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Abstract
The aim of this article is to introduce the Laplace-Adomian-Padé method (LAPM) to
the Riccati differential equation of fractional order. This method presents accurate and
reliable results and has a great perfection in the Adomian decomposition method
(ADM) truncated series solution which diverges promptly as the applicable domain
increases. The approximate solutions are obtained in a broad range of the problem
domain and are compared with the generalized Euler method (GEM). The comparison
shows a precise agreement between the results, the applicable one of which needs
fewer computations.
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1 Introduction
In recent years, it has turned out that many phenomena in biology, chemistry, acoustics,
control theory, psychology and other areas of science can be fruitfully modeled by the
use of fractional-order derivatives. That is because of the fact that a reasonable modeling
of a physical phenomenon having dependence not only on the time instant but also on
the prior time history can be successfully achieved by using fractional calculus []. Frac-
tional differential equations (FDEs) have been used as a kind of model to describe several
physical phenomena [–] such as damping laws, rheology, diffusion processes, and so on.
Moreover, some researchers have shown the advantageous use of the fractional calculus in
the modeling and control of many dynamical systems. Besides modeling, finding accurate
and proficient methods for solving FDEs has been an active research undertaking. Exact
solutions for the majority of FDEs cannot be found easily, thus analytical and numerical
methods must be used. Some numerical methods for solving FDEs have been presented
and they have their own advantages and limitations.
Many physical problems are governed by fractional differential equations (FDEs), and

finding the solution of these equations have been the subject of many investigations in
recent years. Recently, there have been a number of schemes devoted to the solution of
fractional differential equations. These schemes can be broadly classified into two classes,
numerical and analytical. The Adomian decomposition method [], homotopy perturba-
tion method [–], homotopy analysis method [, ], Taylor matrix method [] and
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Haar wavelet method [] have been used to solve the fractional-order Riccati differential
equation. However, the convergence region of the corresponding results is rather small.
In this work, the nonlinear fractional-order Riccati differential equations will be ap-

proached analytically by combining the Laplace transform, the Adomian decomposition
method (ADM), and the Padé approximation. The Laplace-Adomian-Padé approximation
was proposed by Tsai and Chen [] for solving Ricatti differential equations. The method
was extended by Zeng et al. [] to derive the analytical approximate solutions of fractional
differential equations. Khan et al. [] applied the Laplace transformation coupled with
the decomposition method in fractional order seepage flow and telegraph equations. We
applied the idea of refs. [, ] for solving a fractional-order Riccati differential equation.
The Laplace-Adomian-Padémethod (LAPM) is illustrated by applications, and the results
obtained are compared with those of the exact and numerical solutions by the generalized
Euler method. Odibat and Momani [] derived the generalized Euler method that was
developed for the numerical solution of initial value problems with Caputo derivatives.

2 Definitions and preliminaries
Caputo’s fractional derivative
Caputo’s fractional derivative of a function f (t) is defined by

dαf
dtα

=


�(n – α)

∫ t


(t – τ )n–α–f (n)(t)dt (n –  < α < n). ()

The Laplace transform to Caputo’s fractional derivative gives

L
{
dα

dtα
f (t)

}
= sαF(s) –

n–∑
m=

sα–m–f (m)() (n –  < α < n). ()

The Mittag-Leffler function and its generalized forms have played a special role in solv-
ing the fractional differential equations. The so-called Mittag-Leffler function with two
parameters Eα,β (Z) was introduced by Agarwal []

Eα,β (Z) =
∞∑
j=

Zj

�(αj + β)
(α > ,β > ). ()

Its kth derivative is given by []

E(k)
α,β (Z) =

∞∑
j=

(j + k)!Zj

j!�(αj + αk + β)
(k = , , , , . . .). ()

We find it convenient to introduce the function

εk(t,a : α,β) = tαk+β–E(k)
α,β

(±atα
)
. ()

Its Laplace transform was evaluated by Podlubny []

∫ ∞


e–stεk(t,a : α,β)dt =

k!sα–β

(sα ∓ a)k+
(
Re(s)� |a|/α)

. ()
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Hence

L–
[

k!sα–β

(sα ∓ a)k+

]
= tαk+β–E(k)

α,β
(±atα

)
. ()

Another convenient property of εk(t, y : α,β), which has been used in this paper, is its
simple fractional differentiation

Dλ
t εk(t,a : α,β) = εk(t,a : α,β – λ) (λ ≺ β). ()

3 Implementation of LAPM
Consider the fractional-order Riccati differential equation of the form

Dα
t y = P(t)y +Q(t)y + R(t), t > , < α ≤  ()

subject to the initial condition

y() = k. ()

The nonlinear term in Eq. () is y and P(t), Q(t) and R(t) are known functions. For α = ,
the fractional-order Riccati equation converts into the classical Riccati differential equa-
tion. Applying the Laplace transform on both sides of Eq. (),

L
[
Dα

t y
]
=L

[
P(t)y

]
+L

[
Q(t)y

]
+L

[
R(t)

]
. ()

Using the property of the Laplace transform, we get

sαL[y] – sα–y() =L
[
P(t)y

]
+L

[
Q(t)y

]
+L

[
R(t)

]
. ()

Using the initial condition from Eq. (), the outcome is

sαL[y] – sα–k =L
[
P(t)y

]
+L

[
Q(t)y

]
+L

[
R(t)

]
. ()

Equation () can be written as

L[y] = k
s
+


sα
L

[
R(t)

]
+


sα
L

[
Q(t)y

]
+


sα
L

[
P(t)y

]
. ()

The method assumes the solution as an infinite series:

y =
∞∑
n=

yn. ()

The nonlinearity y is decomposed as

y =
∞∑
n=

An, ()
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where An = An(y, y, y, y, . . . , yn) are the so-called Adomian polynomials given as

⎡
⎢⎢⎢⎢⎢⎢⎣

A

A

A

. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

   . . . 
 y  . . . 
 y 

!y

 . . . 

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

f (y)
f ′(y)
f ′′(y)
. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦
. ()

Substituting Eqs. () and () into Eq. (), the result is

L
[ ∞∑

n=

yn

]
=
k
s
+


sα
L

[
P(t)

∞∑
n=

An

]
+


sα
L

[
Q(t)

∞∑
n=

yn

]
+


sα
L

[
R(t)

]
. ()

Matching both sides of Eq. () yields the following iterative algorithm:

L[y] =
k
s
+


sα
L

[
R(t)

]
, ()

L[y] =

sα
L

[
P(t)A

]
+


sα
L

[
Q(t)y

]
, ()

L[y] =

sα
L

[
P(t)A

]
+


sα
L

[
Q(t)y

]
, ()

...

L[yn] =

sα
L

[
P(t)An–

]
+


sα
L

[
Q(t)yn–

]
. ()

The aim is to study the mathematical behavior of the solution y(t) for different values
of α. By applying the inverse Laplace transform to both sides of Eq. (), the value of y
is obtained. Substituting these values of y and A into Eq. (), the first component y
is obtained. The other terms y, y, y, . . . . can be calculated recursively in a similar way
by Eqs. ()-(). The LAPM solution coincides with the Taylor series solution in the
initial value case and diverges rapidly as the applicable domain increases. This goal can
be achieved by forming Padé approximants, which have the advantage of manipulating
the polynomial approximation into a rational function to gain more information about
y(t). It is well known that Padé approximants will converge on the entire real axis, if y(t) is
free of singularities on the real axis. To consider the behaviors of a solution for different
values of α, we will take advantage of Eq. () available for  < α ≤ .

4 Test problems
In this section, we implement LAPM to the nonlinear fractional Riccati differential equa-
tions. Two examples of nonlinear fractional Riccati differential equations are solved with
real coefficients.
Test problem . Consider the nonlinear Riccati differential equation

Dα
t (y) =  + y(t) – y(t),  < α ≤ , ()

with the initial condition

y() = . ()
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The exact solution for α =  was found to be

y(t) =  +
√
 tanh

[√
t +



log

(√
 – √
 + 

)]
. ()

First, applying the Laplace transform on both sides of Eq. (), we get

L
[
Dα

t (y)
]
=L[] + L[y] –L

[
y

]
. ()

Using the property of the Laplace transform, we obtain

sαL[y] – sα–y() =

s
+ L[y] –L

[
y

]
. ()

Using the initial condition from Eq. (), it becomes

L[y] = 
s(sα – )

–


sα – 
L

[
y

]
. ()

Substituting Eqs. () and () into Eq. (), the result is

L
[ ∞∑

n=

yn

]
=


s(sα – )

–


sα – 
L

[
P(t)

∞∑
n=

An

]
. ()

Matching both sides of Eq. () yields

L[y] =


s(sα – )
, ()

L[y] = –


sα – 
L[A], ()

L[y] = –


sα – 
L[A], ()

...

L[yn] = –


sα – 
L[An–] (n≥ ). ()

Applying the inverse fractional Laplace transform to Eq. (), hence we can write it as

L[y] =
s–

sα – 
. ()

By applying the inverse Laplace transform to Eq. (), the value y is obtained as

y = tαEα,+α

(
tα

)
= tα

∞∑
j=

(tα)j

�((j + )α + )
. ()

Now, considering the few terms of y,

y = tα
(


�(α + )

+
(tα)

�(α + )
+

(tα)

�(α + )
+

(tα)

�(α + )
+

(tα)

�(α + )
+ · · ·

)
. ()
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The first Adomian polynomial A is obtained from Eq. (), then we substitute y and A

in Eq. (). Evaluating the Laplace transform of the quantities on the right-hand side of
Eq. () and then applying the inverse Laplace transform, the value of y can be obtained.
The other terms y, y, . . . can be computed recursively in a similar calculation. By using
LAPM, a power series solution is essentially a truncated series solution. The LAPM so-
lution coincides with the Maclaurin series of the exact solution in the initial value case
and diverges rapidly as the applicable domain increases. The next two components of the
solution are

y = –
tα�( + α)

(�( + α))�( + α)
–

tα�( + α)
(�( + α))�( + α)

–
tα�( + α)

�( + α)�( + α)�( + α)

–
tα�( + α)

(�( + α))�( + α)
–

tα�( + α)
�( + α)�( + α)�( + α)

–
tα�( + α)

(�( + α))�( + α)
– · · · , ()

y =
tα�( + α)�( + α)

�( + α)�( + α)�( + α)
+

tα�( + α)�( + α)
�( + α)�( + α)�( + α)

+
tα�( + α)

�( + α)�( + α)�( + α)
+

tα�( + α)�( + α)
�( + α)�( + α)�( + α)

+
tα�( + α)�( + α)

�( + α)�( + α)�( + α)�( + α)
+ · · · . ()

Therefore the truncated series solution obtained from LAPM is

y(t) = y + y + y + · · · , ()

y(t) =
tα

�( + α)
+

tα

�( + α)
+

tα

�( + α)
–

tα�( + α)
(�( + α))�( + α)

+
tα

�( + α)
–

tα�( + α)
(�( + α))�( + α)

– · · · . ()

The aim is to study the mathematical behavior of the result as the order of the fractional
derivative changes. It was formally shown by Khan et al. [] that this goal can be achieved
by forming Padé approximants [] which have the advantage of manipulating the poly-
nomial approximation into a rational function to gain more information about y(t). To
consider the behavior of a solution of different values of α, we will take advantage of Eq.
() available for  < α ≤  and consider the following three special cases.
Case I: Setting α =  in Eq. (), we reproduce the approximate solution obtained in Eq.

(), given by the Taylor expansion of y(t) at t =  of the LAPM solution, as follows:

y(t) = t + t + .t – .t – .t +O
(
t

)
. ()

The Taylor expansion of y(t) at t =  of the exact solution () is

y(t) = .t+.t +.t –.t –.t +O
(
t

)
. ()

It indicates that both the Taylor expansions at t =  of the LAPM solution and the exact
solution coincide very well. In order to improve the LAPM solution, the Padé approximant
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is introduced. It is known that there exists the [ L
M ] Padé approximant which satisfies

∞∑
n=

yn =
PL(t)
QM(t)

–O
(
tL+M+) = [

L
M

]
+O

(
t

)
. ()

By using Mathematica, the [  ] Padé approximant gives that the rational approximation
obtained from the solution in Eq. () is determined to be

[



]
=

t + .t – .t – .t · · · + .t

 – .t + .t – .t + · · · – .× –t
. ()

Figures - represent the comparisons between the exact solution, the LAM and the
LAPM solutions in problem . They show that the LAM solutions diverge rapidly after

Figure 1 The approximate solutions solved by different methods in problem 1 for α = 1.

Figure 2 The approximate solutions solved by different methods in problem 1 for α = 1.
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Table 1 Numerical results of the Riccati equation in problem 1

t GEM α = 1 LAPM α = 1 Exact solution Absolute error
y(t) y(t) y(t)

0.1 0.1000000000 0.1102952044 0.1102951969 7.5× 10–9

0.2 0.2419000000 0.2419783394 0.2419767996 1.5× 10–6

0.3 0.3580039000 0.3951442714 0.3951048487 0.00003942275
0.4 0.5167880007 0.5682377001 0.5678121663 0.00042553377
0.5 0.6934386 0.7588607194 0.7580143934 0.00084632599

Figure 3 The approximate curve of LAPM in problem 1 for α = 1
2 .

t = . However, they represent that the LAPM solution demonstrates a good convergence
through the applicable domain. Table  shows the absolute errors of the LAPM solution
in comparison with the exact and GEM solutions in problem .
Case II: Let us examine the case α = 

 , the approximate solution obtained in Eq. ()
given by the Taylor expansion of y(t) at t =  has reproduced as

y(t) = .
√
t + t + .t


 – .t


 · · · . ()

For simplicity, let t 
 = z, then

y(z) = .z + z + .z – · · · . ()

Calculating the [  ] Padé approximation and recalling that z = t 
 , we obtain

[



]
=

.t/ + .t/ – .t/ · · · + .t/

 – .t – .t – .t · · ·.t . ()

Figure  represents the LAPM solution in problem  for α = 
 .

Case III:Here, taking α = 
 in Eq. (), the approximate solution has been replicated by

y(t) = .t

 + .t


 – .t


 · · ·.× –t


 . ()
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Figure 4 The approximate curve of LAPM in problem 1 for α = 3
4 .

Table 2 Numerical results of the Riccati equation in problem 1 for α = 1, 12 ,
3
4

t α = 1
2 GEM α = 1

2 LAPM α = 3
4 GEM α = 3

4 LAPM α = 1 LAPM

0.1 0.3568251903 0.3568031433 0.1934884034 0.1934012434 0.1102952044
0.2 0.9228652311 0.9228654512 0.4546091238 0.4546025138 0.2419783394
0.3 1.6341391963 1.6341391234 0.7840321022 0.7840324522 0.3951442714
0.4 2.2044414876 2.2044414576 1.1619801122 1.1619856232 0.5682377001
0.5 2.4004512311 2.4004476111 1.5438814841 1.5438814521 0.7588607194
0.6 2.0414276521 2.0414345521 1.8736212813 1.873658343 0.8840411201
0.7 2.4142176521 2.414888821 2.1129313512 2.112943562 1.0827124311
0.8 2.4142456641 2.4142478941 2.2602500123 2.260134223 1.2820124311
0.9 2.4142456047 2.4142455667 2.339920199 2.339134229 1.4740612089
1 2.4142410607 2.4142312137 2.3795146712 2.37935612 1. 6515902374

For simplicity, let t 
 = z; then

y(t) = .z + .z – .z · · ·.× –z. ()

Calculating the [  ] Padé approximants and recalling that z = t 
 , we achieve

[



]
=

.t/ – .t/ + .t/ · · · – .t/

 – .
√
t – .t + .t/ · · · – × –t/

. ()

Figure  shows the LAPM solution in problem  for α = 
 .

Table  shows the results of the fractional Riccati equation in test problem  of the LAPM
approximant solution in comparison with the different values of α = ,  ,


 . The technique

described above was translated into a Mathematica program and run on a Pentium- PC
to investigate the effects of various values of α = ,  ,


 on the fractional Riccati differen-

tial equation. The graphical results are in good agreement with the results of the exact
solution.
Test problem . Consider the nonlinear Riccati differential equation

Dα
t y(t) =  – y(t) ()

http://www.advancesindifferenceequations.com/content/2013/1/185
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with the initial condition

y() = . ()

The exact solution [] was found to be

y(t) =
et – 
et + 

. ()

First, applying the Laplace transform to both sides of Eq. (), we get

L
[
Dα

t (y)
]
=L[] –L

[
y

]
. ()

Using the property of the Laplace transform yields

sαL[y] – y() =

s
–L

[
y

]
. ()

Utilizing the initial conditions from Eq. (), it becomes

sαL[y] = 
s
–L

[
y

]
()

or

L[y] = 
sα+

–

sα
L

[
y

]
. ()

Substituting Eqs. () and () into Eq. (), the result is

L
[ ∞∑

n=

yn

]
=

(


sα+

)
–

(

sα

)
L

[
P(t)

∞∑
n=

An

]
. ()

Matching both sides of Eq. () yields the following iterative algorithm:

L[y] =


sα+
, ()

L[y] = –

sα
L[A], ()

L[y] = –

sα
L[A], ()

...

L[yn] = –

sα
L[An–] (n≥ ). ()

Applying the inverse fractional Laplace transform to Eq. (), hence the value y is

y =
tα

�(α + )
. ()
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Substituting the value of y in Eq. (), the first Adomian polynomial A is obtained,
then substituting y and A in Eq. () and proceeding in a similar way, the other terms
y, y, y, . . . . can be computed recursively. The first twelve components of the solution are

y = –
tα�( + α)

(�( + α))�( + α)
, ()

y =
tα�( + α)�( + α)

(�( + α))�( + α)�( + α)
, ()

y = –
tα(�( + α))�( + α)

(�( + α))(�( + α))�( + α)

–
tα�( + α)�( + α)�( + α)

(�( + α))(�( + α))�( + α)�( + α)
, ()

...

y =
tα(�( + α))(�( + α))(�( + α))�( + α)�( + α)

(�( + α))(�( + α))(�( + α))(�( + α))�( + α)�( + α)

+
tα(�( + α))(�( + α))(�( + α))�( + α)�( + α)

(�( + α))(�( + α))(�( + α))(�( + α))�( + α)�( + α)
. ()

Therefore the truncated series solution is obtained as

y(t) = y + y + y + · · · + y ()

y(t) =


�( + α)
–

tα�( + α)
(�( + α))�( + α)

+
tα�( + α)�( + α)

(�( + α))�( + α)�( + α)

–
tα(�( + α))�( + α)

(�( + α))(�( + α))�( + α)

–
tα�( + α)�( + α)�( + α)

(�( + α))(�( + α))�( + α)�( + α)
– · · · . ()

The plan is to study the mathematical performance of the solution of LAPM as the order
of the fractional derivative changes. To consider the behavior of a solution of different
values of α, we will take advantage of the explicit formula Eq. () available for  < α ≤ 
and consider the following three special cases.
Case I: Setting α =  in Eq. (), we reproduce the approximate solution obtained in Eq.

() given by the Taylor expansion of y(t) at t =  of the LAPM solution as follows:

y(t) = t –


t +




t –



t +


, 
t –

, 
, 

t +
, 

,, 
t

–
, 

, , 
t +

, , 
, , , 

t –
, , 

, , , , 
t

–
, , ,

, , , , 
t +

, , , 
, , , , , 

t

–
, , , , 

, , , , , , 
t. ()
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Figure 5 The approximate solutions solved by different methods in problem 2 for α = 1.

It is known that there exists the [ L
M ] Padé approximant which satisfies

∞∑
n=

yn =
PL(t)
QM(t)

–O
(
tL+M+) = [

L
M

]
+O

(
t

)
. ()

By using Mathematica, the Padé approximation gives that the truncated series obtained
from the LAPM solution in Eq. () is determined to be

[



]
=
t + 

 t
 + 

 t
 + 

, t
 + 

,, t
 + 

,,, t
 + 

,,,, t


 + 
 t +


 t +


, t +


, t +


,, t +


,,, t

. ()

From Figure , the presented result is in a good agreement with the exact result for
α = . Figure  represents the comparisons between the exact solution, the LAM, and
the LAPM solutions for problem . It shows that the LAM solutions diverge rapidly after
t = . However, it represents that the LAPM solution demonstrates a good convergence
through the applicable domain. Table  shows the absolute errors of the LAPM solution
in comparison with the exact solution.
Case II: Here we examine the case α = 

 in Eq. (), we replicate the approximate solu-
tion obtained in Eq. () given by

y(t) = .
√
t – .t


 + .t


 · · · + .t


 . ()

For simplicity, let t 
 = z; then

y(t) = .z – .z + .z · · · + .z. ()

Calculating the [  ] Padé approximation and recalling that z = t 
 , we get

[



]
=
.t/ + .t/ – .t/ · · · + .t/

 + .t + .t – .t · · · + .t
. ()
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Table 3 Comparison results of the Riccati equation in problem 2 for α = 1

t LAPM α = 1 Exact solution Absolute error
y(t) y(t)

1.0 0.7615941560 0.7615941560 0.01235728510× 10–13

2.0 0.9640275801 0.9640275801 0.00524212251× 10–12

3.0 0.9950547537 0.9950547537 0.00816114713× 10–12

4.0 0.9993292997 0.9993292997 1.15746178216× 10–12

5.0 0.9999092043 0.9999092043 6.17826138530× 10–11

6.0 0.9999877117 0.9999877117 4.55279023510× 10–11

7.0 0.9999983377 0.9999983369 7.57246128510× 10–10

8.0 0.9999997813 0.9999997749 6.33977368904× 10–9

9.0 1.0000000063 0.9999999695 3.67962922016× 10–8

10.0 1.0000001574 0.9999999958 1.61485463823× 10–7

15.0 1.000000000 1.0000000000 0.00002076502676
20.0 1.0000000000 1.0000000000 0.00030117782151
25.0 1.0000000000 1.0000000000 0.00161702848408
30.0 1.0000000000 1.0000000000 0.00510751644687

Figure 6 The approximate solutions solved by different methods in problem 2 for α = 1
2 .

Figure  shows the [  ] Pade approximants of y(t) in LAM and LAPM for α = 
 . Figure 

illustrates the comparisons between the LAM solution and the LAPM solution in problem
 for α = 

 .
Case III: In this case we examine the LAPM when α = 

 in Eq. ()

y(t) = .t

 – .t


 + .t


 · · · + .t


 . ()

For simplicity, let t  = z; then

y(t) = .z – .z + .z · · · + .z. ()
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Figure 7 The approximate curves of problem 2 for α = 3
4 .

Table 4 Numerical results of the Riccati equation of problem 2 for α = 1, 12 ,
3
4

t α = 1
2 GEM α = 1

2 LAPM α = 3
4 GEM α = 3

4 LAPM α = 1 LAPM

1 1.1283791670 0.69873925716 1.08806525252 0.73683666979 0.7615941560
2 0.8200613571 0.78565566383 0.88785292084 0.87018299629 0.9640275801
3 1.1896048240 0.82585713776 1.11809163866 0.91495001137 0.9950547537
4 0.7211473382 0.85006608584 0.84593506046 0.93590393958 0.9993292997
5 1.2627089888 0.86673312218 1.15537415211 0.94734255879 0.9999092043
6 0.5919620577 0.87923035124 0.79099259853 0.95361548723 0.9999877117
7 1.3249356376 0.88919590450 1.19828883587 0.95638359853 0.9999983377
8 0.4724965813 0.89752861875 0.72400539873 0.95643868318 0.9999997813
9 1.3489616923 0.90476369883 1.24172445342 0.95425989627 1.0000000063
10 0.4240319436 0.91123881947 0.65212406998 0.95020154024 1.0000001574

Calculating the [  ] Padé approximation and recalling that z = t  , we get

[



]
=

(
.t/ + .× –t – .× –t/ · · ·

– .× –t/
)

/(
 + .× –t/ – .× –

√
t · · ·

– .× –t/
)
. ()

Figure  shows the [  ] Padé approximants of y(t) in LAPM for α = 
 . Table  shows

the comparison results of the fractional Riccati equation in test problem  of the LAPM
solution in comparison with the different values of α = ,  ,


 . The procedure described

abovewas translated intoMathematica program and run on a Pentium- PC to investigate
the effects of special values of α = ,  ,


 for the fractional Riccati differential equation. y(t)

is evaluated up to n =  and plotted in Figure .

5 Conclusions
Most of the real physical problems can be best modeled with fractional differential equa-
tions. Besides modeling, the solution techniques and their reliabilities are most important
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Figure 8 The approximate curves by different methods in problem 2 for α = 1, 12 ,
3
4 .

to catch critical points at which a sudden divergence or bifurcation starts. Therefore, high
accuracy solutions are always needed. Here, we have implemented the Adomian decom-
positionmethod coupled with the Laplace transformation and the Padé approximation on
the Ricatti differential equation with fractional order. From the test problems considered
here, it can be easily seen that LAPM obtains results as accurate as possible. Thus, it can
be concluded that the LAPM methodology is very dominant and efficient in finding ap-
proximate solutions, and comparison has been made with GEM. This paper can be used
as a standard paradigm for other applications. The results of LAPM have been compared
with exact solutions and ref. [] for α = .

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors have equal contributions and they have approved the final version of the manuscript.

Author details
1Department of Mathematical Sciences, University of Karachi, Karachi, 75270, Pakistan. 2Department of Mathematical
Sciences, Federal Urdu University Arts, Science and Technology, Karachi, 75300, Pakistan.

Acknowledgements
The authors would like to express their sincere gratitude to the referees for their careful assessment and suggestions
regarding the initial version of the manuscript. The author Najeeb Alam Khan is highly thankful and grateful to the Dean
of Faculty of Sciences, University of Karachi, Karachi-75270, Pakistan for facilitating this research work.

Received: 8 January 2013 Accepted: 29 May 2013 Published: 26 June 2013

References
1. Podlubny, I: Fractional Differential Equations. Academic Press, New York (1999)
2. Khan, NA, Jamil, M, Ara, A, Das, S: Explicit solution of time-fractional batch reactor system. Int. J. Chem. React. Eng. 9,

Article ID A91 (2011)
3. Feliu-Batlle, V, Perez, R, Rodriguez, L: Fractional robust control of main irrigation canals with variable dynamic

parameters. Control Eng. Pract. 15, 673-686 (2007)
4. Podlubny, I: Fractional-order systems and controllers. IEEE Trans. Autom. Control 44(1), 208-214 (1999)
5. Garrappa, R: On some explicit Adams multistep methods for fractional differential equations. J. Comput. Appl. Math.

229, 392-399 (2009)
6. Jamil, M, Khan, NA: Slip effects on fractional viscoelastic fluids. Int. J. Differ. Equ. 2011, Article ID 193813 (2011)
7. Abbasbandy, S: Homotopy perturbation method for quadratic Riccati differential equation and comparison with

Adomian’s decomposition method. Appl. Math. Comput. 172(1), 485-490 (2006)

http://www.advancesindifferenceequations.com/content/2013/1/185


Khan et al. Advances in Difference Equations 2013, 2013:185 Page 16 of 16
http://www.advancesindifferenceequations.com/content/2013/1/185

8. Odibat, Z, Momani, S: Modified homotopy perturbation method: application to quadratic Riccati differential
equation of fractional order. Chaos Solitons Fractals 36(1), 167-174 (2008)

9. Khan, NA, Ara, A, Jamil, M: An efficient approach for solving the Riccati equation with fractional orders. Comput.
Math. Appl. 61, 2683-2689 (2011)

10. Aminkhah, H, Hemmatnezhad, M: An efficient method for quadratic Riccati differential equation. Commun.
Nonlinear Sci. Numer. Simul. 15, 835-839 (2010)

11. Abbasbandy, S: Iterated He’s homotopy perturbation method for quadratic Riccati differential equation. Appl. Math.
Comput. 175, 581-589 (2006)

12. Cang, J, Tan, Y, Xu, H, Liao, SJ: Series solutions of non-linear Riccati differential equations with fractional order. Chaos
Solitons Fractals 40, 1-9 (2009)

13. Tan, Y, Abbasbandy, S: Homotopy analysis method for quadratic Riccati differential equation. Commun. Nonlinear Sci.
Numer. Simul. 13, 539-546 (2008)

14. Gülsu, M, Sezer, M: On the solution of the Riccati equation by the Taylor matrix method. Appl. Math. Comput. 176(2),
414-421 (2006)

15. Li, Y, Hu, L: Solving fractional Riccati differential equations. In: Third International Conference on Information and
Computing Using Haar Wavelet. IEEE (2010). doi:10.1109/ICIC.2010.86

16. Tsai, P, Chen, CK: An approximate analytic solution of the nonlinear Riccati differential equation. J. Franklin Inst. 347,
1850-1862 (2010)

17. Zeng, DQ, Qin, YM: The Laplace-Adomian-Pade technique for the seepage flows with the Riemann-Liouville
derivatives. Commun. Frac. Calc. 3, 26-29 (2012)

18. Khan, Y, Diblik, J, Faraz, N, Smarda, Z: An efficient new perturbative Laplace method for space-time fractional
telegraph equations. Adv. Differ. Equ. 2012, Article ID 204 (2012)

19. Odibat, Z, Momani, S: An algorithm for the numerical solution of differential equations of fractional order. J. Appl.
Math. Inform. 26, 15-27 (2008)

20. Agarwal, RP: A propos d’une note de M. Pierre Humbert. C. R. Acad. Sci. Paris 236(21), 2031-2032 (1953)
21. Khan, NA, Jamil, M, Ara, A, Khan, NU: On efficient method for system of fractional differential equations. Adv. Differ.

Equ. 2011, Article ID 303472 (2011)
22. Baker, GA: Essentials of Padé Approximants. Academic Press, London (1975)

doi:10.1186/1687-1847-2013-185
Cite this article as: Khan et al.: Fractional-order Riccati differential equation: Analytical approximation and numerical
results. Advances in Difference Equations 2013 2013:185.

http://www.advancesindifferenceequations.com/content/2013/1/185
http://dx.doi.org/10.1109/ICIC.2010.86

	Fractional-order Riccati differential equation: Analytical approximation and numerical results
	Abstract
	Keywords

	Introduction
	Deﬁnitions and preliminaries
	Caputo's fractional derivative

	Implementation of LAPM
	Test problems
	Conclusions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


