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Abstract
In this paper, we establish some sufficient conditions for the existence of solutions to
two classes of boundary value problems for fractional differential equations with
nonlocal boundary conditions. Our goal is to establish some criteria of existence for
the boundary problems with nonlocal boundary condition involving the Caputo
fractional derivative, using Banach’s fixed point theorem and Schaefer’s fixed point
theorem. Finally, we present four examples to show the importance of these results.
MSC: 34A08; 34B10

Keywords: fractional differential equation; boundary value problem; fixed-point
theorem

1 Introduction
Fractional differential equations have been of increasing importance for the past decades
due to their diverse applications in science and engineering such as thememory of a variety
of materials, signal identification and image processing, optical systems, thermal system
materials and mechanical systems, control system, etc.; see [, ]. Many interesting results
of the existence of solutions of various classes of fractional differential equations have been
obtained; see [–] and the references therein.
Recently, much attention has been focused on the study of the existence and multiplic-

ity of solutions or positive solutions for boundary value problems of fractional differential
equations with local boundary value problems by the use of techniques of nonlinear anal-
ysis (fixed-point theorems, Leray-Schauder theory, the upper and lower solution method,
etc.); see [–].
On the other hand, integer-order differential equations boundary value problems with

nonlocal boundary conditions arise in a variety of different areas of applied mathemat-
ics and physics. For example, heat conduction, chemical engineering, underground water
flow, thermo-elasticity, and plasma physics can be reduced to nonlocal problemswith inte-
gral boundary conditions. They include two, three, and nonlocal boundary value problems
as special cases and have attracted the attention of Gallardo [], Karakostas and Tsamatos
[] (also see the references therein).
In fact, there have been the same requirements for fractional differential equations.

Boundary value problems for fractional-order differential equations with nonlocal bound-
ary conditions constitute a very interesting and important class of problems [–].
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To the best of our knowledge, we can see the fact that, although the fractional differential
equation boundary value problems have been studied by some authors, very little is known
in the literature on the boundary value problems with integral boundary conditions. In
order to enrich the theoretical knowledge of the above, in this paper, we investigate two
classes of fractional differential equation boundary value problemswith integral boundary
conditions.
Benchohra et al. studied the boundary value problem for the fractional differential equa-

tions with nonlocal conditions []

Dα
+y(t) = f

(
t, y(t)

)
, t ∈ J = [,T],  < α ≤ ,

y() = g(y), y(T) = yT ,

whereDα
+ is the Caputo fractional derivative, f : [,T]×R →R is a continuous function,

g : C(J ,R) →R is a continuous function and yT ∈R.
Motivated by all theworks above, in this paperwedealwith the existence anduniqueness

of solutions for the boundary value problem of fractional differential equations

Dα
+x(t) = f

(
t,x(t)

)
, t ∈ [,T],  < α ≤ , (.)

subject to one of the following nonlocal boundary conditions:

x() = y(x),
∫ T


x(t)dt =m, (.)

x() = y(x), x(T) =
∫ T


g(s)x(s)ds, (.)

where Dα
+ is the Caputo fractional derivative, f : [,T]×R →R is a C continuous func-

tion, y : C([,T],R)→R is a C continuous functional, g : [,T]→ R is a C continuous
function andm ∈R. Our goal is to establish some criteria of existence for boundary value
problem (.) with nonlocal boundary condition (.) or (.) involving the Caputo frac-
tional derivative, using Banach’s fixed point theorem and Schaefer’s fixed point theorem.
Finally we present four examples.

2 Preliminaries
In this section, we introduce notations, definitions of fractional calculus and prove two
lemmas before stating our main results. By C([,T],R) we denote the Banach space of all
continuous functions from [,T] into R with the norm

‖x‖ := sup
{|x| : t ∈ [,T]

}
.

Definition . [] For a continuous function y : (,∞)→ R, the Riemann-Liouville frac-
tional integral of order α is defined as

Iα+ =


�(α)

∫ t


(t – s)α–y(s)ds, α > ,

where � is the gamma function.
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Definition . [] The Caputo fractional derivative of order α for a continuous function
y(t) is defined by

Dα
+y(t) =


�(n – α)

∫ t


(t – s)n–α–y(n)(s)ds, α > ,

where � is the gamma function, n = [α] +  and [α] denotes the integer of α.

Lemma . [] Let α > . Then the fractional differential equation Dα
+h(t) =  has the

solution h(t) = c + ct + ct + · · · + cn–tn–, ci ∈R, i = , , . . . ,n – .

Lemma . [] Let α > . Then IαDα
+h(t) = h(t) + c + ct + ct + · · · + cn–tn– for some

ci ∈R, i = , , . . . ,n – , n = [α] + .

Lemma . Let  < α ≤  and h(t) ∈ C[,T]. A function x is a solution of the following
fractional boundary value problem:

Dα
+x(t) = h(t), t ∈ [,T], (.)

x() = y(x),
∫ T


x(t)dt =m (.)

if and only if x is a solution of the fractional integral equation

x(t) =


�(α)

∫ t


(t – s)α–h(s)ds +

m
T t +

(
T – t
T

)
y(x)

–
t
T · 

�(α + )

∫ T


(T – s)αh(s)ds. (.)

Proof By applying Lemma ., we may reduce (.) to an equivalent integral equation

x(t) =


�(α)

∫ t


(t – s)α–h(s)ds + c + ct

for some c, c ∈R. From (.), it follows

c = y(x), c =
m
T –


T
y(x) –


T · 

�(α + )

∫ T


(T – s)αh(s)ds.

Thus

x(t) =


�(α)

∫ t


(t – s)α–h(s)ds +

m
T t +

(
T – t
T

)
y(x)

–
t
T · 

�(α + )

∫ T


(T – s)αh(s)ds. �

Lemma . Let  < α ≤  and h(t) ∈ C[,T] be continuous. A function x is a solution of
the fractional boundary value problem

Dα
+x(t) = h(t), t ∈ [,T], (.)

x() = y(x), x(T) =
∫ T


g(s)x(s)ds (.)
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if and only if x is a solution of the fractional integral equation

x(t) =


�(α)

∫ t


(t – s)α–h(s)ds + y(x) +

t
T
A(x)

–
t

T�(α)

∫ T


(T – s)α–h(s)ds –

t
T
y(x), (.)

where

A(x) =


�(α)
∫ T
 (

∫ t
 (t – s)α–g(t)h(s)ds)dt + y(x)

∫ T
 g(t)dt

 – 
T

∫ T
 tg(t)dt

–


T�(α)
∫ T
 (

∫ T
 (T – s)α–tg(t)h(s)ds)dt + y(x)

T
∫ T
 tg(t)dt

 – 
T

∫ T
 tg(t)dt

.

Proof By applying Lemma ., we may reduce (.) to an equivalent integral equation

x(t) =


�(α)

∫ t


(t – s)α–h(s)ds + c + ct

for some c, c ∈R. From (.), it follows

c = y(x), c =

T

∫ T


g(s)x(s)ds –


T�(α)

∫ T


(T – s)α–h(s)ds –


T
y(x).

Let A(x) =
∫ T
 g(s)x(s)ds. Then

A(x) =


�(α)
∫ T
 (

∫ t
 (t – s)α–g(t)h(s)ds)dt + y(x)

∫ T
 g(t)dt

 – 
T

∫ T
 tg(t)dt

–


T�(α)
∫ T
 (

∫ T
 (T – s)α–tg(t)h(s)ds)dt + y(x)

T
∫ T
 tg(t)dt

 – 
T

∫ T
 tg(t)dt

,

and so

x(t) =


�(α)

∫ t


(t – s)α–h(s)ds + y(x) +

t
T
A(x)

–
t

T�(α)

∫ T


(T – s)α–h(s)ds –

t
T
y(x). �

3 Main results
Now we are in a position to establish the main results. First, we are going to deal with
problems (.) and (.).

Theorem . Assume that:
(H) There exists a constant k >  such that |f (t,u) – f (t,u)| ≤ k|u – u| for each

t ∈ [,T] and all u,u ∈R.
(H) There exists a constant k >  such that |y(u) – y(u)| ≤ k|u – u| for each

u,u ∈ C([,T],R).
(H) ( Tα

�(α+) +
Tα

�(α+) )k + k < .
Then boundary value problem (.)-(.) has a unique solution.
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Proof Transform boundary value problem (.)-(.) into a fixed point problem. For this
purpose, we consider the operator

F : C([,T],R) → C([,T],R)

defined by

F(x)(t) =


�(α)

∫ t


(t – s)α–f

(
s,x(s)

)
ds +

m
T t +

(
T – t
T

)
y(x)

–
t
T · 

�(α + )

∫ T


(T – s)αf

(
s,x(s)

)
ds.

Clearly, the fixed points of the operator F are solutions of problem (.)-(.). Let x,x ∈
C([,T],R). For each t ∈ [,T], we have

∣∣F(x)(t) – F(x)(t)
∣∣

≤ 
�(α)

∫ t


(t – s)α–

∣∣f (s,x(s)) – f
(
s,x(s)

)∣∣ds +
∣∣∣∣T – t

T

∣∣∣∣∣∣y(x) – y(x)
∣∣

+
t

T�(α + )

∫ T


(T – s)α

∣∣f (s,x(s)) – f
(
s,x(s)

)∣∣ds

≤ k‖x – x‖
�(α)

· t
α

α
+ k‖x – x‖ + 

T�(α + )
k‖x – x‖ · T

α+

α + 

≤
[(

Tα

�(α + )
+

Tα

�(α + )

)
k + k

]
‖x – x‖.

Thus

∥∥F(x)(t) – F(x)(t)
∥∥ ≤

[(
Tα

�(α + )
+

Tα

�(α + )

)
k + k

]
‖x – x‖.

Consequently, F is a contraction. As a consequence of Banach’s fixed point theorem, we
deduce that F has a fixed point which is the solution of problem (.)-(.). �

Theorem . Assume that:
(H) The function f : [,T]×R→R is C continuous.
(H) There exists a constantM >  such that |f (t,u)| ≤ M for each t ∈ [,T] and u ∈R.
(H) There exists a constantM >  such that |y(x)| ≤ M for each x ∈ C([,T],R).

Then boundary value problem (.)-(.) has at least one solution.

Proof Wewill use Schaefer’s fixed point theorem to prove this result. We divide the proof
into four steps.
(a) First we show that F is continuous. Let xn be a sequence such that xn → x in

C([,T],R). Then, for each t ∈ [,T],

∣∣F(xn)(t) – F(x)(t)
∣∣ ≤ 

�(α)

∫ t


(t – s)α–

∣∣f (s,xn(s)) – f
(
s,x(s)

)∣∣ds + ∣∣y(xn) – y(x)
∣∣

+


T�(α + )

∫ T


(T – s)α

∣∣f (s,xn(s)) – f
(
s,x(s)

)∣∣ds.
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Since f and y are continuous functions, we have

∥∥F(xn)(t) – F(x)(t)
∥∥ →  as n→ ∞.

This means that F is continuous.
(b) Next we prove that F maps bounded sets into bounded sets in C([,T],R). Indeed,

for each t ∈ [,T], we have

∣∣F(x)(t)∣∣ ≤
(

Tα

�(α + )
+

Tα

�(α + )

)
M +M +


T

|m|. (.)

Thus F is uniformly bounded.
(c) Now we verify that F maps bounded sets into equicontinuous sets of C([,T],R).
For each t, t ∈ [,T], t < t, we have

∣∣F(x)(t) – F(x)(t)
∣∣

≤
∣∣∣∣ 
�(α)

∫ t



[
(t – s)α– – (t – s)α–

]
f
(
s,x(s)

)
ds

+


�(α)

∫ t

t
(t – s)α–f

(
s,x(s)

)
ds

∣∣∣∣ + |m|
T (t – t) +

(t – t)
T

∣∣y(x)∣∣

+
∣∣∣∣ t
T�(α + )

–
t

T�(α + )

∣∣∣∣ ·
∣∣∣∣
∫ T


(T – s)αf

(
s,x(s)

)
ds

∣∣∣∣
≤ M

�(α)

∫ t



[
(t – s)α– – (t – s)α–

]
ds +

M
�(α)

∫ t

t
(t – s)α– ds

+
|m|
T (t – t) +

M

T
(t – t) +

(t – t)
T�(α + )

Tα+M
α + 

=
M

�(α + )
(
tα – tα

)
+
|m|
T (t – t) +

M

T
(t – t) +

MTα–

�(α + )
(t – t),

which implies that if t → t, the right-hand side of the above inequality tends to zero.
As a consequence of the first three steps above, togetherwith theArzela-Ascoli theorem,

we get that F is completely continuous.
(d) Now it remains to show that the set E = {x ∈ C([,T],R) : X = λF(x),  < λ < } is

bounded. Let x ∈ E, then x = λF(x),  < λ < . Thus, for each t ∈ [,T], we have

x = λF(x)(t)

=
λ

�(α)

∫ t


(t – s)α–f

(
s,x(s)

)
ds +

λm
T t + λ

(
T – t
T

)
y(x)

–
t
T · λ

�(α + )

∫ T


(T – s)αf

(
s,x(s)

)
ds.

This implies by (.) that for each t ∈ [,T], we have

‖x‖ ≤
(

Tα

�(α + )
+

Tα

�(α + )

)
M +M +


T

|m|.
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This shows that the set E is bounded. As a consequence of Schaefer’s fixed point theorem,
we deduce that F has a fixed point which is a solution of boundary value problem (.)-
(.). The proof is completed. �

In the following, we give the existence and uniqueness of a solution for problems (.)
and (.).

Theorem . Assume that:
(H) There exists a constant k >  such that |f (t,u) – f (t,u)| ≤ k|u – u| for each

t ∈ [,T] and all u,u ∈R.
(H) There exists a constant k >  such that |y(u) – y(u)| ≤ k|u – u| for each

u,u ∈ C([,T],R).
(H)  < g(t) <M and  – 

MT >  for each t ∈ [,T].
(H) ( Tα

�(α+) +
Tα+M

�(α+)(–MT) +
Tα+M

�(α+)(–MT) )k +
+MT
–MT k < .

Then boundary value problem (.)-(.) has a unique solution.

Proof Consider the operator

F : C([,T],R) → C([,T],R)

defined by

F(x)(t) =


�(α)

∫ t


(t – s)α–f

(
s,x(s)

)
ds + y(x) +

t
T
A(x)

–
t

T�(α)

∫ T


(T – s)α–f

(
s,x(s)

)
ds –

t
T
y(x),

where

A(x) =


�(α)
∫ T
 (

∫ t
 (t – s)α–g(t)f (s,x(s))ds)dt + y(x)

∫ T
 g(t)dt

 – 
T

∫ T
 tg(t)dt

–


T�(α)
∫ T
 (

∫ T
 (T – s)α–tg(t)f (s,x(s))ds)dt + y(x)

T
∫ T
 tg(t)dt

 – 
T

∫ T
 tg(t)dt

.

Let x,x ∈ C([,T],R) for each t ∈ [,T]. Then we have

∣∣F(x)(t) – F(x)(t)
∣∣

≤ 
�(α)

∫ t


(t – s)α–

∣∣f (s,x(s)) – f
(
s,x(s)

)∣∣ds +
∣∣∣∣T – t

T

∣∣∣∣
∣∣y(x) – y(x)

∣∣

+
t
T

∣∣A(x) –A(x)
∣∣ + t

T�(α)

∫ T


(T – s)α–

∣∣f (s,x(s)) – f
(
s,x(s)

)∣∣ds

≤ Tαk‖x – x‖
�(α + )

+


�(α+) +


�(α+)

 –MT
Tα+Mk‖x – x‖ + k + MTk

 –MT
‖x – x‖,

where A(x) means that we use x to replace x in A(x).

http://www.advancesindifferenceequations.com/content/2013/1/176
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Thus

∥∥F(x)(t) – F(x)(t)
∥∥ ≤

[(
Tα

�(α + )
+

Tα+M
�(α + )( –MT)

+
Tα+M

�(α + )( –MT)

)
k

+
 + MT
 –MT

k
]
‖x – x‖.

Consequently, F is a contraction. Therefore, the fixed point theorem implies that bound-
ary value problem (.)-(.) has a unique solution in C([,T],R). And the proof is com-
pleted. �

Theorem . Assume that:
(H) The function f : [,T]×R →R is C continuous.
(H) There exists a constantM >  such that |f (t,u)| ≤ M for each t ∈ [,T] and

u ∈R.
(H) There exists a constantM >  such that |y(x)| ≤ M for each x ∈ C([,T],R).
(H)  < g(t) <M and  – 

MT >  for each t ∈ [,T].
Then boundary value problem (.)-(.) has at least one solution.

Proof Similar to the proof of Theorem ., we will prove the theorem by showing the
following four steps.
(a) Show that F is continuous. Let xn be a sequence such that xn → x in C([,T],R).

Then for each t ∈ [,T],

∣∣F(xn)(t) – F(x)(t)
∣∣

≤ 
�(α)

∫ t


(t – s)α–

∣∣f (s,xn(s)) – f
(
s,x(s)

)∣∣ds + ∣∣y(xn) – y(x)
∣∣

+


�(α)

∫ T


(T – s)α–

∣∣f (s,xn(s)) – f
(
s,x(s)

)∣∣ds + .MT |y(xn) – y(x)|
 – .MT

+
M

�(α)
∫ T
 (

∫ t
 (t – s)α–|f (s,xn(s)) – f (s,x(s))|ds)dt

 – .MT

+
M

�(α)
∫ T
 (

∫ T
 (T – s)α–|f (s,xn(s)) – f (s,x(s))|ds)dt

 – .MT
.

Since f and y are continuous functions, then we have

∥∥F(xn)(t) – F(x)(t)
∥∥ →  as n→ ∞.

This means that F is continuous.
(b) Verify F maps bounded sets into bounded sets in C([,T],R). Indeed, for each t ∈

[,T], we have

∣∣F(x)(t)∣∣ ≤ MTα

�(α + )
+M +

MMTα+

�(α+) + .MMT + MMTα+

�(α+)

 – .MT
. (.)

Thus F is uniform bounded.

http://www.advancesindifferenceequations.com/content/2013/1/176
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(c) Examine F maps bounded sets into equicontinuous sets of C([,T],R). For each
t, t ∈ [,T], t < t, we have

∣∣F(x)(t) – F(x)(t)
∣∣ ≤

∣∣∣∣ 
�(α)

∫ t



[
(t – s)α– – (t – s)α–

]
f
(
s,x(s)

)
ds

+


�(α)

∫ t

t
(t – s)α–f

(
s,x(s)

)
ds

∣∣∣∣ + (t – t)
T

∣∣y(x)∣∣

+
(t – t)
T�(α)

∣∣∣∣
∫ T


(T – s)α–f

(
s,x(s)

)
ds

∣∣∣∣ +
(
t
T

–
t
T

)∣∣A(x)∣∣

≤ M

�(α + )
(
tα – tα

)
+
M

T
(t – t) +

MTα

T�(α + )
(t – t)

+
MMTα+

�(α+) + .MMT + MMTα+

�(α+)

 – .MT
(t – t)

T
.

Hence the right-hand side of the above inequality tends to zero as t → t.
As a consequence of (a) to (c) together with the Arzela-Ascoli theorem, we get that F :

C([,T],R)→ C([,T],R) is completely continuous.
(d) In what follows, we will show that the set E = {x ∈ C([,T],R) : x = λF(x),  < λ < }

is bounded. Let x ∈ E. Then x = λF(x),  < λ < , and for each t ∈ [,T], we have

x = λF(x)(t)

=
λ

�(α)

∫ t


(t – s)α–f

(
s,x(s)

)
ds + λy(x) +

λt
T
A(x)

–
λt

T�(α)

∫ T


(T – s)α–f

(
s,x(s)

)
ds –

λt
T
y(x),

which implies by (.) that for each t ∈ [,T], we have

‖x‖ ≤ MTα

�(α + )
+M +

MMTα+

�(α+) + .MMT + MMTα+

�(α+)

 – .MT
.

This shows that the set E is bounded. As a consequence of Schaefer’s fixed point theo-
rem, we deduce that F has a fixed point which is a solution of boundary value problem
(.)-(.). �

4 Examples
In this section, we give some examples to illustrate our main results.

Example . Consider

D.
+x(t) =

e–t

 + et
|x|

 + |x| , (.)

x() =
n∑
i=

cix(ti),
∫ 


x(t)dt = , (.)

where  < t < t < · · · < tn < , ci, i = , , . . . ,n, are given positive constants with
∑n

i= ci <

 .

Consider boundary value problem (.)-(.) with α = ., f (t,x(t)) = e–t
+et

|x|
+|x| , y(x) =∑n

i= cix(ti),m = , T = .

http://www.advancesindifferenceequations.com/content/2013/1/176
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Let t ∈ [.] and u,u ∈R. Then

∣∣f (t,u) – f (t,u)
∣∣ =

∣∣∣∣ e–t

 + et

∣∣∣∣
∣∣∣∣ |x|
 + |x|

∣∣∣∣ ≤ e–t

 + et
∣∣|u| – |u|

∣∣ ≤ 


|u – u|.

Hence the condition (H) holds with k = 
 . Also, we have

∣∣y(u) – y(u)
∣∣ =

∣∣∣∣∣
n∑
i=

ciu(ti) –
n∑
i=

ciu(ti)

∣∣∣∣∣ ≤
n∑
i=

|u – u|.

So, (H) is satisfied with k =
∑n

i= ci <

 .

Therefore, we can rest easy knowing that

(
Tα

�(α + )
+

Tα

�(α + )

)
k + k =

(


�(.)
+


�(.)

)
· 


+
n∑
i=

ci < .

Thus, by Theorem ., boundary value problem (.)-(.) has a unique solution.

Example . Consider

D.
+x(t) =

t 
 e–t

 + tx
, (.)

x() =
n∑
i=

ci
|x(ti)|

 + |x(ti)| ,
∫ 


x(t)dt = , (.)

where  < t < t < · · · < tn < , ci, i = , , . . . ,n, are given positive constants with
∑n

i= ci <

 .

Consider boundary value problem (.)-(.) with α = ., f (t,x(t)) = t

 e–t
+tx , y(x) =∑n

i= ci
|x(ti)|

+|x(ti)| ,m = , T = .
Clearly,

∣∣f (t,x)∣∣ ≤
∣∣∣∣ t


 e–t

 + tx

∣∣∣∣ ≤  =M,
∣∣y(x)∣∣ ≤

n∑
i=

ci
|x(ti)|

 + |x(ti)| ≤ 

=M.

Hence, all the conditions of Theorem . are satisfied and consequently boundary value
problem (.)-(.) has at least one solution.

Example . Consider

D.
+x(t) =

e–t

 + et
|x|

 + |x| , (.)

x() =
n∑
i=

cix(ti), x() =
∫ 


x(t) sin t dt, (.)

where  < t < t < · · · < tn < , ci, i = , , . . . ,n, are given positive constants with
∑n

i= ci <

 .

Consider boundary value problem (.)-(.) with α = ., f (t,x(t)) = e–t
+et

|x|
+|x| , y(x) =∑n

i= cix(ti), g(t) = sin t, T = .

http://www.advancesindifferenceequations.com/content/2013/1/176
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Let t ∈ [, ] and u,u ∈R. Then

∣∣f (t,u) – f (t,u)
∣∣ =

∣∣∣∣ e–t

 + et

∣∣∣∣
∣∣∣∣ |x|
 + |x|

∣∣∣∣ ≤ e–t

 + et
∣∣|u| – |u|

∣∣ ≤ 


|u – u|.

Hence the condition (H) holds with k = 
 . Also, we have

∣∣y(u) – y(u)
∣∣ =

∣∣∣∣∣
n∑
i=

ciu(ti) –
n∑
i=

ciu(ti)

∣∣∣∣∣ ≤
n∑
i=

ci|u – u|.

Hence (H) is satisfied with k =
∑n

i= ci <

 . SetM = . Then (H) is satisfied.

We can show that
(

Tα

�(α + )
+

Tα+M
�(α + )( –MT)

+
Tα+M

�(α + )( –MT)

)
k +

 + MT
 –MT

k � . < .

Then, by Theorem ., boundary value problem (.)-(.) has a unique solution.

Example . Consider

D.
+x(t) =

t 
 e–t

 + tx
, (.)

x() =
n∑
i=

ci
|x(ti)|

 + |x(ti)| , x() =
∫ 


x(t) sin t dt, (.)

where  < t < t < · · · < tn < , ci, i = , , . . . ,n, are given positive constants with
∑n

i= ci <

 .

Consider boundary value problem (.)-(.) with α = ., f (t,x(t)) = t

 e–t
+tx , y(x) =∑n

i= ci
|x(ti)|

+|x(ti)| , g(t) = sin t, T = .
Clearly,

∣∣f (t,x)∣∣ ≤
∣∣∣∣ t


 e–t

 + tx

∣∣∣∣ ≤  =M,

∣∣y(x)∣∣ ≤
n∑
i=

ci
|x(ti)|

 + |x(ti)| ≤ 

=M,  < g(t) <  =M.

Hence, all the conditions of Theorem . are satisfied, and consequently boundary value
problem (.)-(.) has at least one solution.

5 Conclusion
This paper studies the existence and uniqueness of solutions for the fractional differen-
tial equations with one nonlocal and one integral boundary conditions, and some results
are given by using Banach’s fixed point theorem and Schaefer’s fixed point theorem. At
the foundation of this paper, one can consider boundary value problems of fractional dif-
ferential equations with parameters, and also can make further research on eigenvalue
problems of fractional differential equations.
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