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Abstract
In this work, we discuss the existence of nontrivial solutions for the fractional
boundary value problem{

Dα
0+u = –f (t,u), t ∈ [0, 1],

u(0) = u′(0) = u′(1) = 0.

Here α ∈ (2, 3] is a real number, Dα
0+ is the standard Riemann-Liouville fractional

derivative of order α. By virtue of some inequalities associated with Green’s function,
without the assumption of the nonnegativity of f , we utilize topological degree
theory to establish our main results.
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1 Introduction
In this paper, we investigate nontrivial solutions for the boundary value problem of frac-
tional order involving Riemann-Liouville’s derivative⎧⎨⎩Dα

+u = –f (t,u), t ∈ [, ],

u() = u′() = u′() = ,
(.)

where α ∈ (, ], f : [, ]×R →R (R := (–∞, +∞)) is continuous.
In view of a fractional differential equation’s modeling capabilities in engineering, sci-

ence, economy and other fields, the last few decades have resulted in a rapid development
of the theory of fractional differential equation; see the books [–]. This may explain the
reason why the last few decades have witnessed an overgrowing interest in the research
of such problems, with many papers in this direction published. We refer the interested
reader to [–] and the references therein.
In [], Bai and Lü studied the existence and multiplicity of positive solutions for the

nonlinear fractional differential equation⎧⎨⎩Dα
+u(t) + f (t,u(t)) = ,  < t < ,

u() = u() = ,
(.)
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where  < α ≤  is a real number and f : [, ] × R
+ → R

+ is continuous. They obtained
the existence of positive solutions bymeans of Guo-Krasnosel’skii fixed point theorem and
Leggett-Williams fixed point theorem.
In [], Jiang et al. discussed some positive properties of the Green function for boundary

value problem (.), and as an application, they utilized the Guo-Krasnosel’skii fixed point
theorem to obtain the existence of positive solutions for (.).
In [], El-Shahed andNieto investigated the existence of nontrivial solutions for amulti-

point boundary value problem for fractional differential equations. Under certain growth
conditions on the nonlinearity, several sufficient conditions for the existence of a nontrivial
solution were obtained by using the Leray-Schauder nonlinear alternative.
In [], Wang and Liu adopted the same methods in [] to discuss the existence of solu-

tions for nonlinear fractional differential equations with fractional anti-periodic boundary
conditions

⎧⎨⎩cDαx(t) = f (t,x(t), cDqx(t)), t ∈ [,T],

x() = –x(T), cDpx() = –cDpx(T).
(.)

In [–], Ahmad et al. utilized fixed point theory to consider some fractional differ-
ential equations with fractional boundary conditions and obtained some new existence
results. In particular, He and his coauthors [] investigated the existence of solutions for
the fractional nonlinear integro-differential equation of mixed type on a semi-infinite in-
terval in a Banach space

⎧⎨⎩Dαu(t) + f (t,u(t),Tu(t),Su(t)) = θ , n –  < α ≤ n,n≥ ,

u() = u′() = · · · = u(n–)() = θ , Dα–u(∞) = u∞.
(.)

Meanwhile, we also note that they developed an explicit iterative sequence for approxi-
mating the solution together with an error estimate for the approximation.
In [, ], Sun andZhang discussed a class of singular superlinear and sublinear Sturm-

Liouville problems, respectively. In the two papers, the Sturm-Liouville problems are
considered under some conditions concerning the first eigenvalues corresponding to the
relevant linear operators, and the nonnegativity is not necessary to be nonnegative. The
existence results of nontrivial solutions and positive solutions are given by means of topo-
logical degree theory.
Motivated by the works mentioned above, in our paper, we adopt the methods of [,

] to investigate the fractional problem (.). As we know, the eigenvalue and eigenfunc-
tion of an integer-order differential equation have been a very perfect theory; however,
this work on fractional order differential equation has not appeared in the literature. In
order to overcome the difficulty arising from it, we establish some inequalities associated
with Green’s function; see Lemma . in Section . With the aid of these inequalities, the
nonlinear term f can grow superlinearly and sublinearly, and we obtain that problem (.)
has at least one nontrivial solution by topological degree theory. This means that both our
methodology and results in this paper are different from those in [–, –].
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2 Preliminaries
The Riemann-Liouville fractional derivative of order α >  of a continuous function f :
(, +∞)→ (–∞, +∞) is given by

Dα
+f (t) =


�(n – α)

(
d
dt

)n ∫ t



f (s)
(t – s)α–n+

ds,

where n = [α] + , [α] denotes the integer part of number α, provided that the right-hand
side is pointwise defined on (,+∞). For more details on fractional calculus, we refer the
reader to the recent books; see [–]. Next, we present Green’s function of fractional dif-
ferential equation boundary value problem (.).

Lemma . (See [, Lemma .]) Let v ∈ C[, ] and α ∈ (, ]. Then –Dα
+u := v, to-

gether with the boundary conditions u() = u′() = u′() = , is equivalent to u(t) =∫ 
 G(t, s)v(s) ds, where

G(t, s) :=


�(α)

⎧⎨⎩tα–( – s)α– – (t – s)α–,  ≤ s ≤ t ≤ ,

tα–( – s)α–,  ≤ t ≤ s ≤ .
(.)

Lemma . (See [, Lemma .]) The functions G(t, s) ∈ C([, ]× [, ], [, +∞)).More-
over, G(t, s) satisfies the following inequalities:

tα–s( – s)α– ≤ �(α)G(t, s)≤ s( – s)α–, ∀t, s ∈ [, ]. (.)

Lemma . Let ϕ(t) = t( – t)α–, ∀t ∈ [, ], and α�(α–)
�(α) (:=K) ≤ 

α(α–)�(α) (:=K). Then

Kϕ(s) ≤
∫ 


G(t, s)ϕ(t) dt ≤Kϕ(s), ∀s ∈ [, ]. (.)

Proof By (.), we arrive at the inequality (.) immediately. The proof is completed. �

By simple computation, we havemaxt∈[,]
∫ 
 G(t, s) ds =

∫ 
 ϕ(t) dt = 

α(α–) =K�(α). Let

E := C[, ], ‖u‖ := max
t∈[,]

∣∣u(t)∣∣, P :=
{
u ∈ E : u(t) ≥ , t ∈ [, ]

}
.

Then (E,‖ · ‖) becomes a real Banach space and P is a cone on E. Now, note that u solves
(.) if and only if u is a fixed point of the operator

(Au)(t) :=
∫ 


G(t, s)f

(
s,u(s)

)
ds, u ∈ E. (.)

Clearly, f ∈ C([, ]×R,R) impliesA : E → E is a completely continuous operator. Denote

(Lu)(t) :=
∫ 


G(t, s)u(s) ds, u ∈ E.

Then L : E → E is a completely continuous linear operator, satisfying L(P) ⊂ P. That is, L
is a positive, completely continuous, linear operator. Let

P :=
{
u ∈ E :

∫ 


u(t)ϕ(t) dt ≥ ω‖u‖, t ∈ [, ]

}
,
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where ϕ(t) is defined by Lemma . and ω :=K�(α) > . By (.) and (.), we easily have
the following result.

Lemma . L(P) ⊂ P.

Proof From (.), for u ∈ P, we have

(Lu)(t) =
∫ 


G(t, s)u(s) ds ≤ 

�(α)

∫ 


ϕ(s)u(s) ds.

On the other hand, from (.) and (.), we find

∫ 


(Lu)(t)ϕ(t) dt =

∫ 



(∫ 


G(t, s)u(s) ds

)
ϕ(t) dt ≥K

∫ 


ϕ(s)u(s) ds≥K�(α)‖Lu‖.

Therefore, L(P) ⊂ P. This completes the proof. �

Lemma . (See []) Let E be a Banach space and let � ⊂ E be a bounded open set.
Suppose that A : � → E is a completely continuous operator. If there is u �=  such that
u �= Au +μu, ∀u ∈ ∂� and μ ≥ , then the topological degree deg(I –A,�, ) = .

Lemma . (See []) Let E be a Banach space and let � ⊂ E be a bounded open set with
 ∈ �. Suppose that A : � → E is a completely continuous operator. If Au �= μu, ∀u ∈ ∂�

and μ ≥ , then the topological degree deg(I –A,�, ) = .

3 Main results
We denote λ :=K–

 > , λ :=K–
 >  and Bρ := {u ∈ E : ‖u‖ < ρ} for ρ > .

Theorem . If there exists a constant b≥  such that

f (t,u) ≥ –b, ∀u ∈R, lim inf
u→+∞

f (t,u)
u

> λ, lim sup
u→

∣∣∣∣ f (t,u)u

∣∣∣∣ < λ, (.)

then (.) has at least one nontrivial solution.

Proof The first two inequalities of (.) imply that there are ε >  and b >  such that

f (t,u) ≥ (λ + ε)u – b, ∀u ∈R, t ∈ [, ]. (.)

Take R > bK�(α) + ε–b(K–
 K

 – K–
 K) + bK–

 K
 + ε–bK–

 K
. In what follows, we

shall prove that

u �= Au +μu∗, ∀u ∈ E, ‖u‖ = R, μ ≥ , (.)

where u∗ ∈ P. Indeed, if u ∈ E, ‖u‖ = R, and μ ≥  such that

u(t) = (Au)(t) +μu∗(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds +μu∗(t). (.)
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Let ũ(t) = b
∫ 
 G(t, s) ds, then we have

u(t) + ũ(t) =
∫ 


G(t, s)

(
f
(
s,u(s)

)
+ b

)
ds +μu∗(t),

which leads to u + ũ ∈ P by Lemma .. Combining this with (.), we find

∫ 


(Au)(t)ϕ(t) dt –

∫ 


u(t)ϕ(t) dt

=
∫ 


ϕ(t)

∫ 


G(t, s)f

(
s,u(s)

)
dsdt –

∫ 


u(t)ϕ(t) dt

≥ (λ + ε)
∫ 


ϕ(t)

∫ 


G(t, s)u(s) dsdt – b

∫ 


ϕ(t)

∫ 


G(t, s) dsdt –

∫ 


u(t)ϕ(t) dt

= (λ + ε)
∫ 


ϕ(t)

∫ 


G(t, s)

(
u(s) + ũ(s)

)
dsdt – (λ + ε)

∫ 


ϕ(t)

∫ 


G(t, s)̃u(s) dsdt

– b
∫ 


ϕ(t)

∫ 


G(t, s) dsdt –

∫ 


u(t)ϕ(t) dt

≥ ελ–


∫ 


ϕ(t)

(
u(t) + ũ(t)

)
dt +

∫ 


ũ(t)ϕ(t) dt

– (λ + ε)
∫ 


ϕ(t)

∫ 


G(t, s)̃u(s) dsdt

– b
∫ 


ϕ(t)

∫ 


G(t, s) dsdt

≥ εωλ–
 ‖u + ũ‖ + bKK�(α) – b(λ + ε)K

�(α) – bK
�(α)

≥ εωλ–
 ‖u‖ – εωλ–

 ‖̃u‖ + bKK�(α) – b(λ + ε)K
�(α) – bK

�(α)

≥ εωλ–
 R – εωλ–

 bK�(α) + bKK�(α) – b(λ + ε)K
�(α) – bK

�(α) > .

On the other hand, we have by (.)

∫ 


u(t)ϕ(t) dt –

∫ 


(Au)(t)ϕ(t) dt = μ

∫ 


u∗(t)ϕ(t) dt ≥ .

That is a contradiction. As a result of this, (.) holds. Lemma . gives

deg(I –A,BR, ) = . (.)

It follows from the third inequality of (.) that there exists  < r < R such that |f (t,u)| ≤
λ|u|, ∀|u| ≤ r, t ∈ [, ]. In the following, we prove

Au �= μu, ∀u ∈ ∂Br ,μ ≥ . (.)

In fact, suppose that there exist u ∈ ∂Br , μ ≥  such that Au = μu. We may suppose
that μ >  (otherwise we are done). Thus

μ
∣∣u(t)∣∣ ≤ λ

∫ 


G(t, s)

∣∣u(s)∣∣ds. (.)
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Multiply by ϕ(t) both sides of the preceding inequality and integrate over [, ], and use
(.) to obtain

μ

∫ 



∣∣u(t)∣∣ϕ(t) dt ≤ λ

∫ 


ϕ(t)

∫ 


G(t, s)

∣∣u(s)∣∣dsdt ≤
∫ 



∣∣u(t)∣∣ϕ(t) dt.
This, together with

∫ 
 |u(t)|ϕ(t) dt > , leads to μ ≤ , which is a contradiction. So, (.)

holds. Lemma . implies

deg(I –A,Br , ) = . (.)

By (.) and (.), we have deg(I – A,BR \ Br , ) = deg(I – A,BR, ) – deg(I – A,Br , ) =
 –  = –. Then A has at least one fixed point on BR \ Br . This means that problem (.)
has at least one nontrivial solution. �

In order to prove Theorem ., we need the following result involving the spectral radius
of L, denoted by r(L).

Lemma .  < r(L) ≤K.

Proof We easily obtain the result by Gelfand’s theorem and (.). This completes the
proof. �

Theorem . If there exists a constant b≥  such that

f (t,u) ≥ –b, ∀u ∈R, lim inf
u→

f (t,u)
|u| > λ, lim sup

u→+∞
f (t,u)
u

< λ, (.)

then (.) has at least one nontrivial solution.

Proof By the second inequality of (.), there exist ε >  and r >  such that

f (t,u) ≥ (λ + ε)|u|, ∀|u| ≤ r, t ∈ [, ]. (.)

For every u ∈ Br , we have from (.) that

(Au)(t) ≥ (λ + ε)
∫ 


G(t, s)

∣∣u(s)∣∣ds, t ∈ [, ]

and thus A(Br ) ⊂ P. For all u ∈ ∂Br ∩ P, from (.), we know

(Au)(t) ≥ (λ + ε)
∫ 


G(t, s)u(s) ds, t ∈ [, ].

We may suppose that A has no fixed point on ∂Br (otherwise, the proof is completed).
Now we show that

u �= Au +μu∗, ∀u ∈ ∂Br ∩ P,μ ≥ , (.)

http://www.advancesindifferenceequations.com/content/2013/1/171
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where u∗ ∈ P. Otherwise, there exist u ∈ ∂Br ∩ P, μ ≥  such that u = Au + μu∗ ≥
Au. Consequently,

u(t) ≥ (Au)(t) ≥ (λ + ε)
∫ 


G(t, s)u(s) ds.

Multiply by ϕ(t) both sides of the preceding inequality and integrate over [, ], and use
(.) to obtain

∫ 


u(t)ϕ(t) dt ≥ (λ + ε)

∫ 


ϕ(t)

∫ 


G(t, s)u(s) dsdt ≥ (λ + ε)λ–



∫ 


u(t)ϕ(t) dt,

which implies
∫ 
 u(t)ϕ(t) dt = , and then u(t) ≡ , ∀t ∈ [, ]. It contradicts u ∈

∂Br ∩ P. Hence (.) is true. Since A(Br ) ⊂ P, we have, from the permanence property
of fixed point index and Lemma ., that

deg(I –A,Br , ) = i(A,Br ∩ P,P) = , (.)

where i denotes fixed point index on P. Recall the definition of ũ. Clearly, ũ ∈ P and A :
C[, ] → P– ũ by (.). Define Ãu = A(u– ũ)+ ũ, u ∈ C[, ].We easily find Ã : C[, ]→ P.
By the third inequality of (.), there exist r > r + ‖̃u‖ = r + bK�(α) and  < σ <  such
that

f (t,u) ≤ σλu, ∀u≥ r, t ∈ [, ]. (.)

Let Lu = σλLu, ∀u ∈ C[, ]. Then L : C[, ] → C[, ] is a bounded linear operator and
L(P) ⊂ P. Let

M = max

{
sup
u∈Br

∫ 


G(t, s)

∣∣f (s,u(s))∣∣ds, bK�(α)
}
< +∞

and W := {u ∈ P : u = μÃu,  ≤ μ ≤ }. In what follows, we will show that W is bounded.
For all u ∈ W , let ψ̃(t) = min{u(t) – ũ(t), r} and e(u) = {t ∈ [, ] : u(t) – ũ(t) > r}. When
u(t) – ũ(t) < , ψ̃(t) = u(t) – ũ(t) ≥ u(t) – r ≥ –r, and so ‖ψ̃‖ ≤ r. Consequently, for
u ∈ W , we have from (.)

u(t) = μ(Ãu)(t)≤
∫ 


G(t, s)f

(
s,u(s) – ũ(s)

)
ds + ũ(t)

=
∫
e(u)

G(t, s)f
(
s,u(s) – ũ(s)

)
ds +

∫
[,]\e(u)

G(t, s)f
(
s,u(s) – ũ(s)

)
ds + ũ(t)

≤ σλ

∫ 


G(t, s)u(s) ds +

∫ 


G(t, s)f

(
s, ψ̃(s)

)
ds + ̃u(t)

≤ σλ

∫ 


G(t, s)u(s) ds +M = (Lu)(t) +M

and then ((I – L)u)(t) ≤ M, t ∈ [, ]. By Lemma . and  < σ < , r(L) = σλr(L) ≤
σλK < . Therefore, the inverse operator (I –L)– exists and (I –L)– = I +L +L + · · ·+

http://www.advancesindifferenceequations.com/content/2013/1/171
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Ln + · · · . It follows from L(P) ⊂ P that (I – L)–(P) ⊂ P. So, we have u(t) ≤ (I – L)–M,
t ∈ [, ] andW is bounded.
Select r >max{r, supW + bK�(α)} and thus Ã has no fixed point on ∂Br . Indeed, if

there exists u ∈ ∂Br such that Ãu = u, then u ∈ W and ‖u‖ = r > supW , which is a
contradiction. Thenwe have from the permanence property and the homotopy invariance
property of fixed point index that

deg(I – Ã,Br , ) = i(Ã,Br ∩ P,P) = i(,Br ∩ P,P) = . (.)

Set the completely continuous homotopy H(t,u) = A(u – t̃u) + t̃u, (t,u) ∈ [, ] × Br . If
there exists (t,u) ∈ [, ]× ∂Br such that H(t,u) = u, and then A(u – tũ) = u – tũ
and Ã(u – tũ + ũ) = u – tũ + ũ. Thus u – tũ + ũ ∈ W and ‖u – tũ + ũ‖ ≥ ‖u‖ –
( – t)‖̃u‖ ≥ r – ‖̃u‖ > supW , which is a contradiction. From the homotopy invariance
of topological degree and (.), we have

deg(I –A,Br , ) = deg(I – Ã,Br , ) = . (.)

By (.) and (.), we get deg(I –A,Br \Br , ) = deg(I –A,Br , ) – deg(I –A,Br , ) = ,
which implies that A has at least one fixed point on Br \Br . This means that the problem
(.) has at least one nontrivial solution. �

Two examples . Let

f (t,u) = au + au + · · · + anun, ∀(t,u) ∈ [, ]×R,

where n is a positive even number, ai ∈ R (i = , , . . . ,n – ), |a| < λ, an > . It is easy
to see that f (t,u) is bounded below and usually sign-changing for u ≥ . In addition,
lim supu→ | f (t,u)u | = |a| < λ and lim infu→+∞ f (t,u)

u = +∞. Thus by Theorem ., we can
obtain the existence of a nontrivial solution of (.).
. Let

f (t,u) =
 – u

 + u
, ∀(t,u) ∈ [, ]×R.

It is easy to see that f (t,u) is bounded below and usually sign-changing for u≥ . In addi-
tion, lim supu→+∞

f (t,u)
u =  < λ and lim infu→

f (t,u)
|u| = +∞. Thus, by Theorem ., we can

obtain the existence of a nontrivial solution of (.).
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