, s) +G(t, s)

a�
+ (s)
aσ (s)

]
wσ (s) –G(t, s)�(s)

[
wσ (s)

]}
�s. ()

http://www.advancesindifferenceequations.com/content/2013/1/168
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Using () in (), we get

∫ t

t
G(t, s)a(s)Q(s)�s

≤ G(t, t)w(t) +
∫ t

t

{
g(t, s)
aσ (s)

√
G(t, s)wσ (s) –G(t, s)�(s)

[
wσ (s)

]}
�s

≤ G(t, t)w(t) +
∫ t

t

{
g+(t, s)
aσ (s)

√
G(t, s)wσ (s) –G(t, s)�(s)

[
wσ (s)

]}
�s

=G(t, t)w(t) +
∫ t

t

{
[g+(t, s)]

[aσ (s)]�(s)
–

[
g+(t, s)

aσ (s)
√

�(s)
–

√
G(t, s)�(s)wσ (s)

]}
�s

≤ G(t, t)w(t) +
∫ t

t

[g+(t, s)]

[aσ (s)]�(s)
�s

=G(t, t)w(t) +
∫ t

t

[g+(t, s)]r(ξ (s))
a(s)ξ�(s)

�s, ()

where g+(t, s) is defined as in Theorem .. Hence, it follows from () that


G(t, t)

∫ t

t

{
G(t, s)a(s)Q(s) –

[g+(t, s)]r(ξ (s))
a(s)ξ�(s)

}
�s≤ w(t)

and

lim sup
t→∞


G(t, t)

∫ t

t

{
G(t, s)a(s)Q(s) –

[g+(t, s)]r(ξ (s))
a(s)ξ�(s)

}
�s ≤ w(t) < ∞,

which contradicts (). Therefore, this completes the proof. �

Remark . The results in this paper are of higher degree of generality. From Theo-
rems .-., we can obtain many different sufficient conditions for the oscillation of ()
with different choices of the functions a, G and g . For instance, let a(s) = , then we derive
the following result from Theorem . or Theorem ..

Corollary . Assume that (C)-(C) and the following condition hold:

∫ ∞

T

[
Lp(s) – Lq

(
v(s)

)
v�(s)

]
�s = ∞ ()

for every sufficiently large T . Then all the solutions of () are oscillatory.

Let a(s) = s, then from Theorem . we have the following corollary.

Corollary . Assume that (C)-(C) and the following condition hold:

lim sup
t→∞

∫ t

T

{
s
[
Lp(s) – Lq

(
v(s)

)
v�(s)

]
–

r(ξ (s))
sξ�(s)

}
�s = ∞ ()

for every sufficiently large T . Then every solution of () is oscillatory.
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Let G(t, s) = (t – s)m for (t, s) ∈ D, where m ≥  is a constant, then G�s (t, s) ≤ –m(t –
σ (s))m– ≤  for (t, s) ∈ D (see Remark . in []). Take a(s) =  and let g ∈ Crd(D,R)
satisfy (), then g(t, s) ≤  and g+(t, s) =  for (t, s) ∈ D. In this case, Theorem . implies
the following result.

Corollary . Suppose that (C)-(C) hold and that there exists a constant m ≥  such
that for every sufficiently large T ,

lim
t→∞


tm

∫ t

T
(t – s)m

[
Lp(s) – Lq

(
v(s)

)
v�(s)

]
�s = ∞. ()

Then all the solutions of () are oscillatory.

4 Examples
Example . Consider the second-order nonlinear dynamic equation

[
tx�(t)

]� +

t
x(t – ck)

[
 + x(t – ck)

]
–


tσ (t)

x(t – ck)
 + x(t – ck)

=  for t ∈ [t,∞)T , ()

where c >  is a constant, k, k are positive integers, k > k, T = cZ := {ck : k ∈ Z}, σ is
the forward jump operator on T, and t ∈ T satisfies t > c(k – k) and [t – c(k – k)] +
c[t – c(k – k)] – t >  for t ∈ [t,∞)T.
In (), r(t) = t, p(t) = 

t , q(t) =


tσ (t) =


t(t+c) , ξ (t) = t – ck, δ(t) = t – ck, f (u) = u( + u)
and h(u) = u/( +u). Hence, we have

∫ ∞
t


r(t)�t =

∫ ∞
t


t�t = ∞, v(t) = t – c(k – k) < t for

t ∈ T, f (u)/u >  := L and  < h(u)/u <  := L for u �= , |h(u)| ≤  :=M on R,

Lp(t) – Lq
(
v(t)

)
v�(t) =


t
–


[t – c(k – k)][t – c(k – k) + c]

=
[t – c(k – k)] + c[t – c(k – k)] – t

t[t – c(k – k)][t – c(k – k) + c]

>  for t ∈ [t,∞)T

and ∫ ∞

t

[

r(s)

∫ s

v(s)
q(u)�u

]
�s

=
∫ ∞

t

[

s

∫ s

s–c(k–k)


uσ (u)

�u
]
�s

=
∫ ∞

t

[

s

∫ s

s–c(k–k)

(
–

u

)�

�u
]
�s =

∫ ∞

t

[

s

(
–

u

)∣∣∣∣s
s–c(k–k)

]
�s

=
∫ ∞

t

[

s

(
–

s
+


s – c(k – k)

)]
�s =

∫ ∞

t

c(k – k)
s[s – c(k – k)]

�s

< ∞ for every t ∈ [t,∞)T .
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Thus, it is easy to see that (C)-(C) hold. To apply Corollary ., it remains to satisfy the
condition (). For every sufficiently large T , since∫ ∞

T
Lp(s)�s =

∫ ∞

T


s
�s = ∞,∫ ∞

T
Lq

(
v(s)

)
v�(s)�s =

∫ ∞

T


[s – c(k – k)][s – c(k – k) + c]

�s < ∞,

we get
∫ ∞
T [Lp(s) – Lq(v(s))v�(s)]�s = ∞, which implies that () holds. Therefore, by

Corollary . every solution of () is oscillatory.

Example . Consider the second-order nonlinear dynamic equation

[
√
t
x�(t)

]�

+

t
x
(
q– t

)[
q( + q) + x

(
q– t

)]
–
t + σ (t)
tσ (t)

qx(qt)
 + x(qt)

=  ()

for t ∈ [t,∞)T, where q >  is a constant, T = {qk : k ∈ Z} ∪ {}, σ is the forward jump
operator on T, t ∈ T and t > .
In (), r(t) = √

t , p(t) =

t , q(t) =

t+σ (t)
tσ(t) , ξ (t) = q– t, δ(t) = qt, f (u) = u[q( + q) + u]

and h(u) = qu/( + u). Therefore, we obtain
∫ ∞
t


r(t)�t =

∫ ∞
t

√
t�t = ∞, v(t) = q– t < t

for t ∈ [t,∞)T, f (u)/u > q( + q) := L and  < h(u)/u < q := L for u �= , |h(u)| ≤
(/q)/ :=M on R,

Lp(t) – Lq
(
v(t)

)
v�(t) =

q( + q)
t

– q
q– t + q– t

(q– t)(q– t)
q– = q( + q)

(

t

–

t

)
> 

for t ∈ [t,∞)T, and∫ ∞

t

[

r(s)

∫ s

v(s)
q(u)�u

]
�s

=
∫ ∞

t

[√
s
∫ s

q– s

u + σ (u)
uσ (u)

�u
]
�s

=
∫ ∞

t

[√
s
∫ s

q– s

(
–

u

)�

�u
]
�s =

∫ ∞

t

[√
s
(
–


u

)∣∣∣∣s
q– s

]
�s

=
∫ ∞

t

[√
s
(
–

s

+


q– s

)]
�s =

∫ ∞

t

q – 
s/

�s

< ∞ for every t ∈ [t,∞)T .

Then one can find that (C)-(C) hold.Wewill apply Corollary . and it remains to satisfy
the condition (). For every sufficiently large T , since

∫ ∞

T
sLp(s)�s =

∫ ∞

T

q( + q)
s

�s = ∞,∫ ∞

T
sLq

(
v(s)

)
v�(s)�s =

∫ ∞

T
s
q( + q)

s
�s =

∫ ∞

T

q( + q)
s

�s < ∞,∫ ∞

T

r(ξ (s))
sξ�(s)

�s =
∫ ∞

T


q–/ s/

�s < ∞,
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we conclude

lim sup
t→∞

∫ t

T

{
s
[
Lp(s) – Lq

(
v(s)

)
v�(s)

]
–

r(ξ (s))
sξ�(s)

}
�s = ∞,

which yields that () holds. Hence, by Corollary . every solution of () is oscillatory.

Remark . In Example ., we have∫ ∞

t

[
Lp(s) – Lq

(
v(s)

)
v�(s)

]
�s =

∫ ∞

t
q( + q)

(

s

–

s

)
�s < ∞,

which implies that () does not hold. Therefore, Corollary . cannot be applied to ().

Example . Consider the second-order nonlinear differential equation

[
t/x′(t)

]′ +

t
x
(
t/ – 

)[
 + sin x

(
t/ – 

)]
–

t

x(t – )
 + x(t – )

=  for t ∈ [,∞). ()

In (), T = R, t = , r(t) = t/, p(t) = 
t , q(t) =


t , ξ (t) = t/ – , δ(t) = t – , f (u) =

u(+ sin u) and h(u) = u/(+u). Thus, we get
∫ ∞
t


r(t) dt =

∫ ∞
t

t–/ dt = ∞, v(t) = t/ < t
for t ∈ [,∞), f (u)/u≥  := L and  < h(u)/u <  := L for u �= , |h(u)| ≤  :=M on R,

Lp(t) – Lq
(
v(t)

)
v�(t) =


t
–


t

=
(t – )

t
>  for t ∈ [,∞)

and ∫ ∞

t

[

r(s)

∫ s

v(s)
q(u)du

]
ds =

∫ ∞

t

(
s–/

∫ s

s/


u

du
)
ds

=
∫ ∞

t




(

s/

–


s/

)
ds < ∞ for every t ∈ [,∞).

Hence, we see that (C)-(C) hold. In order to apply Corollary ., it remains to satisfy the
condition (). Takem = . For every sufficiently large T , since

lim
t→∞


tm

∫ t

T
(t – s)m

[
Lp(s) – Lq

(
v(s)

)
v�(s)

]
ds

= lim
t→∞


t

∫ t

T
(t – s)

(

s
–


s

)
ds

= lim
t→∞

[
(ln t – lnT) + 

(

t

–

T

)
–
(t – T)

t
–

t

(

t
–


T

)]
= ∞,

we find that () holds. Thus, by Corollary . every solution of () is oscillatory.
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