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Abstract
Our aim is to find the general term of the analogue Euler zeta function in positive
integers by using Fourier series. We also figure out the generalized coefficients of
Fourier series and investigate some interesting relation in the integers.
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1 Introduction
Many mathematicians have studied various kinds of an analogue zeta function such as
Dirichlet L-function [–]. Friedman and Cohen constructed the p-adic analogue for
Hurwitz zeta functions []. By using multiple Volkenborn integrals, Tangedal and Young
defined a p-adic multiple zeta function and a log gamma function [–]. Ryoo, Kim and
Kim have defined various analogue zeta functions to combine the Euler numbers and
Bernoulli numbers [–, , ].
Therefore one of the most important and fascinating functions is the zeta function in

mathematics [, ]. Bernhard Riemann (-) found something amazing; namely
the Riemann zeta function. He recognized the importance of the function onto the entire
complex plane C except s = .
If Re z ≥  + ε, where ε > , then

n∑
k=m

∣∣k–z∣∣ ≤
n∑

k=m

k––ε

implies that
∑∞

n= |n–z| converges uniformly on {z ∈C | Re z ≥  + ε}.
The Riemann zeta function ζR(s) is defined usually by

ζR(s) :=

{∑∞
n=


ns =


––s

∑∞
n=


(n–)s (Re(s) > ),


––s

∑∞
n=

(–)n–
ns (Re(s) > , s �= ).

(.)

Some values can be calculated explicitly but ζR(k + ), where k = , , . . . are still myste-
rious. The number ζR() was demonstrated to be an irrational number by Apery (French
mathematician) and can be seen in Hardy, Grosswald, Zhang, Srivastava, and others [–
]. This Riemann zeta function is the Dirichlet zeta-function, the special case that arises
when we take χ (n) = .
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In , Lejeune Dirichlet modified the zeta function and he separated the primes into
separate categories. The primes depend on the remainder when divided by k. Hismodified
zeta function is of the form

L(s,χ ) =
χ ()
s

+
χ ()
s

+
χ ()
s

+ · · · ,

where χ (n) is a special kind of the function []. Any function of the form L(s,χ ) is known
as a Dirichlet L-series where s is a real number greater than  and χ is called as Dirichlet
character.
Mathematicians have studied extensively the Riemann zeta function and the Dirichlet

zeta function because these functions play an important role in physics, complex analysis
and number theory etc. They also recognized that the discovery of these zeta functions
dates back to Euler.
Leonhard Euler (-) defined the zeta function for any real number greater than

 by the infinite sum. After Euler defined this function, he showed that it had a deep and
profound connection with the pattern of the primes. He also calculated ζ () = π

 , and
ζ () has been researched, proved bymathematicians []. The values of the Riemann zeta
function were computed by the Euler zeta function at even positive integers. The analogue
Euler zeta function replaces the Euler zeta function by mathematician’s research. The Eu-
ler zeta function was originally constructed by Kim (see []) and Kim gave the values of
the Euler zeta function as positive integers (see [, Theorem .]). Kim, Choi, and Kim
researched to combine the Euler numbers and Bernoulli numbers in order to get values
or a generalized term [].
The Euler zeta function is defined as follows.

Definition . For s = , s ∈ C and Re(s) > ,

ζE(s) = 
∞∑
n=

(–)n–

ns
(see [–, ]).

From Definition ., we define the analogue Euler zeta function as follows.

Definition . Let s = , s ∈ C and Re(s) > .

ζAE(s) =
∞∑
n=

(–)n

ns
. (.)

We easily note that ζE(s) = –ζAE(s).

In this paper, we find out the generalized coefficients of Fourier series and investigate
some interesting relations in the positive integers. We also investigate values and a gener-
alized term of the analogue Euler zeta function ζAE(s) in the same way by using the Fourier
series.
The Fourier series can be expressed as summation between sine series and cosine series

instead of complicated functions.
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If the function f (x) has period p, then the Fourier series of f (x) is

f (x) =
a


+
∞∑
n=

(
an cos

nπx
p

+ bn sin
nπx
p

)
, (.)

where coefficients of the Fourier series a, an, and bn are defined by the integrals

a =

p

∫ p

–p
f (x)dx,

an =

p

∫ p

–p
f (x) cos

nπx
p

dx,

bn =

p

∫ p

–p
f (x) sin

nπx
p

dx (see []).

A special instance of the Fourier series is the cosine series. If f (x) = f (–x) is initially
defined over the interval [,p], then it can be extended to [–p,p] and then extended pe-
riodically with period p. So, the cosine series of the Fourier series on [–p,p] is defined
by

f (x) =
a


+
∞∑
n=

an cos
nπx
p

, (.)

where

a =

p

∫ p

–p
f (x)dx,

an =

p

∫ p

–p
f (x) cos

nπx
p

dx, and in this case

bn =

p

∫ p

–p
f (x) sin

nπx
p

dx =  (see [, ]).

The sine series is a special instance of the Fourier series. Let f (–x) = –f (x). Then f (x) can
be extended to [–p,p]. The Fourier series for this odd, periodic function reduces to the
sine series in the form

f (x) =
∞∑
n=

bn sin
nπx
p

, with

bn =

p

∫ p

–p
f (x) sin

nπx
p

dx,

(.)

because a = 
p
∫ p
–p f (x)dx = , each an = 

p
∫ p
–p f (x) cos

nπx
p dx = .

We denote that a = a(l) , an = a(l)n , and bn = b(l)n when f (x) = xl .
The paper is organized as follows. In Section , we construct generalized coefficients

of sine series and cosine series in the positive integers and prove them. We also study
some interesting relations about sine series and cosine series in the positive integers. In
Section , applying these ideas, generalized coefficients will be used to obtain the main
results of this paper. We also find the general term of the analogue Euler zeta function.
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2 The coefficient’s rule of cosine series and sine series
In this section, we construct the coefficient’s rule of cosine series and sine series.We access
some relations about the coefficient sine series and cosine series.
The cosine series for f (x) is given by the following theorem.

Theorem . Let f (x) = xl for – < x <  and l be a positive even integer.

f (x) =
a


+
∞∑
n=

an cos
nπx


,

a(l) =
∫ 


xl dx =

l+

l + 
,

a(l)n =
∫ 


xl cos

nπx


dx = l+ cosnπ

l–
∑

k=

(–)k lPk+

(nπ )(k+)

= l+l! cosnπ

l–
∑

k=

(–)k

(l – (k + ))!(nπ )(k+)
,

where nPr = n!
(n–r)! .

Proof Weshall proveTheorem. usingmathematical induction.We assume that f (x) = xl

for – < x <  and l is a positive even integer.
Clearly, a() and a()n hold when l =  as follows.

a() =
∫ 


x dx =




,

a()n =
∫ 


x cos

nπx


dx =
[


nπ

x sin
nπx


]


–



nπ

∫ 


x sin

nπx


dx

=
 · 
nπ cosnπ .

Suppose that l =m is true for a(m)
 and a(m)

n in the positive even integers. That is,

a(m)
 =

∫ 


xm dx =

m+

m + 
,

a(m)
n =

∫ 


xm cos

nπx


dx =
[


nπ

xm sin
nπx


]


–
m
nπ

∫ 


xm– sin

nπx


dx

= m+ cosnπ

m–
∑

k=

(–)k mPk+

(nπ )(k+)

= m+m! cosnπ

m–
∑

k=

(–)k

(m – (k + ))!(nπ )(k+)
.

Consider the case l =m +  (m: even).

a(m+)
 =

∫ 


xm+ dx =

m+

m + 
is trivial.
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By the above assumption, we get

a(m+)
n =

∫ 


xm+ cos

nπx


dx =
[


nπ

xm+ sin
nπx


]


–
(m + )

nπ

∫ 


xm+ sin

nπx


dx

= –
(m + )

nπ

∫ 


xm+d

(
–


nπ

cos

(
nπx


))

=
m+(m + )

nπ cos(nπ ) –
(m + )(m + )

nπ

∫ 


xm cos

(
nπx


)
dx

=
m+(m + )

nπ cosnπ –
(m + )(m + )

nπ

(
m+ cosnπ

m–
∑

k=

(–)k mPk+

(nπ )(k+)

)

= m+ cosnπ

m
∑

k=

(–)k m+Pk+

(nπ )(k+)

= m+(m + )! cosnπ

m
∑

k=

(–)k

(m +  – (k + ))!(nπ )(k+)
.

That is, a(l) and a(l)n hold for l =m+ (m: even) if it holds for l =m. Thus, we complete the
proof of the theorem. �

Remarks Let f (x) = x for – < x < . Then we have the following equation:

f (x) =
a


+
∞∑
n=

an cos
nπx


,

a() =
∫ 


x dx =




, (.)

a()n =
∫ 


x cos

nπx


dx = + cosnπ

–
∑

k=

(–)k Pk+

(nπ )(k+)
=
 · 
nπ cosnπ .

Let f (x) = x for – < x < . From Theorem ., we get

f (x) =
a


+
∞∑
n=

an cos
nπx


,

a() =
∫ 


x dx =




,

a()n =
∫ 


x cos

nπx


dx = + cosnπ

–
∑

k=

(–)k Pk+

(nπ )(k+)

=
 · 
nπ cosnπ –

 ·  ·  · 
nπ cosnπ ,

(.)

where nPr = n!
(n–r)! = n · (n – ) · (n – ) · · · · · (n – r + ).
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From (.), we get an interesting rule of coefficient a()n .

a()n =  cosnπ

(
 
 – ·  · 

)(


nπ


nπ

)
=  cosnπ

(
P 
 –P

)(


nπ


nπ

)
.

Let f (x) = x for – < x < . The cosine series of f (x) is the following equation.

f (x) =
a


+
∞∑
n=

an cos
nπx


,

a() =
∫ 


x dx =




,

a()n =
∫ 


x cos

nπx


dx = + cosnπ

–
∑

k=

(–)k Pk+

(nπ )(k+)

=
 · 
nπ cosnπ –

 ·  ·  · 
nπ cosnπ +

 ·  ·  ·  ·  · 
nπ cosnπ ,

(.)

where nPr = n!
(n–r)! = n · (n – ) · (n – ) · · · · · (n – r + ).

From (.), we are able to express the rule of coefficient a()n by using the matrix

a()n =  cosnπ

⎛
⎜⎝
  
 – ·  ·  
   ·  ·  ·  · 

⎞
⎟⎠

⎛
⎜⎝


nπ


nπ


nπ

⎞
⎟⎠

=  cosnπ

⎛
⎜⎝P  

 –P 
  P

⎞
⎟⎠

⎛
⎜⎝


nπ


nπ


nπ

⎞
⎟⎠ .

Let f (x) = x for – < x < . Then the cosine series of f (x) is the following equation:

f (x) =
a


+
∞∑
n=

an cos
nπx


,

a() =
∫ 


x dx =




,

a()n =
∫ 


x cos

nπx


dx = + cosnπ

–
∑

k=

(–)k Pk+

(nπ )(k+)

=
 · 
nπ cosnπ –

 ·  ·  · 
nπ cosnπ +

 ·  ·  ·  ·  · 
nπ cosnπ

–
 ·  ·  ·  ·  ·  ·  · 

nπ cosnπ ,

where nPr = n!
(n–r)! = n · (n – ) · (n – ) · · · · · (n – r + ).

http://www.advancesindifferenceequations.com/content/2013/1/182


Kang and Ryoo Advances in Difference Equations 2013, 2013:182 Page 7 of 16
http://www.advancesindifferenceequations.com/content/2013/1/182

From the above equation, we are able to represent the rule of coefficient a()n by using
the matrix

a()n =  cosnπ

⎛
⎜⎜⎜⎝
   
 – ·  ·   
   ·  ·  ·  ·  
   – ·  ·  ·  ·  ·  · 

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝


nπ


nπ


nπ


nπ

⎞
⎟⎟⎟⎠

=  cosnπ

⎛
⎜⎜⎜⎝

P   
 –P  
  P 
   –P

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝


nπ


nπ


nπ


nπ

⎞
⎟⎟⎟⎠ .

By using the matrix, we can display the coefficient a(l)n of cosine series in Theorem . as
follows.

Corollary . Let l be a positive even integer. Then one has

a(l)n = l+ cosnπ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

lP    . . .
 –lP   . . .
  lP  . . .
   –lP . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝


nπ


nπ


nπ


nπ
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

From now on, we will see the coefficients of the sine series. The sine series f (x) is given
by the following theorem.

Theorem . Let f (x) = xl for – < x <  and l be a positive odd integer.

f (x) =
∞∑
n=

bn sin
nπx


,

b(l)n =
∫ 


xl sin

nπx


dx = l+ cosnπ

l–
∑

k=

(–)k+ lPk

(nπ )k+

= l+l! cosnπ

l–
∑

k=

(–)k+

(l – k)!(nπ )k+
,

when nPr = n!
(n–r)! .

Proof (By mathematical induction) Where l = , b(l)n says that

b()n =
∫ 


x sin

nπx


dx =
[
–


nπ

x cos
nπx


]


+


nπ

∫ 


cos

nπx


dx

= –


nπ
cosnπ +


nπ

[

nπ

sin
nπx


]


= –



nπ
cosnπ ,

which is true.
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Now fix that l =m (m: odd) is true for b(m)
n and suppose that b(m)

n holds, that is,

b(m)
n =

∫ 


xm sin

nπx


dx = –
m+

nπ
cosnπ +

m
nπ

∫ 


xm– cos

nπx


dx

= m+ cosnπ

m–
∑

k=

(–)k+ mPk

(nπ )k+

= m+m! cosnπ

m–
∑

k=

(–)k+

(m – k)!(nπ )k+
.

By our hypothesis on b(m)
n , we see that

b(m+)
n =

∫ 


xm+ sin

nπx


dx

= –
m+

nπ
cosnπ +

(m + )
nπ

∫ 


xm+ cos

nπx


dx

= –
m+

nπ
cosnπ –

(m + )(m + )
nπ

∫ 


xm sin

nπx


dx

= –
m+

nπ
cosnπ –

(m + )(m + )
nπ

(
m+ cosnπ

m–
∑

k=

(–)k+ mPk

(nπ )k+

)

= m+ cosnπ

m+
∑

k=

(–)k+ m+Pk

(nπ )k+

= m+(m + )! cosnπ

m+
∑

k=

(–)k+

(m +  – k)!(nπ )k+
.

Therefore bn holds for l =m +  (m: odd).
Thus, we conclude the proof of the theorem by the principle of mathematical induc-

tion. �

Let f (x) = x for – < x < . Then we have the following equation:

f (x) =
∞∑
n=

bn sin
nπx


,

b()n =
∫ 


x sin

nπx


dx = + cosnπ

–
∑

k=

(–)k+ Pk

(nπ )k+
(.)

= –


nπ
cosnπ .

Let f (x) = x for – < x < . From Theorem ., we get

f (x) =
∞∑
n=

bn sin
nπx


,

http://www.advancesindifferenceequations.com/content/2013/1/182
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b()n =
∫ 


x sin

nπx


dx = + cosnπ

–
∑

k=

(–)k+ Pk

(nπ )k+
(.)

= –


nπ
cosnπ +

 ·  · 
nπ cosnπ ,

where nPr = n!
(n–r)! = n · (n – ) · (n – ) · · · · · (n – r + ).

From (.), we also get an interesting rule of coefficient bn.

b()n =  cosnπ

(
– 
  · 

)(

nπ


nπ

)
=  cosnπ

(
P 
 P

)(

nπ


nπ

)
.

Let f (x) = x for – < x < . The sine series of f (x) is the following equation:

f (x) =
∞∑
n=

bn sin
nπx


,

b()n =
∫ 


x sin

nπx


dx = + cosnπ

–
∑

k=

(–)k+ Pk

(nπ )k+
(.)

= –


nπ
cosnπ +

 ·  · 
nπ cosnπ –

 ·  ·  ·  · 
nπ cosnπ ,

where nPr = n!
(n–r)! = n · (n – ) · (n – ) · · · · · (n – r + ).

From (.), we are able to express the rule of coefficient b()n by using the matrix

b()n =  cosnπ

⎛
⎜⎝
–  
  ·  
  – ·  ·  · 

⎞
⎟⎠

⎛
⎜⎝


nπ


nπ


nπ

⎞
⎟⎠

=  cosnπ

⎛
⎜⎝
–P  
 P 
  –P

⎞
⎟⎠

⎛
⎜⎝


nπ


nπ


nπ

⎞
⎟⎠ .

Let f (x) = x for – < x < . Then the sine series of f (x) is the following equation:

f (x) =
∞∑
n=

bn sin
nπx


,

b()n =
∫ 


x sin

nπx


dx = + cosnπ

–
∑

k=

(–)k+ Pk

(nπ )k+

= –


nπ
cosnπ +

 ·  · 
nπ cosnπ –

 ·  ·  ·  · 
nπ cosnπ

+
 ·  ·  ·  ·  ·  · 

nπ cosnπ ,

where nPr = n!
(n–r)! = n · (n – ) · (n – ) · · · · · (n – r + ).
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From the above equation, we are able to represent the rule of coefficient bn by using the
matrix

b()n =  cosnπ

⎛
⎜⎜⎜⎝
–   
  ·   
  – ·  ·  ·  
    ·  ·  ·  ·  · 

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝


nπ


nπ


nπ


nπ

⎞
⎟⎟⎟⎠

=  cosnπ

⎛
⎜⎜⎜⎝
–P   
 P  
  –P 
   P

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝


nπ


nπ


nπ


nπ

⎞
⎟⎟⎟⎠ .

By using the matrix, we can arrange the coefficient b(l)n of sine series in Theorem . as
follows.

Corollary . Let l be any positive odd integer. Then we get

b(l)n = l+ cosnπ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

–lP    . . .
 lP   . . .
  –lP  . . .
   lP . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝


nπ


nπ


nπ


nπ
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

From Theorem . and Theorem ., we get the relation of coefficients between a(l)n
and b(l)n .

Theorem . Let a(l)n : the coefficient of cosine series, b(l)n : the coefficient of sine series, and
m ∈N.

b(l)n = –
nπ

m
a(l+)n , where l = m – ,m ∈N.

Proof Take l = m –  (m ∈N) in Theorem .. Then we easily see that

b(m–)
n = m cosnπ

m–∑
k=

(–)k+(m – )!
(m – k – )!(nπ )k+

= m+ cosnπ

m–∑
k=

(–)k(m)!
(m – k – )!(nπ )(k+)

(–)nπ

m
.

We also use l = m (m ∈N) from Theorem .. Then we obtain the following equation:

a(m)
n = m+ cosnπ

m–∑
k=

(–)k(m)!
(m – k – )!(nπ )(k+)

.

If l is an even integer, then b(l)n = .

http://www.advancesindifferenceequations.com/content/2013/1/182
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Hence,

b(l)n = –
nπ

m
a(l+)n , where l = m – ,m ∈N. �

Example . We state the relation of l =  and l = . Let a()n : the coefficient of cosine
series, b()n : the coefficient of sine series, andm ∈N. By using Theorem ., we derive that

b()n =  cosnπ

(
P

nπ –

nπ

)
= –

nπ


 cosnπ

(
P

nπ – P

nπ

)

= –
nπ

m
a()n form = .

3 The analogue Euler zeta function in the integers
In this section, we get the value and generalized term of the analogue Euler zeta function.
We derive ζAE(), ζAE(), . . . , ζAE(m) by using the coefficient of cosine series and obtain∑∞

n=
(–)n

(n–)m using the coefficient of sine series.
Using f (x) = xl , Theorem . can be written as

xl =
l

l + 
+

∞∑
n=

l+
l–
∑

k=

(–)k lPk+

(nπ )(k+)
cosnπ cos

nπx


. (.)

Taking x =  in (.), we easily find the following equation:

 =
l

l + 
+ l+

l–
∑

k=

(–)k lPk+

π(k+)

∞∑
n=

(–)n

(n)(k+)
, (.)

since cos(nπ ) cos( nπ
 ) is (–)m if n = m and  if n = m– withm ∈N. Therefore, we have

the results as follows:


l+

–


(l + )
=

l–
∑

k=

(–)k lPk+

π(k+)

∞∑
n=

(–)n

(n)(k+)

= l!

l–
∑

k=

(–)k

(l – k – )!(π )(k+)

∞∑
n=

(–)n

n(k+)
. (.)

From (.), we get some analogue Euler zeta functions as follows.

ζAE() =
∞∑
n=

(–)n

n
= (π )


P

(



–


 · 
)
= (π )

{
Z(,)

(



–


 · 
)}

= –



π,

where Z(,) = 
P

.

ζAE() =
∞∑
n=

(–)n

n
= (π )

{
P

P


P

(



–


 · 
)
–


P

(



–


 · 
)}

= (π )
{
Z(,)

(



–


 · 
)
+ Z(,)

(



–


 · 
)}

= –



π,

http://www.advancesindifferenceequations.com/content/2013/1/182
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where

Z(,) =
P

P


P

=


P
PZ(,),

Z(,) = –


P
,

ζAE() =
∞∑
n=

(–)n

n
= (π )

{(
– P

P


P

+ P

P

P

P


P

)(



–


 · 
)

+ P

P

–
P

(



–


 · 
)
+


P

(



–


 · 
)}

= (π )
{
Z(,)

(



–


 · 
)
+ Z(,)

(



–


 · 
)
+ Z(,)

(



–


 · 
)}

,

where

Z(,) = – P

P


P

+ P

P

P

P


P

=


P
(PZ(,) + PZ(,)),

Z(,) =
P

P

–
P

=


P
PZ(,),

Z(,) =


P
.

Hence, we find out the following generalized term ζ (m), whenm is a positive even integer.

ζAE(m) =
∞∑
n=

(–)n

nm
= (π )m

{
Z(m,)

(



–


 · 
)
+ Z(m,)

(



–


 · 
)

+ Z(m,)

(



–


 · 
)
+ · · · + Z(m,m )

(


m+ –


 · (m + )

)}
,

where recursively we define (for an even positive integerm)

Z(m,) =

m–
∑

k=

(–)m–
 +k

(m – (k + ))!
Z((k+),),

Z(m,) =

m–
∑

k=

(–)m–
 +k

(m – (k + ))!
Z((k+),),

Z(m,) =

m–
∑

k=

(–)m–
 +k

(m – (k + ))!
Z((k+),),

...

Z(m,m–
 ) =


!
Z(m–,m–

 ),

Z(m,m+
 ) = (–)

m+



m!

.

From the above, we obtain the following theorem.

http://www.advancesindifferenceequations.com/content/2013/1/182
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Theorem . Let m be any positive even integer. Then we have

∞∑
n=

(–)n

nm
= (π )m

{m–
∑
j=

(m–j–
∑

k=

(–)
m–j–

 +kZ((k+j),j)

(m – (k + j) + )!

)(


j+
–


(j + )

)

+ Z(m,m )

(


m+ –


(m + )

)}
,

where Z(m,m ) = (–)m + 
m! .

By observing Theorem ., we can easily understand the relation between the Euler zeta
function and the analogue Euler zeta function.

Example . From Theorem ., in case ofm =  we derive that

∞∑
n=

(–)n

n
= (π )

{ –
∑
j=

( –j–
∑

k=

(–)
–j–

 +kZ((k+j),j)

( – (k + j) + )!

)(


j+
–


(j + )

)

+ Z(,  )

(


+
–


( + )

)}

= (π )
{( ∑

k=

(–)+kZ(k+,)

( – k)!

)(



–


 · 
)
+
Z(,)

!

(



–


 · 
)

+ Z(,)

(



–


 · 
)}

= (π )
{(

–Z(,)

!
+
Z(,)

!

)(



–


 · 
)
+
Z(,)

!

(



–


 · 
)

+ Z(,)

(



–


 · 
)}

,

where Z(,) = 
! .

By Theorem ., we note that

xl = l+
∞∑
n=

l–
∑

k=

(–)k+ lPk

(nπ )k+
cosnπ sin

nπx


. (.)

Let x = , then we have the following equation:

 = l+
l–
∑

k=

(–)k+ lPk

πk+

∞∑
n=

(–)n

(n – )k+
, (.)

since cos(nπ ) sin( nπ
 ) is (–)m if n = m –  and  if n = m with m ∈ N.

http://www.advancesindifferenceequations.com/content/2013/1/182
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Hence, we have equation (.) from (.).


l+

=

l–
∑

k=

(–)k+ lPk

πk+

∞∑
n=

(–)n

(n – )k+

= l!

l–
∑

k=

(–)k+

(l – k)!πk+

∞∑
n=

(–)n

(n – )k+
. (.)

From (.) with l = , we obtain the following.

∞∑
n=

(–)n

(n – )
= π

(
–


P

)



= πZ(,)



=
(–)


π ,

where Z(,) = – 
P

.

∞∑
n=

(–)n

(n – )
= π

{(
P

P

–
P

)



+


P




}

= π
{
Z(,)




+ Z(,)



}

= –



π,

where

Z(,) =
P

P

–
P

=


P
PZ(,),

Z(,) =


P
,

∞∑
n=

(–)n

(n – )
= π

{(
–P

P

–
P

+ P

P

P

P

–
P

)



–
(

P

P


P

)



–


P




}

= π
{
Z(,)




+ Z(,)



+ Z(,)



}

= –



π,

where

Z(,) = –P

P

–
P

+ P

P

P

P

–
P

=


P
(–PZ(,) + PZ(,)),

Z(,) = – P

P


P

=


P
(–PZ(,)),

Z(,) = –


P
.
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From the above equations, we have the generalized term.

∞∑
n=

(–)n

(n – )m
= πm

{
Z(m,)




+ Z(m,)



+ Z(m,)



+ · · · + Z(m,m+
 )


m+

}
,

where recursively we define (for an odd positive integer m)

Z(m,) =

m–
∑

k=

(–)m–
 +k

(m – k)!
Z(k+,),

Z(m,) =

m–
∑

k=

(–)m–
 +k

(m – (k + ))!
Z((k+)+,),

Z(m,) =

m–
∑

k=

(–)m–
 +k

(m – k)!
Z((k+)+,),

...

Z(m,m–
 ) =


!
Z(m–,m–

 ),

Z(m,m+
 ) = (–)

m+



m!

.

Thus, we have Theorem ..

Theorem . Let m be a positive odd integer. Then one has

∞∑
n=

(–)n

(n – )m
= πm

m–
∑
j=

(

j

m–(j+)
∑

k=

(–)
m–(j+)

 +k

(m – (k + j – ))!
Z((k+j–)+,j) + Z(m,m+

 )


m+

)
,

where Z(m,m+
 ) = (–)m+

 
m! .

Example . By using Theorem ., in case ofm =  we have

∞∑
n=

(–)n

(n – )
= π

–
∑
j=

(

j

–(j+)
∑

k=

(–)
–(j+)

 +k

( – (k + j – ))!
Z((k+j–)+,j) + Z(, + )


+

)

= π
∑
j=

(

j

–j∑
k=

(–)–j+k

( – (k + j – ))!
Z((k+j–)+,j) + Z(,)




)

= π

{( ∑
k=

(–)k+

( – k)!
Z((k+),)

)



+
(

!
Z(,)

)



+ Z(,)



}

= π
{(

–
!

Z(,) +

!
Z(,)

)



+
(

!
Z(,)

)



+ Z(,)



}
,

where Z(,) = (–) 
! .
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