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Abstract
Given the sequence of Pell numbers {Pn}, we evaluate the integral part of the
reciprocal of the sum

∑∞
k=n

1
P3n

explicitly in terms of the Pell numbers themselves.
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1 Introduction
For any integer n ≥ , the well-known Pell numbers Pn are defined by the second-order
linear recurrence sequence Pn+ = Pn+ + Pn, where P =  and P = . The Pell-Lucas
numbers Qn are defined by Qn+ = Qn+ + Qn, where Q =  and Q = . Let α =  +

√


and β =  –
√
. Then from the characteristic equations x – x –  = , we also have the

computational formulae

Pn =



√

(
αn – βn) and Qn = αn + βn.

For example, the first few values of Pn andQn are P = ,P = ,P = ,P = ,P = , . . . ,
Q = ,Q = ,Q = ,Q = ,Q = ,Q = , . . . .
Various properties of the Pell numbers and related sequences have been studied bymany

authors, see [–]. For example, Santos and Sills [] studied the arithmetic properties of
the q-Pell sequence and obtained two identities. Kilic [] studied the generalized order-k
Fibonacci-Pell sequences and gave several congruences. Recently, the authors [] and []
studied the infinite sums derived from the Pell numbers and proved the following identi-
ties:

⌊( ∞∑
k=n


Pk

)–⌋
=

{
Pn– + Pn– if n is even and n≥ ;
Pn– + Pn– –  if n is odd and n≥ ,

⌊( ∞∑
k=n


P
k

)–⌋
=

{
Pn–Pn –  if n is an even number;
Pn–Pn if n is an odd number,

where �x� is the floor function, that is, it denotes the greatest integer less than or equal
to x.
Some related works can also be found in [] and []. Especially in [], the authors

studied a problem, which is little different from (). That is, they studied the computa-
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tional problem of the nearest integer function of (
∑∞

k=n

uk
)– and proved an interesting

conclusion:

∥∥∥∥∥
( ∞∑

k=n


uk

)–∥∥∥∥∥ = un – un– for all n > n,

where ‖·‖ denotes the nearest integer, namely ‖x‖ = �x+ 
�, {un}n≥ is an integer sequence

satisfying the recurrence formula

un = aun– + un– + · · · + un–s (s ≥ )

with the initial conditions u ≥ , uk ∈N,  ≤ k ≤ s – .
Using the method in [] seems to be very difficult to deal with (

∑∞
k=n


usk
)– for all inte-

gers s ≥ .
The main purpose of this paper related to the computing problem of

P(s,n) ≡
⌊( ∞∑

k=n


Ps
k

)–⌋
()

for all integers s ≥ . At the end of [], the authors asked whether there exists a corre-
sponding formula for P(,n).
In fact, this problem is difficult because it is quite unclear a priori what the shape of

the result might be. In order to resolve the question, we carefully applied the method of
undetermined coefficients and constructed a number of delicate inequalities in order to
complete a proof. The result is as follows.

Theorem For any positive integer n ≥ , we have the identity

P(,n) =

{
P
nPn– + PnP

n– + �–
Pn – 

Pn–� if n is even and n ≥ ;
P
nPn– + PnP

n– + � 
Pn + 

Pn–� if n is odd and n≥ .

It remains a difficult problem even to conjecture what might be an analogous expression
to the formula for P(,n) in the theorem for P(k,n) when k ≥ .

2 Proof of the theorem
In this section, we shall prove our theorem directly. First we consider the case that n = m
is an even number. It is clear that in this case our theorem is equivalent to

P
mPm– + PmP

m– –



(Pm + Pm–)

<

( ∞∑
k=m


P
k

)–

< P
mPm– + PmP

m– –



(Pm + Pm–) +
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or


P
mPm– + PmP

m– –

 (Pm + Pm–) + 



<
∞∑

k=m


P
k
<


P
mPm– + PmP

m– –

 (Pm + Pm–)

. ()

Now we prove that for all positive integers k, we have the inequality


P
k

+


P
k+

<


P
kPk– + PkP

k– –

 (Pk + Pk–)

–


P
k+Pk+ + Pk+P

k+ –

 (Pk+ + Pk+)

. ()

It is clear that () holds for k = , ,  and . So, without loss of generality, we can assume
that k ≥ . Note that P

k =

 (Pk – Pk), P

k+ =

 (Pk+ + Pk+), P

k + P
k+ =


 (Pk+ +

Pk + Pk+ – Pk), P
kP


k+ =


 (Qk+ – Qk+ + Qk+ + ) and

P
kPk– + PkP

k– =


(Pk– + Pk– + Pk– + Pk),

so inequality () is equivalent to

(Pk+ + Pk + Pk+ – Pk)
Qk+ – Qk+ + Qk+ + 

<
Pk– + Pk– – 

Pk+ – 
 Pk

(Pk– + Pk– – 
Pk – 

 Pk–)(Pk+ + Pk+ – 
Pk+ – 

 Pk+)
. ()

From the definition and properties of Pn and Qn, we can easily deduce the identities

PnPk =


Qn+k –

(–)k


Qn–k , n≥ k,

QnQk =Qn+k + (–)kQn–k , n≥ k,

PnQk = Pn+k + (–)kPn–k , n≥ k.

So, applying these formulae, we have

(Pk– + Pk–)(Pk+ + Pk+) =


(Qk+ + Qk+ – ,)

and
(
Pk– + Pk– –




Pk –



Pk–

)(
Pk+ + Pk+ –




Pk+ –



Pk+

)

=



(
Qk+ + Qk+ –

,


Qk+ –
,


Qk –
,,

,
Qk–

)

–



(
,,

,
Qk– +

,,
,

)
.
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From these two identities and (), we deduce that inequality () is equivalent to

Pk+ + Pk + Pk+ – Pk

Qk+ – Qk+ + Qk+ + 

<
Pk– + Pk– – 

Pk+ – 
 Pk

Qk+ + Qk+ – ,
 Qk+ – ,

 Qk – ,,
, Qk– – ,,

, Qk– – ,,
,

. ()

For convenience, we let

A = (Pk+ + Pk + Pk+ – Pk)×
(
Qk+ + Qk+ –

,


Qk+

–
,


Qk –
,,

,
Qk– –

,,
,

Qk– –
,,

,

)

and

B = (Qk+ – Qk+ + Qk+ + )
(
Pk– + Pk– –




Pk+ –



Pk

)
.

Then by calculation it follows that

A = (Pk+ + Pk) + (Pk+ + Pk–) –
,


(Pk+ + Pk–)

–
,


(Pk+ + Pk–) –
,,

,
(Pk – Pk+) –

,,
,

(Pk–

+ Pk+) –
,,

,
Pk+ + (Pk+ – Pk+) + (Pk+ – Pk+)

–
,


(Pk+ – Pk+) –
,


(Pk – Pk) –
,,

,
(Pk– – Pk+)

–
,,

,
(Pk– + Pk+) –

,,
,

Pk + × (Pk+ + Pk+)

+ × (Pk+ + Pk+) –
,× 


(Pk+ + Pk) –

,× 


(Pk+

+ Pk–) –
,,× 

,
(Pk– + Pk–) –

,,× 
,

(Pk– + Pk–)

–
,,

,
Pk+ – × (Pk+ – Pk+) – × (Pk+ – Pk+)

+
,× 


(Pk+ – Pk+) +

,× 


(Pk – Pk) +
,,× 

,
(Pk–

– Pk–) +
,,× 

,
(Pk– – Pk–) +

,,
,

Pk

= Pk+ + Pk+ –
,


Pk+ –
,


Pk –
,,

,
Pk–

–
,,

,
Pk– –

,,
,

Pk– –
,,

,
Pk–

–
,,

,
Pk– –

,,
,

Pk–,

B = (Pk+ + Pk+) + (Pk+ – Pk+) –



(Pk+ + Pk+)
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–



(Pk+ – Pk+) – × (Pk+ + Pk+) – × (Pk – Pk+)

+
× 


(Pk+ + Pk+) +
× 


(Pk+ – Pk+) + × (Pk – Pk–)

+ × (Pk– – Pk–) –
× 


(Pk+ + Pk) –
× 


(Pk+ – Pk+)

+ × Pk– + × Pk– –
× 


Pk+ –
× 


Pk

= Pk+ + Pk+ –
,


Pk+ –
,


Pk +
,


Pk

+
,


Pk– +
,


Pk– +
,


Pk– –
,


Pk– –

,


Pk–.

Observe that themajor terms ofA and B (above those of order Pk) are in total agreement.
Note that Pn+ = Pn+ + Pn, we have

B –A =
,,

,
Pk +

,,
,

Pk–

+
,,

,
Pk– +

,,
,

Pk–

+
,,

,
Pk– +

,,
,

Pk– > 

for all integers k ≥ . So, inequalities (), () and () hold for all integers k ≥ .
Now, applying () repeatedly, we have

∞∑
k=m


P
k
=

∞∑
k=m

(

P
k

+


P
k+

)

<
∞∑
k=m


P
kPk– + PkP

k– –

 (Pk + Pk–)

–
∞∑
k=m


P
k+Pk+ + Pk+P

k+ –

 (Pk+ + Pk+)

=


P
mPm– + PmP

m– –

 (Pm + Pm–)

. ()

On the other hand, we prove the inequality


P
k

+


P
k+

>


P
kPk– + PkP

k– –

 (Pk + Pk–) + 



–


P
k+Pk+ + Pk+P

k+ –

 (Pk+ + Pk+) + 


. ()

This inequality is equivalent to

Pk+ + Pk + Pk+ – Pk

Qk+ – Qk+ + Qk+ + 

>
Pk– + Pk– – 

Pk+ – 
 Pk

(Pk– + Pk– – 
Pk – 

 Pk– + 
 )(Pk+ + Pk+ – 

Pk+ – 
 Pk+ + 

 )
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or




(Pk+ + Pk + Pk+ – Pk)
(
Pk+ + Pk –




Pk –



Pk– +



)

> B –A

or

Qk+ + Qk+ +
,


Qk+ +
,


Qk+ +
,


Qk +
,


Qk–

+



Pk+ +



Pk +



Pk+ –



Pk +
,


>


(B –A). ()

It is clear that inequality () holds for all integers k ≥ , so inequality () is true. Now,
applying () repeatedly, we have

∞∑
k=m


P
k
=

∞∑
k=m

(

P
k

+


P
k+

)

>


P
mPm– + PmP

m– –

 (Pm + Pm–) + 


. ()

Combining () and (), we may immediately deduce inequality ().
Nowwe consider that n = m+ is an oddnumber. It is clear that in this case our theorem

is equivalent to

P
m+Pm + Pm+P

m +



(Pm+ + Pm)

<

( ∞∑
k=m+


P
k

)–

< P
m+Pm + Pm+P

m +



(Pm+ + Pm) +



or


P
m+Pm + Pm+P

m + 
 (Pm+ + Pm) + 



<
∞∑

k=m+


P
k
<


P
m+Pm + Pm+P

m + 
 (Pm+ + Pm)

. ()

First we prove the inequality


P
k+

+


P
k+

<


P
k+Pk + Pk+P

k +

 (Pk+ + Pk)

–


P
k+Pk + Pk+P

k +

 (Pk+ + Pk)

. ()

It is easy to check that inequality () is correct for k = ,  and . So, we can assume
that k ≥ . Note that P

k+ =

 (Pk+ + Pk+), P

k+ =

 (Pk+ – Pk+), P

k+ + P
k+ =


 (Pk+ +Pk+ +Pk+ –Pk+), P

k+P

k+ =


 (Qk+ +Qk+ +Qk+ –), P

k+Pk +
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Pk+P
k =


 (Pk+ +Pk+ –Pk+ –Pk), so inequality () is equivalent to the inequal-

ity

Pk+ + Pk+ + Pk+ – Pk+

Qk+ + Qk+ + Qk+ – 

<
Pk+ + Pk+ + 

Pk+ + 
 Pk+

(Pk+ + Pk+ + 
Pk+ + 

 Pk)(Pk+ + Pk+ + 
Pk+ + 

 Pk+)
. ()

From the definition and properties of the Pell-Lucas numbers, we have

(Pk+ + Pk+)(Pk+ + Pk+) = (Qk+ + Qk+ + ,)/

and

(
Pk+ + Pk+ +




Pk+ +



Pk

)(
Pk+ + Pk+ +




Pk+ +



Pk+

)

=



(
Qk+ + Qk+ +

,


Qk+ +
,


Qk+ –
,,

,
Qk–

–
,,

,
Qk– +

,,
,

)
.

By these two identities and (), we deduce that inequality () is equivalent to

Pk+ + Pk+ + Pk+ – Pk+

Qk+ + Qk+ + Qk+ – 

<
Pk+ + Pk+ + 

Pk+ + 
 Pk+

Qk+ + Qk+ + ,
 Qk+ + ,

 Qk+ – ,,
, Qk– – ,,

, Qk– + ,,
,

. ()

For convenience, we let

A′ =
(
Qk+ + Qk+ +

,


Qk+ +
,


Qk+ –
,,

,
Qk–

–
,,

,
Qk– +

,,
,

)
× (Pk+ + Pk+ + Pk+ – Pk+)

and B′ = (Qk+ + Qk+ + Qk+ – )(Pk+ + Pk+ + 
Pk+ + 

 Pk+). Then we
have

A′ = (Pk+ – Pk+) + (Pk+ – Pk+) +
,


(Pk+ – Pk–)

+
,


(Pk+ – Pk–) –
,,

,
(Pk+ – Pk+) –

,,
,

(
Pk+

+ Pk+
)
+
,,

,
Pk+ + (Pk+ + Pk+) + (Pk+ + Pk+)

+
,


(Pk+ + Pk+) +
,


(Pk+ + Pk+) –
,,

,
(Pk+ – Pk+)

–
,,

,
(Pk+ + Pk+) +

,,
,

Pk+ + × (Pk+ + Pk+)
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+ × (Pk+ + Pk+) +
,× 


(Pk+ + Pk+) +

,× 


(
Pk+

+ Pk+
)
–
,,× 

,
(Pk + Pk–) –

,,× 
,

(Pk– + Pk–)

+
,,× 

,
Pk+ – × (Pk+ – Pk+) – × (Pk+ – Pk+)

–
,× 


(Pk+ – Pk+) –

,× 


(Pk+ – Pk+) +
,,× 

,
(
Pk+

– Pk–
)
+
,,× 

,
(Pk – Pk–) –

,,× 
,

Pk+

= Pk+ + Pk+ +
,


Pk+ +
,


Pk+ –
,,

,
Pk+

–
,,

,
Pk+ +

,,
,

Pk

+
,,

,
Pk– –

,,
,

Pk–

–
,,

,
Pk–,

B′ = (Pk+ – Pk+) + (Pk+ + Pk+) +



(Pk+ – Pk+)

+



(Pk+ + Pk+) + × (Pk+ – Pk+) + (Pk+ + Pk+)

+



(Pk+ – Pk+) +
,


(Pk+ + Pk+) + × (Pk+ – Pk–)

+ ,(Pk+ – Pk–) +



(Pk+ – Pk+) +
× 


(Pk+ + Pk+)

– × Pk+ – × Pk+ –
× 


Pk+ –
× 


Pk+

= Pk+ + Pk+ +
,


Pk+ +
,


Pk+ +
,


Pk+

+
,


Pk+ –
,


Pk+ –
,


Pk+ –
,


Pk– –

,


Pk–.

Note that Pn+ = Pn+ + Pn, we have

B′ –A′ =
,,

,
Pk+ +

,,
,

Pk+ –
,,

,
Pk

–
,,

,
Pk– +

,,
,

Pk– +
,,

,
Pk–

=
(
,,,

,
Pk –

,,
,

Pk

)
+

(
,,,

,
Pk–

–
,,

,
Pk–

)
+
,,

,
Pk– +

,,
,

Pk– > 

for all integers k ≥ . So, inequalities (), () and () hold for all integers k ≥ .
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Now, applying () repeatedly, we have

∞∑
k=m+


P
k
=

∞∑
k=m

(


P
k+

+


P
k+

)

<
∞∑
k=m


P
k+Pk + Pk+P

k +

 (Pk+ + Pk)

–
∞∑
k=m


P
k+Pk+ + Pk+P

k+ +

 (Pk+ + Pk+)

. ()

On the other hand, we prove the inequality


P
k+

+


P
k+

>


P
k+Pk + Pk+P

k +

 (Pk+ + Pk) + 



–


P
k+Pk+ + Pk+P

k+ +

 (Pk+ + Pk+) + 


. ()

It is easy to check that inequality () is correct for k = ,  and . So, we can assume that
k ≥ . This time, inequality () is equivalent to

Pk+ + Pk+ + Pk+ – Pk+

Qk+ + Qk+ + Qk+ – 

>
Pk+ + Pk+ + 

Pk+ + 
 Pk+

(Pk+ + Pk+ + 
Pk+ + 

 Pk + 
 )(Pk+ + Pk+ + 

Pk+ + 
 Pk+ + 

 )

or




(Pk+ + Pk+ + Pk+ – Pk+)
(
Pk+ + Pk+ +




Pk+ +



Pk +



)

> B′ –A′

or

Qk+ + Qk+ –
,


Qk+ –
,


Qk+ +
,


Qk+ +
,


Qk+

+



Pk+ +



Pk+ +



Pk+ –



Pk+ +
,


>



(
B′ –A′). ()

It is clear that inequality () holds for all integers k ≥ , so inequality () is true. Now,
applying () repeatedly, we have

∞∑
k=m+


P
k
=

∞∑
k=m

(


P
k+

+


P
k+

)

>


P
m+Pm + Pm+P

m + 
 (Pm+ + Pm) + 


. ()

Combining () and (), we may immediately deduce inequality ().
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Now our theorem follows from inequalities () and (). This completes the proof of our
theorem.
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