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Abstract
This paper is concerned with the pth moment exponential stability of fuzzy cellular
neural networks with time-varying delays under impulsive perturbations and
stochastic noises. Based on the Lyapunov function, stochastic analysis and differential
inequality technique, a set of novel sufficient conditions on pth moment exponential
stability of the system are derived. These results generalize and improve some of the
existing ones. Moreover, an illustrative example is given to demonstrate the
effectiveness of the results obtained.

1 Introduction
In the last decades, cellular neural networks [, ] have been extensively studied and ap-
plied in many different fields such as associative memory, signal processing and some op-
timization problems. In such applications, it is of prime importance to ensure that the
designed neural networks are stable. In practice, due to the finite speeds of the switching
and transmission of signals, time delays do exist in a working network and thus should be
incorporated into the model equation. In recent years, the dynamical behaviors of cellular
neural networks with constant delays or time-varying delays or distributed delays have
been studied; see, for example, [–] and the references therein.
In addition to the delay effects, recently, studies have been intensively focused on

stochastic models. It has been realized that the synaptic transmission is a noisy process
brought on by random fluctuations from the release of neurotransmitters and other prob-
abilistic causes, and it is of great significance to consider stochastic effects on the stability
of neural networks or dynamical system described by stochastic functional differential
equations (see [–]). On the other hand, most neural networks can be classified as
either continuous or discrete. Therefore most of the investigations focused on the contin-
uous or discrete systems, respectively. However, there are many real-world systems and
neural processes that behave in piecewise continuous style interlaced with instantaneous
and abrupt change (impulses). Motivated by this fact, several new neural networks with
impulses have been recently proposed and studied (see [–]).
In this paper, we would like to integrate fuzzy operations into cellular neural networks.

Speaking of fuzzy operations, Yang and Yang [] first introduced fuzzy cellular neural
networks (FCNNs) combining those operations with cellular neural networks. So far re-
searchers have found that FCNNs are useful in image processing, and some results have
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been reported on stability and periodicity of FCNNs [–]. However, to the best of our
knowledge, few author investigated the stability of stochastic fuzzy cellular neural net-
works with time-varying delays and impulses.
Motivated by the above discussions, in this paper, we consider the following stochastic

fuzzy cellular neural networks with time-varying delays and impulses

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dxi(t) = [–cixi(t) +

∑n
j= aijfj(xj(t)) +

∧n
j= αijgj(xj(t – τj(t)))

+
∨n

j= βijgj(xj(t – τj(t))) + Ii]dt
+

∑n
j= σij(t,xi(t),xi(t – τi(t)))dωj(t), t �= kk ,

�xi(tk) = Iik(x(tk)) = xi(tk) – xi(t–k ), k ∈ Z+, i = , , . . . ,n,

()

where n corresponds to the number of units in the neural networks. For i = , , . . . ,n,
xi(t) corresponds to the state of the ith neuron. fj(·), gj(·) are signal transmission func-
tions. ci >  denotes the rate at which a cell i resets its potential to the resting state when
isolated from other cells and inputs; τj(t) corresponds to the transmission delay. aij repre-
sents the elements of the feedback template. Ii = Ĩi +

∧
Tijuj +

∨
Hijuj, αij, βij, Tij and Hij

are elements of fuzzy feedback MIN template and fuzzy feedback MAX template, fuzzy
feed-forward MIN template and fuzzy feed-forward MAX template, respectively;

∧
and∨

denote the fuzzy AND and fuzzy OR operation, respectively; uj denotes the external
input of the ith neurons. Ĩi is the external bias of the ith unit. τi(t) is a transmission delay
satisfying ≤ τi(t) ≤ τ ; σ (t,x, y) = (σij(t,xi, yi))n×n ∈ Rn×n is the diffusion coefficientmatrix
and σi(t,xi, yi) = (σi(t,xi, yi),σi(t,xi, yi), . . . ,σin(t,xi, yi)) is the ith row vector of σ (t,x, y):
ω(t) = (ω(t),ω(t), . . . ,ωn(t))T is an n-dimensional Brownian motion defined on a com-
plete probability space (�,F , {Ft}t≥,P) with a filtration {Ft}t≥ satisfying the usual con-
ditions (i.e., it is right continuous and F contains all P-null sets). �xi(tk) = xi(t+k ) – xi(t–k )
is the impulses at moment tk , the fixed moments of time tk satisfy  = t < t < t < . . . ,
limk→+∞ tk = +∞; xt(s) = x(t + s), s ∈ [–τ , ].
System () is supplemented with the initial condition given by

xt (s) = ϕ(s), s ∈ [–τ , ], ()

where ϕ(s) is F-measurable and continuous everywhere except at a finite number of
points tk , at which ϕ(t+k ) and ϕ(t–k ) exist and ϕ(t+k ) = ϕ(tk).
Let PC,([tk , tk+) × Rn;R+) denote the family of all nonnegative functions V (t,x) on

[tk , tk+)×Rn which are continuous once differentiable in t and twice differentiable in x. If
V (t,x) ∈ PC,([tk , tk+)× Rn;R+), define an operator LV associated with () as

LV (t,x) = Vt(t,x) +
n∑
i=

Vxi (t,x)

[
–cixi(t) +

n∑
j=

aijfj
(
xj(t)

)
+

n∧
j=

αijgj
(
xj

(
t – τj(t)

))

+
n∨
j=

βijgj
(
xj

(
t – τj(t)

))
+ Ii

]
dt +



trace

[
σTVxx(t,x)σ

]
, ()

where

Vt(t,x) =
∂V (t,x)

∂t
, Vxi (t,x) =

∂V (t,x)
∂xi

, Vxx(t,x) =
(

∂V (t,x)
∂xi ∂xj

)
n×n

.
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For convenience, we introduce several notations. x = (x,x, . . . ,xn)T ∈ Rn denotes a col-
umn vector. ‖x‖ denotes a vector norm defined by ‖x‖ = (

∑n
i= |xi|p)/p; C[X,Y ] denotes

the space of continuous mappings from topological space X to topological space Y . De-
noted by Cb

F [[–τ , ),Rn] is the family of all bounded F-measurable, C[[–τ , ),Rn]-valued
random variables φ, satisfying ‖φ‖LP = sup–τ≤θ≤ E‖φ(θ )‖ < +∞, where E(·) denotes the
expectation of a stochastic process.
Throughout the paper, we give the following assumptions.
(A) The signal transmission functions fj(·), gj(·) (j = , , . . . ,n) are Lipschitz

continuous on R with Lipschitz constants μj and νj, namely, for any u, v ∈ R,

∣∣fj(u) – fj(v)
∣∣ ≤ μj|u – v|, ∣∣gj(u) – gj(v)

∣∣ ≤ νj|u – v|, fj() = gj() = .

(A) There exist non-negative numbers si, wi such that for all x, y,x′, y′ ∈ R,
i = , , . . . ,n,

[
σi

(
t,x′, y′) – σi(t,x, y)

][
σi

(
t,x′, y′) – σi(t,x, y)

]T ≤ si
∣∣x′ – x

∣∣ +wi
∣∣y′ – y

∣∣.
(A) Iik(xi(tk)) = –γik(xi(tk) – x∗

i ), where x∗
i is the equilibrium point of () with the initial

condition (), γik satisfies  < γik ≤ .

Definition . The equilibrium point x∗ = (x∗
 ,x∗

, . . . ,x∗
n)T of system () is said to be pth

moment exponentially stable if there exist positive constantsM > , λ >  such that

E
(∥∥x(t) – x∗∥∥p) ≤ M

∥∥ϕ – x∗∥∥pe–λ(t–t), t ≥ t,

where x(t) = (x(t),x(t), . . . ,xn(t))T is any solution of system () with initial value xi(t+ s) =
ϕi(s) ∈ PC([–τ , ],R), i = , , . . . ,n.

When p = , it is usually said to be exponentially stable in mean square.

Lemma . [] Suppose x and y are two states of system (), then we have∣∣∣∣∣
n∧
j=

αijgj(x) –
n∧
j=

αijgj(y)

∣∣∣∣∣ ≤
n∑
j=

|αij|
∣∣gj(x) – gj(y)

∣∣
and ∣∣∣∣∣

n∨
j=

βijgj(x) –
n∨
j=

βijgj(y)

∣∣∣∣∣ ≤
n∑
j=

|βij|
∣∣gj(x) – gj(y)

∣∣.
Lemma . If ai >  (i = , , . . . ,m) denote p nonnegative real numbers, then

aa · · ·am ≤ ap + ap + · · · + apm
p

, ()

where p≥  denotes an integer. A particular form of (), namely

ap– a ≤ (p – )ap
p

+
ap
p
.
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2 Main results
In this section, we consider the existence and global pth moment exponential stability of
system ().

Lemma . For two positive real numbers a and b, assume that there exists a constant
number  ≤ η <  such that  < b ≤ ηa. Then the equation

λ = a – beλτ ()

has a unique solution λ > .

Proof Let F(λ) = λ – a + beλτ . It is easy to see F() = –a + b < , F(a) = beaτ > , F ′(λ) =
 + bτeλτ > . Thus, F(λ) is strictly increasing on [,∞). Therefore, Eq. () has a unique
positive solution λ > . �

Lemma . [] For two positive real numbers a and b, assume that there exists a con-
stant number  ≤ η <  such that  < b ≤ ηa. Assume that z(t) is a nonnegative continuous
function on [t – τ , t] and satisfies the following inequality:

D+z(t) ≤ –az(t) + b‖zt‖, for t > , ()

then z(t) ≤ ‖zt‖e–λ(t–t), where λ is a solution of () and the upper right Dini derivative of
z(t) is defined as

D+z(t) = lim
δ→+

sup
z(t + δ) – z(t)

δ
.

Theorem . Under conditions (A)-(A), if there exist constants Ki >  (i = , ),  < η < 
such that

 < K < ηK, ()

where

K = min
≤i≤n

{
pci – (p – )

n∑
j=

(
μj|aij| + νj

(|αij| + |βij|
))

–
n∑
j=

|aji|μi –
p(p – )


si –

(p – )(p – )


wi

}
,

K = max
≤i≤n

{
νi

n∑
j=

(|αji| + |βji|
)
+ (p – )si

}
.

Then x∗ = (x∗
 ,x∗

, . . . ,x∗
n)T is a unique equilibrium which is globally pth moment exponen-

tial stable.

Proof The proof of existence and uniqueness of equilibrium for the system is similar to
that of []. So we omit it. Suppose that x∗ = (x∗

 ,x∗
, . . . ,x∗

n)T is the unique equilibrium of
system ().
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Let

yi(t) = xi(t) – x∗
i ,

σ̃ij
(
t, yi(t), yi

(
t – τi(t)

))
= σij

(
t, yi(t) + x∗

i , yi
(
t – τi(t) + x∗

i
))
– σij

(
t,x∗

i ,x
∗
i
)
,

then system () can be transformed into the following equation, for i = , , . . . ,n:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dyi(t) = [–ciyi(t) +
∑n

j= aij(fj(yj(t – τij(t)) + x∗
j ) – fj(x∗

j ))
+ (

∧n
j= αijgj(yj(s) + x∗

j ) –
∧n

j= αijgj(x∗
j ))

+ (
∨n

j= βjigj(yj(s) + x∗
j ) –

∨n
j= βjigj(x∗

j ))]dt
+

∑n
j= σ̃ij(t, yi(t), yi(t – τi(t)))dωj(t), t �= tk ,k = , , . . . ,

�yi(tk) = Ĩik(y(tk)) = Iik(y(tk) + x∗) – Iik(x∗).

()

We define a Lyapunov function V (t, y(t)) =
∑n

i= |yi(t)|p. Let t ≥ t, t ∈ [tk–, tk), then we
can get the operator LV (t, y(t)) associated with system () of the following form:

LV
(
t, y(t)

)
= p

n∑
i=

∣∣yi(t)∣∣p– sgn(yi(t))[–ciyi(t) + n∑
j=

aij
(
fj
(
yj

(
t – τij(t)

)
+ x∗

j
)
– fj

(
x∗
j
))

+

( n∧
j=

αijgj
(
yj(s) + x∗

j
)
–

n∧
j=

αijgj
(
x∗
j
))

+

( n∨
j=

βjigj
(
yj(s) + x∗

j
)
–

n∨
j=

βjigj
(
x∗
j
))]

+
p(p – )



n∑
i=

∣∣yi(t)∣∣p– n∑
j=

σ̃ij
(
t, yi(t), yi

(
t – τi(t)

))

≤ –p
n∑
i=

ci
∣∣yi(t)∣∣p + p

n∑
i=

n∑
j=

|aij|μj
∣∣yi(t)∣∣p–∣∣yj(t)∣∣

+ p
n∑
i=

n∑
j=

(|αij| + |βij|
)
νj

∣∣yi(t)∣∣p–∣∣yj(t – τj(t)
)∣∣

+
p(p – )



n∑
i=

∣∣yi(t)∣∣p–(si∣∣yi(t)∣∣ +wi
∣∣yi(t – τi(t)

)∣∣)
≤ –p

n∑
i=

ci
∣∣yi(t)∣∣p + n∑

i=

n∑
j=

|aij|μj
(
(p – )

∣∣yi(t)∣∣p + ∣∣yj(t)∣∣p)

+
n∑
i=

n∑
j=

(|αij| + |βij|
)
νj

(
(p – )

∣∣yi(t)∣∣p + ∣∣yj(t – τj(t)
)∣∣p)

+
p(p – )



n∑
i=

si
∣∣yi(t)∣∣p + p – 



n∑
i=

wi
(
(p – )

∣∣yi(t)∣∣p + 
∣∣yi(t – τi(t)

)∣∣p)
= –

n∑
i=

[
pci – (p – )

n∑
j=

(
μj|aij| + νj

(|αij| + |βij|
))
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–
n∑
j=

|aji|μi –
p(p – )


si –

(p – )(p – )


wi

]∣∣yi(t)∣∣p
+

n∑
i=

[
νi

n∑
j=

(|αji| + |βji|
)
+ (p – )si

]∣∣yi(t – τi(t)
)∣∣p

≤ –KV
(
t, y(t)

)
+K sup

t–τ≤s≤t
V

(
s, y(s)

)
, ()

where

K = min
≤i≤n

{
pci – (p – )

n∑
j=

(
μj|aij| + νj

(|αij| + |βij|
))

–
n∑
j=

|aji|μi –
p(p – )


si –

(p – )(p – )


wi

}
,

K = max
≤i≤n

{
νi

n∑
j=

(|αji| + |βji|
)
+ (p – )si

}
.

Firstly, for t ∈ [t, t), applying the Ito formula, we obtain that

V
(
t + δ, y(t + δ)

)
–V

(
t, y(t)

)
=

∫ t+δ

t
LV

(
s, y(s)

)
ds +

∫ t+δ

t
Vy

(
s, y(s)

)
σ
(
s, y(s), y

(
s – τ (s)

))
dω(s). ()

SinceE[Vy(s, y(s))σ (s, y(s), y(s–τ (s)))dω(s)] = , taking expectations onboth sides of equal-
ity () and applying the inequality () yields

E
(
V

(
t + δ, y(t + δ)

))
– E

(
V

(
t, y(t)

))
≤

∫ t+δ

t

[
–KE

(
V

(
s, y(s)

))
+KE

(
sup

s–τ≤θ≤s
V

(
θ , y(θ )

))]
ds. ()

Since the Dini derivative D+ is

D+E
(
V

(
t, y(t)

))
= lim

δ→+
sup

E(V (t + δ, y(t + δ))) – E(V (t, y(t)))
δ

, ()

denote z(t) = E(V (t, y(t))), the preceding result () leads directly to

D+z(t) ≤ –Kz(t) +K‖zt‖p. ()

Hence, from Lemma ., we have

z(t) ≤ ∥∥z(t)∥∥pe–λ(t–t).

Namely,

E
[∥∥x(t) – x∗∥∥p] ≤ M

∥∥ϕ – x∗∥∥pe–λ(t–t),

http://www.advancesindifferenceequations.com/content/2013/1/172
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whereM = , λ is the unique positive solution of the following equation:

λ = K –Keλτ .

Next, suppose that for k = , , . . . ,m, the inequality

E
(
V

(
t, y(t)

)) ≤ M‖ϕ‖pτ e–λ(t–t), t ∈ [tk–, tk
)
,k = , , . . . , ()

holds. From (A), we get

E
(
V

(
tm, y(tm)

))
=

n∑
i=

E
∣∣yi(t–m)

+ Ĩi
(
yi

(
t–m

)
+ x∗

i
)∣∣p = E

n∑
i=

| – γim|p∣∣yi(t–m)∣∣p
≤ E

n∑
i=

∣∣yi(t–m)∣∣p = E
(
V

(
t–m

)
, y

(
t–m

)) ≤ M‖ϕ‖pτ e–λ(tm–t).

This, together with (), leads to

E
(
V

(
t, y(t)

)) ≤ M‖ϕ‖pτ e–λ(t–t), t ∈ [–τ , tm]. ()

On the other hand, for t ∈ [tm, tm+), applying the Ito formula, we get

V
(
t, y(t)

)
–V

(
tm, y(tm)

)
=

∫ t

tm
LV

(
s, y(s)

)
ds +

∫ t

tm
Vy

(
s, y(s)

)
σ
(
s, y(s), y

(
s – τ (s)

))
dω(s).

Then, we have

EV
(
t, y(t)

)
– EV

(
tm, y(tm)

)
=

∫ t

tm
ELV

(
s, y(s)

)
ds. ()

So, for small enough δ → +, we have

EV
(
t + δ, y(t + δ)

)
– EV

(
tm, y(tm)

)
=

∫ t+δ

tm
ELV

(
s, y(s)

)
ds. ()

From () and (), we have

EV
(
t + δ, y(t + δ)

)
– EV

(
t, y(t)

)
=

∫ t+δ

t
ELV

(
s, y(s)

)
ds

≤
∫ t+δ

t

[
–KE

(
V

(
s, y(s)

))
+KE

(
sup

s–τ≤θ≤s
V

(
θ , y(θ )

))]
ds. ()

Similarly, we obtain

E
(
V

(
t, y(t)

)) ≤ M‖ϕ‖pτ e–λ(t–t), t ∈ [tm, tm+
)
. ()

http://www.advancesindifferenceequations.com/content/2013/1/172
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Hence, by the mathematical induction, for any k = , , . . . , we conclude that

E
(
V

(
t, y(t)

)) ≤ M‖ϕ‖pτ e–λ(t–t), t ≥ t,

which implies that the equilibrium point of the impulsive system () is pth moment expo-
nentially stable. This completes the proof of the theorem. �

3 Comparisons and remarks
It can be easily seen that many neural networks are special cases of system (). Thus, in
this section, we give some comparisons and remarks.
Suppose that Iik(x) = x ∈ Rn, system () becomes the stochastic fuzzy cellular neural net-

works with time-varying delays.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dxi(t) = [–cixi(t) +

∑n
j= aijfj(xj(t)) +

∧n
j= αijgj(xj(t – τj(t)))

+
∨n

j= βijgj(xj(t – τj(t))) + Ii]dt
+

∑n
j= σij(t,xi(t),xi(t – τi(t)))dωj(t), t ≥ t,

xi(t + s) = ϕi(s), –∞ < s < , i = , , . . . ,n.

()

For (), we have the following corollary by Theorem ..

Corollary . If (A)-(A) hold, if there exist constants Ki >  (i = , ),  < η <  such that

 < K < ηK,

where

K = min
≤i≤n

{
pci – (p – )

n∑
j=

(
μj|aij| + νj

(|αij| + |βij|
))

–
n∑
j=

|aji|μi –
p(p – )


si –

(p – )(p – )


wi

}
> ,

K = max
≤i≤n

{
νi

n∑
j=

(|αji| + |βji|
)
+ (p – )si

}
,

then the unique equilibrium x∗ = (x∗
 ,x∗

, . . . ,x∗
n)T of system () is globally pth moment

exponential stable.

If we do not consider fuzzy AND and fuzzy OR operations and when Iik(x) = x ∈ Rn in
system (), then system () becomes impulsive stochastic cellular neural networks with
time-varying delays

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dxi(t) = [–cixi(t) +

∑n
j= aijfj(xj(t)) +

∑n
j= αijgj(xj(t – τj(t)))

+
∑n

j= βijgj(xj(t – τj(t))) + Ii]dt
+

∑n
j= σij(t,xi(t),xi(t – τi(t)))dωj(t), t ≥ t,

xi(t + s) = ϕi(s), –∞ < s < , i = , , . . . ,n.

()

http://www.advancesindifferenceequations.com/content/2013/1/172
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Remark . The stability of system () has been investigated in []. In [], authors
required the differentiability and monotonicity of a time delays function which satisfied
τ ′
j (t) ≤ ξ < . Hence, this assumption may impose a very strict constraint on the model
because time delays sometimes vary dramatically with time in real circuits. Obviously,
Theorem . does not require these conditions.

Remark . In Theorem ., if we do not consider fuzzy AND and OR operation, it be-
comes traditional cellular neural networks. The results in [] are the corollary of Theo-
rem .. Therefore the results of this paper extend the previous known publication.

4 An example
Example . Consider the following stochastic fuzzy neural networks with time-varying
delays and time-varying delays and impulses⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = [–x(t) + .f(x(t)) + .f(x(t)) +
∧

j= αjfj(xj(t – τj(t)))
+

∨
j= βjfj(xj(t – τj(t))) +

∧
j=Tjuj +

∨
j=Hjuj]dt

+ σ(t,x(t),x(t – τ(t)))dω

+ σ(t,x(t),x(t – τ(t)))dω, t �= tk ,
dx(t) = [–x(t) – .f(x(t)) + .f(x(t)) +

∧
j= αjfj(xj(t – τj(t)))

+
∨

j= βjfj(xj(t – τj(t))) +
∧

j=Tjuj +
∨

j=Hjuj]dt
+ σ(t,x(t),x(t – τ(t)))dω

+ σ(t,x(t),x(t – τ(t)))dω, t �= tk ,
�x(tk) = –( + . sin( + k)x(t–k )),
�x(tk) = –( + . sin( + k)x(t–k )),

()

where t = , tk = tk– + .k, k = , , . . . , and

fi(r) = gi(r) =


(|r + | – |r – |), τj(t) = .| sin t| + .≤ ., i, j = , ,

α =


, α =



, α = –



, α =



;

β =


, β =



, β = –



, β =



;

σ(x, y) = .x – .y, σ(x, y) = .x + .y,

σ(x, y) = .x + .y, σ(x, y) = .x + .y,

and Tij =Hij = Sij = Lij = ui = uj =  (i, j = , ).
Let p = , obviously, μi = μi = , i = , . By simple computation, we can easily get that

K =min{., .} = ., K =max{, } = . Letting η = ., we have

ηK > K =  > . ()

Thus, system () satisfies assumptions (A)-(A). It follows fromTheorem. that system
() is exponentially stable in mean square.
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