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Abstract
In this paper, we build an economic model of a non-linear system of difference
equations and present a qualitative study for the obtained model, where a
mathematical model of a bounded rationality multiple game with an exponential
demand function will be introduced, and then we obtain the equilibrium points of
the model and classify if they are locally stable or not. Also, we investigate the
boundedness and global convergence of solutions for the obtained system.
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1 Introduction
In the recent years, the study of the bounded rationality duopoly game has attracted a
very high attention. In  Bischi and Naimzada [] introduced the bounded rationality
duopoly game as a modification of the original model work of Cournot [], where they
proposed the duopoly game which describes a market with two players producing homo-
geneous goods, updating their production strategies in order to maximize their profits.
Each player thinks with bounded rationality, adjusts his output according to the expected
marginal profit, therefore the decision of each player depends on local information about
his output. Also, they have studied the bounded rationality duopoly game with a simple
case when the demand function and the cost function are linear []. Recently, many works
of bounded rationality duopoly game have been studied [, –]. Agiza et al. [] studied
the complex dynamics in a bounded rationality duopoly game with a nonlinear demand
function and a linear cost function. The asymptotic behavior of the economic model was
investigated by El-Metwally [].
Themain aim for this paper is to analyze the dynamics of a nonlinear discrete-timemap

generated by a bounded rationality duopoly game with an exponential demand function.
In Section  we present and describe a bounded rationality duopoly game with an expo-
nential demand function. The existence of the equilibrium points of the obtained model
and the studying of their local stability are given in Section . The boundedness of the so-
lutions is studied in Section . Finally, Section  is concerned with the global attractivity
of the solutions for the obtained system.
Now consider the following first-order system of difference equations:

xn+ = f (xn, yn),
yn+ = g(xn, yn),

}
n = , , , . . . , (∗)

where f and g are continuous functions on a subset S ⊂ R.
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Definition System (∗) is competitive if f (x; y) is non-decreasing in x and non-increasing
in y, and g(x; y) is non-increasing in x and non-decreasing in y. If both f and g are non-
decreasing in x and y, System (∗) is cooperative. Competitive and cooperative maps are
defined similarly. Strongly competitive systems of difference equations or strongly compet-
itivemaps are those forwhich the functions f and g are coordinate-wise strictlymonotone.

Theorem A [] Let T = (f , g) be a monotone map on a closed and bounded rectangular
region S ⊂ R. Suppose that T has a unique fixed point E = (x, y) in S. Then E is a global
attractor of T on S.

2 Themodel
We consider a Cournot duopoly game with qi denoting the quantity supplied by firm i =
, . In addition, let P(qi+qj), i �= j, denote a twice differentiable and non-increasing inverse
demand function and let Ci(qi) denote the twice differentiable increasing cost function.
For the firm i, the profit resulting from the above Cournot game is given by

�i = P(qi + qj)qi –Ci(qi). ()

Since the information in the oligopoly market is incomplete, the bounded rational players
have no complete knowledge of the market, hence they make their output decisions on
a local estimate of the expected marginal profit ∂�i

∂qi
[]. If the marginal profit is positive

(negative), it increases (decreases) its production qi at the next period output. Therefore
the dynamical equation of the bounded rationality player i has the form

qi(t + ) = qi(t) + νiqi(t)
∂�i

∂qi(t)
, i = , , ()

where νi is a positive parameter which represents the relative speed of adjustment. Bischi
andNaimazada studied the dynamical behavior of the boundedduopoly gamewith a linear
demand function [].
To make the bounded rationality duopoly game more realistic, we assume that the de-

mand function f (Q) has the exponential form (see [])

f (Q) = ae–Q = ae–(q+q), ()

where a is a parameter ofmaximumprice in themarket. The exponential demand function
has the good properties of non-zero or non-negative prices and finite prices when the total
quantity in themarketQ tends to zero. So, we think that the exponential demand function
is a good alternative to the linear demand function and makes the game more realistic.
Also, we consider the cost function is linear and is given by

ci(qi) = ciqi, i = , , ()

where ci is the marginal cost of the ith firm. Thus the profit of the ith firm is given by

�i(q,q) = aqie–(q+q) – ciqi. ()

http://www.advancesindifferenceequations.com/content/2013/1/169
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Then marginal profit of ith firm is

∂�i

∂qi(t)
= a( – qi)e–(q+q) – ci, i = , . ()

Thus the repeated duopoly game of bounded rationality by using Eq. () is given by

qi(t + ) = qi(t) + νiqi
(
a( – qi)e–(q+q) – ci

)
. ()

Therefore the discrete two-dimensional map of the game has the form

T :

{
q(t + ) = q(t) + νq(a( – q)e–(q+q) – c),
q(t + ) = q(t) + νq(a( – q)e–(q+q) – c).

()

Now we can rewrite this system in the following form:

{
xn+ = ( – α)xn + β( – xn)xne–(xn+yn),
yn+ = ( – α)yn + β( – yn)yne–(xn+yn),

()

where xn = q(t), yn = q(t), αi = νici ∈ (,∞), and βi = νia ∈ (,∞), i = , .

3 Local stability of the equilibrium points
In this section, we examine the existence of non-negative equilibrium points of System ()
and then give a powerful criterion for the asymptotic stability of the obtained points.

Proposition  () When α ≥ β and α ≥ β, System () has a unique equilibrium point
E = (, ).
() When α < β and α < β, System () has two equilibrium points E = (x∗, )and

E = (, y∗), where x∗ and y∗ satisfy α = β( – x∗)e–x∗ and α = β( – y∗)e–y∗ , respectively.

()When α < βe
αβ
αβ

–, System () has a unique positive equilibrium point E = (u∗, v∗),
where u∗ satisfies α = ρ( – u∗)e–γu∗ , v∗ = αβ

αβ
u∗ – αβ

αβ
+ , γ =  + αβ

αβ
and ρ = βeγ–.

Proof Observe that the equilibrium points of System () are given by the relations

x = ( – α)x + βx( – x)e–(x+y) and y = ( – α)y + βy( – y)e–(x+y).

Therefore

x = , α = β( – x)e–(x+y), y =  and α = β( – y)e–(x+y). ()

First, set g(z) = α – β( – z)e–z . Then

g() = α – β, lim
z→∞ g(z) = α and g ′(z) = β( – z)e–z.

Therefore z =  is the unique critical point of g and g() is the absolute maximum of g on
(,∞). Now we consider the following two cases.

http://www.advancesindifferenceequations.com/content/2013/1/169
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() If α ≥ β, then g(z) ≥  for all z >  and so g(z) has no positive roots. Similarly, it is
easy to show that the function w(z) = α – β( – z)e–z has no positive roots
provided that α ≥ β. Thus System () has the unique equilibrium point (, ).

() If α < β, then g() <  and since g ′(z) >  for all z ∈ (, ), g(z) has a unique positive
root. Since g() = α > , the positive root of g(z) lies in (, ). So, the equation
α = β( – x∗)e–x∗ has a unique solution x∗ ∈ (, ). Similarly, it is easy to show that
the equation α = β( – y∗)e–y∗ has a unique solution y∗ ∈ (, ) provided that
α < β. Therefore System () has the equilibrium points (x∗, ) and (, y∗) where x∗

and y∗ satisfy α = β( – x∗)e–x∗ and α = β( – y∗)e–y∗ , respectively.
Second, assume that (u∗, v∗) is a solution of System () with u∗ >  and v∗ > . It follows

from () that u∗ and v∗ have to be less than one and

eu
∗+v∗ =

β

α

(
 – u∗) = β

α

(
 – v∗),

which gives that v∗ = σu∗–σ +, where σ = αβ
αβ

. Now set h(μ) = α –ρ(–μ)e–γμ, where
σ =  + αβ

αβ
and ρ = βeσ–. Similarly to above, one can easily see that h has no positive

roots if α ≥ ρ and it has a unique positive root which lies in (, ) whenever α < ρ.
Therefore System () has the unique positive equilibrium point (u∗, v∗) where u∗ satisfies
α = ρ( – u∗)e–σu∗ and v∗ = αβ

αβ
u∗ – αβ

αβ
+ . �

Recall that E, E and E are called boundary equilibrium points of System () and E is
called a Nash equilibrium point of System (). See [].
In the following, we deal with the local stability of the equilibrium points of System ().

Now rewrite System () as follows:

xn+ = F(xn, yn) = ( – α)xn + βxn( – xn)e–(xn+yn),
yn+ =G(xn, yn) = ( – α)yn + βyn( – yn)e–(xn+yn),

}
()

where F(x, y) = ( – α)x + βx( – x)e–(x+y) and G(x, y) = ( – α)y + βy( – y)e–(x+y) are
continuous functions. Then we obtain

∂F(x,y)
∂x =  – α + β(x – x + )e–(x+y),

∂F(x,y)
∂y = –βx( – x)e–(x+y),

∂G(x,y)
∂x = –βy( – y)e–(x+y),

∂G(x,y)
∂y =  – α + β(y – y + )e–(x+y).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

()

Proposition  The equilibrium point E of System () is locally asymptotically stable if
βi < αi <  + βi for i = ,  and it is unstable elsewhere.

Proof The Jacobianmatrix of System () about the equilibrium point E(, ) has the form

J(E) =

[
 – α + β 

  – α + β

]
.

Therefore the eigenvalues of J(E) are given by

λ =  – α + β and λ =  – α + β.

http://www.advancesindifferenceequations.com/content/2013/1/169
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It is well known that the equilibrium point E of System () is locally asymptotically stable
if both |λ| <  and |λ| <  are satisfied if β < α <  + β and β < α <  + β. The proof is
completed. �

Proposition  The equilibrium points E and E of System () are saddle points.

Proof The Jacobianmatrix of System () about the equilibriumpointE(x∗, ) has the form

J(E) =

[
 – α + β(x∗ – x∗ + )e–x∗ –βx∗( – x)e–x∗

  – α + βe–x
∗

]
.

Thus J(E) has the eigenvalues

λ =  – α + β
(
x∗ – x∗ + 

)
e–x

∗
and λ =  – α + βe–x

∗
.

Note that

λ =  – α + β
(
x∗ – x∗ + 

)
e–x

∗
<  – βx∗( – x∗)e–x∗

< 

and

λ =  – α +
α

 – x∗ =  +
αx∗

 – x∗ > .

Thus it follows that the equilibriumpoint E(x∗, ) of System () is a saddle point. Similarly,
one can easily prove that the equilibrium point E(, y∗) of System () is also a saddle
point. �

Proposition  The Nash equilibrium point E of System () is asymptotically stable if
 < αu∗(–u∗)

–u∗ + αv∗(–v∗)
–v∗ <  + ααu∗v∗(–u–v)

(–u∗)(–v∗) and it is unstable elsewhere.

Proof The Jacobian matrix of System () about the equilibrium point E(u∗, v∗) is

J(E) =

[
 – α + α(u∗–u∗+)

–u∗ –αu∗

–αv∗  – α + α(v∗–v∗+)
–v∗

]

=

[
 – αu∗(–u∗)

–u∗ –αu∗

–αv∗  – αv∗(–v∗)
–v∗

]
.

By some simple computations, we obtain that

Tr
(
J(E)

)
=  –

αu∗( – u∗)
 – u∗ –

αv∗( – v∗)
 – v∗ ,

Det
(
J(E)

)
=  –

αu∗( – u∗)
 – u∗ –

αv∗( – v∗)
 – v∗ +

ααu∗v∗( – u∗ – v∗)
( – u∗)( – v∗)

.

It is well known that the Nash equilibrium point E of System () is asymptotically stable
if Tr(J(E)) <  and Det(J(E)) > , i.e., the following condition is satisfied:

 <
αu∗( – u∗)

 – u∗ +
αv∗( – v∗)

 – v∗ <  +
ααu∗v∗( – u – v)
( – u∗)( – v∗)

.

This completes the proof. �
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4 Boundedness and invariant
In this section we concern ourselves with the boundedness character of the solutions for
System (). Under appropriate conditions, we give some bounded results related to Sys-
tem ().

Theorem  Assume that αi + βi
e < , i = , . Then every solution {(xn, yn)}∞n= of System (),

with x >  and y > , satisfies that xn >  and yn >  for all n > .

Proof Let Hi(x, y), i = , , be continuous functions defined by

Hi(x, y) =  – αi + βi( – x)e–(x+y), i = , .

Then System () can be rewritten in the form

xn+ = xnH(xn, yn),

yn+ = ynH(xn, yn).

Now assume that {(xn, yn)}∞n= is a solution of System () with positive initial values. Then
it suffices to show that Hi(x, y), i = , , are positive for all x > , y > . Observe that

∂Hi(x, y)
∂x

= βi(x – )e–(x+y) and
∂Hi(x, y)

∂y
= –βi( – x)e–(x+y), i = , .

Therefore H and H have no positive critical points. Let a and b be arbitrary positive
numbers and consider the domain

D =
{
(x, y) :  ≤ x ≤ a, ≤ y ≤ b

}
.

Then for i = , , we see that

Hi(, y) =  – αi + βie–y, ≤ y ≤ b,

Hi(x, ) =  – αi + βi( – x)e–x,  ≤ x≤ a,

Hi(x,b) =  – αi + βi( – x)e–(x+b),  ≤ x ≤ a,

Hi(a, y) =  – αi + βi( – a)e–(a+y),  ≤ y≤ b.

Using elementary differential calculus, we obtain that the absolute minimum of each one
of the above functions is  – αi – βi

e . Therefore Hi(x, y) ≥  – αi – βi
e >  for all (x, y) ∈ D.

Since a and b are arbitrary positive numbers, we can conclude that Hi(x, y) >  for i = , 
and for all (x, y) ∈ (,∞). �

Theorem  Let {(xn, yn)}∞n= be a solution of System () with (xn , yn ) ∈ (, ]  for some
n ≥  and assume, for i = , , that one of the following statements is true:

(i) βi ≤ e( – αi).
(ii) e( – αi) < βi ≤ e.
(iii) (

√
βi – ) ≤ αi.

Then (xn, yn) ∈ (, ]  for all n ≥ n.

http://www.advancesindifferenceequations.com/content/2013/1/169
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Proof Let n ≥  be such that xn ∈ (, ]. It follows from System () that

xn+ ≤ ( – α)xn + β( – xn )xne
–xn , ()

xn+ ≤ ( – α)xn + β( – xn )e
– =

(
 – α –

β

e

)
xn +

β

e
()

and

xn+ ≤ ( – α)xn + β( – xn )xn . ()

Set w(x) = ( – α)x + β( – x)xe–x for x ≤ . Then it follows from () that xn+ ≤ w(xn ).
Also, we obtain that

w′(x) = ( – α) + β
(
x – x + 

)
e–x

and

w′′(x) = β
(
–x + x – 

)
e–x = –β(x – )(x – )e–x

≤  for all x ∈ (, ].

Then w′(x) ≥ w′() =  – α – β
e . If (i) holds, then w′() ≥  and hence w(x) is increasing

on (, ]. Therefore xn+ ≤ w() < . If (ii) holds, then () yields xn+ ≤ β
e < .

Now suppose that (iii) holds. In this case, it follows from () that xn+ ≤ p(xn ),
where p(x) = ( – α)x + βx( – x) for all x ∈ (, ]. It is not difficult to see that p(x∗) is
the absolute maximum of p(x) on (, ] where x∗ = –α+β

β
. According to (iii) and since

p(x∗) = (–α+β)
β

≤ , xn+ ≤ p(x∗)≤ . That is, in all cases we obtain that whenever xn ≤ 
yields xn+ ≤ . So it is easy to prove by induction that xn ∈ (, ] for all n ≥ . The proof
of yn is similar and so will be omitted. This completes the proof. �

Theorem  For every solution {(xn, yn)}∞n= of System (), the following statements hold:
(i) xn ≤ xn ( – α)n–n + β

eα
( – ( – α)n–n ), n≥ n ≥ .

(ii) yn ≤ yn ( – α)n–n + β
eα

( – ( – α)n–n ), n≥ n ≥ .

Proof We obtain, for n ≥ , from System () that

xn+ ≤ ( – α)xn + βxne–xn

≤ ( – α)xn +
β

e
for all n ≥ n.

Then it follows by Theorem  and Theorem  that Case (i) is true. The proof of Case (ii)
is similar and will be omitted. �

The following corollaries are coming immediately from Theorem .

Corollary  Assume that {(xn, yn)}∞n= is a positive solution of System () with (xn , yn ) ∈
(, β

αe
]× (, β

αe
] for some n ≥ . Then (xn, yn) ∈ (, β

αe
]× (, β

αe
] for all n ≥ n.

http://www.advancesindifferenceequations.com/content/2013/1/169
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Corollary  Every positive solution {(xn, yn)}∞n= of System () is bounded.Moreover,

lim sup
n→∞

xn ≤ β

αe

and

lim sup
n→∞

yn ≤ β

αe
.

Theorem  Assume that {(xn, yn)}∞n= is a positive solution of System () and assume, for
i = , , that one of the following conditions is true:

(i) βi < αie.
(ii)  + ν

i + eνi – νi – νieνi > ,  – αi + βie–νi [ – νi(e–νi + ) + ν
i e–νi ] and

( – α)νi + βiνie–νi – βν
i e–νi < , where νi = βi

αie
.

Then there exists n ≥  such that (xn, yn) ∈ (, ]  for all n ≥ n.

Proof The proof of the theorem, when (i) holds, follows by Corollary . Now consider
that (ii) is true. Then it follows from Corollary  that for every constant ε > , there exists
n ≥  such that xn ≤ β

αe
+ ε = γ, n ≥ n. Set δ = e–γ . Since δ → e–ν when ε →  and

the inequalities in (ii) hold, depending on the continuity in ν of the left-hand side of each
inequality in (ii), one can choose ε so small that

 + γ 
 +

 – γ

δ
– γ ≥ , ()

 – α + βδ
[
 – (δ + )γ + δγ



] ≥  ()

and

( – α)γ + βγδ – βγ

 δ ≤ . ()

Now we obtain from System () that

xn+ = ( – α)xn + βxne–(xn+yn) – βxne
–(xn+yn)

≤ ( – α)xn + βxne–xn – βδxne
–xn

= K(xn), n≥ n,

where K(x) = ( – α)x + βe–x(x – δx), x≤ γ and then

K ′(x) =  – α + βe–x
[
δx – (δ + )x + 

]
and

K ′′(x) = –βe–x
[
δx – (δ + )x + (δ + )

]
.

On the other hand, the equation

δx – (δ + )x + (δ + ) = 

http://www.advancesindifferenceequations.com/content/2013/1/169
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has the positive roots

x =
δ +  +

√
δ + 

δ
and x =

δ +  –
√
δ + 

δ
.

Observe that x = + 
δ

–
√
 + 

δ
≥ γ if and only if ( + 

δ
– γ) ≥ + 

δ
which holds

by (). Therefore x ≥ x ≥ γ. Consequently, K ′′(x) <  for all x≤ γ, which yields by ()
thatK ′(x) > K ′(γ) ≥ . Using the increasing property ofK(x) on (,γ) and inequality (),
we see that K(x)≤ K(γ) ≤ . Since xn ≤ γ, it follows that

xn+ ≤ K(xn) ≤ K(γ) ≤  for all n≥ n.

Similarly, one can easily prove that yn ∈ (, ]. This completes the proof. �

Theorem  Assume that {(xn, yn)}∞n= is a positive solution of System (). If either

( – αi + βi) < βie–νi

or

βieνi


+ βi( – αi) < ,

where νi = βi
αie

for i = , , then there exists n ≥  such that (xn, yn) ∈ (, ]  for all n ≥ n.

Proof Assume that γ, δ and the functionK(xn) are defined as in the previous proof. Then

K(xn) = ( – α + β)xn – βxnδ

 = K(xn),

where K(x) = ( – α + β)x – βxδ , x≤ γ. Thus

K ′(x) =  – α + β – βxδ .

Hence, K(x) attains its maximum value at x = –α+β
βδ

, that is,

K(x)≤ K
(
 – α + β

βδ



)
=
( – α + β)

βδ



.

Also,

K(xn) = –βδe–xn
(
xn –


δ

)

+
βe–xn

δ
+ β( – α)

<
β

δ
+ β( – α), n≥ n.

Similarly to the proof of Theorem , we can choose ε so small that our assumptions
imply

( – α + β)

βδ



≤  and
β

δ
+ β( – α) ≤ .

http://www.advancesindifferenceequations.com/content/2013/1/169
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Therefore we have either

xn+ ≤ K(xn) ≤ ( – α + β)

βδ



≤ , n≥ n

or

xn+ ≤ K(xn) ≤ β

δ
+ β( – α)≤ , n≥ n,

which is our desired conclusion for xn. Similarly, one can accomplish the same conclusion
for yn. So, the proof is complete. �

5 Global stability analysis
In this section we are interested in driving conditions under which the equilibrium points
of System () are attractors of the solutions for System ().
In the following theorem, we investigate the global attractivity of the equilibrium point

(, ) of System ().

Theorem  Assume that αi ≥ βi, i = , . Then (, ) is a global attractor of all positive
solutions of System ().

Proof Let {(xn, yn)}∞n= be a solution of System (). It follows from System () that

xn+ = ( – α)xn + βxn( – xn)e–(xn+yn) < ( – α + β)xn < xn

and

yn+ = ( – α)yn + βyn( – yn)e–(xn+yn) < ( – α + β)yn < yn.

Then there exist x≥  and y≥ such that limn→∞ xn = x and limn→∞ yn = y. Since the only
possible values of (x, y) in the present case are (, ), limn→∞ xn =  and limn→∞ yn = .
This completes the proof. �

In the following theorems, we investigate the global attractivity of the positive equi-
librium point (x; y) of System (), where x and y are given by α = β( – x)e–(x+y) and
α = β( – y)e–(x+y), respectively.

Theorem Assume that αi+βie– < , i = , .Then the unique positive equilibriumpoint
(x; y) of System () is a global attractor of all positive solutions of System ().

Proof Let {(xn, yn)}∞n= be a solution of System () and let xn ≤ x (the case whenever xn ≥ x
is similar and it will be left to the reader). Since xn ≤ x, then h(xn) ≤ , where h(xn) =
α – β( – xn)e–(xn+yn). Thus α ≤ β( – xn)e–(xn+yn). Therefore we obtain from System ()
that

xn+ = ( – α)xn + βxn( – xn)e–(xn+yn)

≥ ( – α)xn + αxn = xn.

http://www.advancesindifferenceequations.com/content/2013/1/169
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Then the sequence {xn}∞n= is increasing and since it was shown that it is bounded above,
then it converges to the unique positive equilibrium point x. Similarly, assume that yn ≤ y
(the case whenever yn ≥ y is similar and it will be left to the reader). Since yn ≤ y, then
g(yn)≤ , where g(yn) = α –β( – yn)e–(xn+yn). Thus α ≤ β( – yn)e–(xn+yn). Therefore we
obtain from System () that

yn+ = ( – α)yn + βyn( – yn)e–(xn+yn)

≥ ( – α)yn + αyn = yn.

Then, again, the sequence {yn}∞n= is increasing, and since it was shown that it is bounded
above, then it converges to the unique positive equilibrium point y. Thus {(xn, yn)}∞n= con-
verges to (x; y). �

Theorem  Consider α = α = α and β = β = β and assume that β(αe – β) ≥ αe.
Then the unique positive equilibrium point (x; y) of System () is a global attractor of all
positive solutions of System ().

Proof Let {(xn, yn)}∞n= be a solution of System (). It follows from System () that

xn+ = ( – α)xn + βxn( – xn)e–(xn+yn)

≥ ( – α)xn + βxn( – xn)e–.

Thus we see from Corollary  that

xn+ ≥
[
 – α + β

(
 –

β

αe

)
e–

]
xn ≥ xn.

Then the sequence {xn}∞n= is increasing and since it is bounded, then it converges to the
unique positive equilibrium point x. Similarly, it is easy to show that the sequence {yn}∞n=
is also convergent to the unique positive equilibrium point y = x: Therefore {(xn, yn)}∞n=
converges to (x, y) and then the proof is complete. �

Theorem  Consider α = α = α and β = β = β and assume that one of the following
conditions holds:

(I) β ≤ e( – α).
(II) α + β < .

Then the unique positive equilibrium point (x,x) of System () is a global attractor of all
positive solutions of System ().

Proof Rewrite System () as follows:

xn+ = F(xn, yn) = ( – α)xn + β( – xn)xne–(xn+yn),
yn+ =G(xn, yn) = ( – α)yn + β( – yn)yne–(xn+yn),

}
n = , , . . . ,
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where F(x, y) = ( –α)x+β( – x)xe–(x+y) and G(x, y) = ( –α)y+ β( – y)ye–(x+y) are contin-
uous functions. Now consider the system

m = F(m,M), M = F(M,m),
m =G(M,m), M = F(m,M).

}

Then

m = ( – α)m + βm( –m)e–(m+M),

M = ( – α)M + βM( –M)e–(M+m),

m = ( – α)m + βm( –m)e–(m+M),

M = ( – α)M + βM( –M)e–(M+m).

Thus eitherm =M =m =M or

α = β( –m)e–(m+M),

α = β( –M)e–(M+m),

α = β( –m)e–(m+M),

α = β( –M)e–(M+m).

Thenm =M,m =M and (–m)e–m = (–M)e–M = (–m)e–m = (–M)e–M .
Now since ( –m)e–m = ( –M)e–M , then e(M–m) = –M

–m
, that is,

(M –m) = log( –M) – log( –m). ()

We claim thatM =m; otherwise, for the sake of contradiction, assume thatM >m (the
case whereM ≤ m is similar and it will be left to the reader). Then log( –M) – log( –
m) >  ⇒ log( –M) > log( –m) ⇒M <m, which is a contradiction.
Now it is easy to see that

∂F(x,y)
∂x =  – α + β(x – x + )e–(x+y),

∂F(x,y)
∂y = –xβ( – x)e–(x+y),

∂G(x,y)
∂x = –βy( – y)e–(x+y),

∂G(x,y)
∂y =  – α + β(y – y + )e–(x+y).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Thus

∂F(x, y)
∂x

=  – α + β
(
x – x + 

)
e–(x+y)

≥  – α + β
(
x – x + 

)
e–

= βe–x – βe–x + βe– +  – α.

Now, there are two cases to consider:
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Case : Suppose that β ≤ e( – α). Therefore the function w(x) = βe–x – βe–x +
βe– +  –α has no real roots. Thus ∂F(x,y)

∂x ≥ . Similarly, it is easy to prove that ∂G(x,y)
∂x ≥ .

Then it follows by Theorem A that the equilibrium point (x, y) = (x,x) of System () is a
global attractor of all positive solutions of System ().
Case : Suppose that α + β < . Since  ≤ x ≤ ,  ≥  – x ≥ x( – x) = x – x, or  ≥

x– x – , and since α + β < , then  –α > β > βe– ≥ βe–(x+y) ≥ β(x– x – )e–(x+y).
Thus ∂F(x,y)

∂x ≥ . Similarly, it is easy to prove that ∂G(x,y)
∂x ≥ . Then it follows again by

Theorem A that the equilibrium point (x, y) = (x,x) of System () is a global attractor of all
positive solutions of System (). Thus the proof is now completed. �
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