On the reciprocal sums of higher-order sequences

Zhengang Wu* and Han Zhang

Correspondence:
sky.wzgfff@163.com
Department of Mathematics, Northwest University, Xi'an, Shaanxi, P.R. China

Abstract

Let $\left\{u_{n}\right\}$ be a higher-order recursive sequence. Several identities are obtained for the infinite sums and finite sums of the reciprocals of higher-order recursive sequences. MSC: Primary 11B39

Keywords: infinite sums; finite sums; reciprocal; higher-order recurrences

1 Introduction

The so-called Fibonacci zeta function and Lucas zeta function defined by

$$
\zeta_{F}(s)=\sum_{n=1}^{\infty} \frac{1}{F_{n}^{s}} \quad \text { and } \quad \zeta_{L}(s)=\sum_{n=1}^{\infty} \frac{1}{L_{n}^{s}},
$$

where the F_{n} and L_{n} denote the Fibonacci numbers and Lucas numbers, have been considered in several different ways. Navas [1] discussed the analytic continuation of these series. Elsner et al. [2] obtained that for any positive distinct integer s_{1}, s_{2}, s_{3}, the numbers $\zeta_{F}\left(2 s_{1}\right), \zeta_{F}\left(2 s_{2}\right)$, and $\zeta_{F}\left(2 s_{3}\right)$ are algebraically independent if and only if at least one of s_{1}, s_{2}, s_{3} is even.

Ohtsuka and Nakamura [3] studied the partial infinite sums of reciprocal Fibonacci numbers and proved the following conclusions:

$$
\begin{aligned}
& \left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{F_{k}}\right)^{-1}\right\rfloor= \begin{cases}F_{n-2} & \text { if } n \text { is even and } n \geq 2 \\
F_{n-2}-1 & \text { if } n \text { is odd and } n \geq 1\end{cases} \\
& \left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{F_{k}^{2}}\right)^{-1}\right\rfloor= \begin{cases}F_{n-1} F_{n}-1 & \text { if } n \text { is even and } n \geq 2 \\
F_{n-1} F_{n} & \text { if } n \text { is odd and } n \geq 1\end{cases}
\end{aligned}
$$

Where $\lfloor\cdot\rfloor$ denotes the floor function.
Further, Wu and Zhang [4,5] generalized these identities to the Fibonacci polynomials and Lucas polynomials. Similar properties were also investigated in [6-8]. Related properties of the Fibonacci polynomials and Lucas polynomials can be found in [9-12].
Recently, some authors considered the nearest integer of the sums of reciprocal Fi bonacci numbers and other famous sequences and obtained several new interesting identities, see [13] and [14]. Kilic and Arikan [15] defined a k th-order linear recursive sequence
$\left\{u_{n}\right\}$ for any positive integer $p \geq q$ and $n>k$ as follows:

$$
u_{n}=p u_{n-1}+q u_{n-2}+u_{n-3}+\cdots+u_{n-k},
$$

and they proved that there exists a positive integer n_{0} such that

$$
\left\|\left(\sum_{k=n}^{\infty} \frac{1}{u_{k}}\right)^{-1}\right\|=u_{n}-u_{n-1} \quad\left(n \geq n_{0}\right)
$$

where $\|\cdot\|$ denotes the nearest integer. (Clearly, $\|x\|=\left\lfloor x+\frac{1}{2}\right\rfloor$.)
In this paper, we unify the above results by proving some theorems that include all the results, [3-8] and [13-15], as special cases. We consider the following type of higher-order recurrence sequences. For any positive integer $a_{1}, a_{2}, \ldots, a_{m}$, we define m th-order linear recursive sequences $\left\{u_{n}\right\}$ for $n>m$ as follows:

$$
\begin{equation*}
u_{n}=a_{1} u_{n-1}+a_{2} u_{n-2}+\cdots+a_{m-1} u_{n-m+1}+a_{m} u_{n-m}, \tag{1}
\end{equation*}
$$

with initial values $u_{i} \in \mathbb{N}$ for $0 \leq i<m$ and at least one of them is not zero. If $m=2$, $a_{1}=a_{2}=1$, then $u_{n}=F_{n}$ are the Fibonacci numbers. If $m=2, a_{1}=2, a_{2}=1$, then $u_{n}=P_{n}$ are the Pell numbers. Our main results are the following.

Theorem 1 Let $\left\{u_{n}\right\}$ be an mth-order sequence defined by (1) with the restriction $a_{1} \geq a_{2} \geq$ $\cdots \geq a_{m} \geq 1$. For any positive real number $\beta>2$, there exists a positive integer n_{1} such that

$$
\left\|\left(\sum_{k=n}^{\lfloor\beta n\rfloor} \frac{1}{u_{k}}\right)^{-1}\right\|=u_{n}-u_{n-1} \quad\left(n \geq n_{1}\right) .
$$

Taking $\beta \rightarrow+\infty$, from Theorem 1 we may immediately deduce the following.

Corollary 1 Let $\left\{u_{n}\right\}$ be an mth-order sequence defined by (1) with the restriction $a_{1} \geq a_{2} \geq$ $\cdots \geq a_{m} \geq 1$. Then there exists a positive integer n_{2} such that

$$
\left\|\left(\sum_{k=n}^{\infty} \frac{1}{u_{k}}\right)^{-1}\right\|=u_{n}-u_{n-1} \quad\left(n \geq n_{2}\right) .
$$

For a positive real number $1<\beta \leq 2$, whether there exits an identity for

$$
\left\|\left(\sum_{k=n}^{\lfloor\beta n\rfloor} \frac{1}{u_{k}}\right)^{-1}\right\|
$$

is an interesting open problem.

2 Several lemmas

To complete the proof of our theorem, we need the following.

Lemma 1 Let $a_{1}, a_{2}, \ldots, a_{m}$ be positive integers with $a_{1} \geq a_{2} \geq \cdots \geq a_{m} \geq 1$ and $m \in \mathbb{N}$ with $m \geq 2$. Then, for the polynomial

$$
f(x)=x^{m}-a_{1} x^{m-1}-a_{2} x^{m-2}-\cdots-a_{m-1} x-a_{m},
$$

we have
(I) Polynomial $f(x)$ has exactly one positive real zero α with $a_{1}<\alpha<a_{1}+1$.
(II) Other $m-1$ zeros of $f(x)$ lie within the unit circle in the complex plane.

Proof For any positive integer $a_{1} \geq a_{2} \geq \cdots \geq a_{m} \geq 1$ and $m \geq 2$, we have

$$
\begin{aligned}
f\left(a_{1}\right) & =a_{1}^{m}-a_{1}^{m}-a_{2} a_{1}^{m-2}-\cdots-a_{m-1} a_{1}-a_{m} \\
& =-a_{2} a_{1}^{m-2}-\cdots-a_{m-1} a_{1}-a_{m}<0,
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(a_{1}+1\right) & =\left(a_{1}+1\right)^{m}-a_{1}\left(a_{1}+1\right)^{m-1}-a_{2}\left(a_{1}+1\right)^{m-2}-\cdots-a_{m} \\
& >\left(a_{1}+1\right)^{m}-a_{1}\left(\left(a_{1}+1\right)^{m-1}+\left(a_{1}+1\right)^{m-2}+\cdots+1\right) \\
& =\left(a_{1}+1\right)^{m}-a_{1} \cdot \frac{\left(a_{1}+1\right)^{m}-1}{a_{1}}=1>0 .
\end{aligned}
$$

Thus there exits a positive real zero α of $f(x)$ with $a_{1}<\alpha<a_{1}+1$. According to Descarte's rule of signs, $f(x)=0$ has at most one positive real root. So, $f(x)$ has exactly one positive real zero α with $a_{1}<\alpha<a_{1}+1$. This completes the proof of (I) in Lemma 1.

Observe that from (I) in Lemma 1 we have

$$
\begin{align*}
& \text { if } x \in \mathbb{R} \text { such that } x>\alpha \text {, then } f(x)>0, \tag{2}\\
& \text { if } x \in \mathbb{R} \text { such that } 0<x<\alpha \text {, then } f(x)<0 . \tag{3}
\end{align*}
$$

Let

$$
\begin{aligned}
g(x) & =(x-1) f(x) \\
& =x^{m+1}-\left(a_{1}+1\right) x^{m}+\left(a_{1}-a_{2}\right) x^{m-1}+\left(a_{2}-a_{3}\right) x^{m-2}+\cdots+\left(a_{m-1}-a_{m}\right) x+a_{m} .
\end{aligned}
$$

Since $f(x)$ has exactly one positive real zero $\alpha, g(x)$ has two positive real zeros α and 1 . Observe that

$$
\begin{align*}
& \text { if } x \in \mathbb{R} \text { such that } x>\alpha \text {, then } g(x)>0, \tag{4}\\
& \text { if } x \in \mathbb{R} \text { such that } 1<x<\alpha \text {, then } g(x)<0 \text {. } \tag{5}
\end{align*}
$$

To complete the proof of (II) in Lemma 1, it is sufficient to show that there is no zero on and outside of the unit circle.

Claim $1 f(x)$ has no complex zero z_{1} with $\left|z_{1}\right|>\alpha$.

Proof Assume that there exits such a zero. So, we have

$$
f\left(z_{1}\right)=z_{1}^{m}-a_{1} z_{1}^{m-1}-a_{2} z_{1}^{m-2}-\cdots-a_{m-1} z_{1}-a_{m}=0
$$

then we obtain

$$
\begin{aligned}
& \left|z_{1}^{m}\right| \leq a_{1}\left|z_{1}^{m-1}\right|+a_{2}\left|z_{1}^{m-2}\right|+\cdots+a_{m-1}\left|z_{1}\right|+a_{m} \\
& f\left(\left|z_{1}\right|\right)=\left|z_{1}^{m}\right|-a_{1}\left|z_{1}^{m-1}\right|-a_{2}\left|z_{1}^{m-2}\right|-\cdots-a_{m-1}\left|z_{1}\right|-a_{m} \leq 0
\end{aligned}
$$

This contradicts with (2).

Claim $2 f(x)$ has no complex zero z_{2} with $1<\left|z_{2}\right|<\alpha$.

Proof Assume that there exits such a zero. Since $f\left(z_{2}\right)=0$,

$$
g\left(z_{2}\right)=z_{2}^{m+1}-\left(a_{1}+1\right) z_{2}^{m}+\left(a_{1}-a_{2}\right) z_{2}^{m-1}+\cdots+\left(a_{m-1}-a_{m}\right) z_{2}+a_{m}=0,
$$

then we obtain

$$
\left(a_{1}+1\right)\left|z_{2}\right|^{m} \leq\left|z_{2}\right|^{m+1}+\left(a_{1}-a_{2}\right)\left|z_{2}\right|^{m-1}+\cdots+\left(a_{m-1}-a_{m}\right)\left|z_{2}\right|+a_{m} .
$$

So, we have $g\left(\left|z_{2}\right|\right) \geq 0$, which contradicts with (5).

Claim 3 On the circle $\left|z_{3}\right|=\alpha$ and $\left|z_{3}\right|=1, f(x)$ has the unique zero α.

Proof $\operatorname{If} f\left(z_{3}\right)=0$, then

$$
g\left(z_{3}\right)=z_{3}^{m+1}-\left(a_{1}+1\right) z_{3}^{m}+\left(a_{1}-a_{2}\right) z_{3}^{m-1}+\cdots+\left(a_{m-1}-a_{m}\right) z_{3}+a_{m}=0,
$$

then we obtain

$$
\begin{equation*}
\left(a_{1}+1\right)\left|z_{3}\right|^{m} \leq\left|z_{3}\right|^{m+1}+\left(a_{1}-a_{2}\right)\left|z_{3}\right|^{m-1}+\cdots+\left(a_{m-1}-a_{m}\right)\left|z_{3}\right|+a_{m} . \tag{6}
\end{equation*}
$$

If $z_{3}=\alpha$ or $z_{3}=1$, then $g\left(z_{3}\right)=0$, so (6) must be an equality. Therefore, z_{3}^{m+1}, $\left(a_{1}-\right.$ $\left.a_{2}\right) z_{3}^{m-1},\left(a_{2}-a_{3}\right) z_{3}^{m-2}, \ldots,\left(a_{m-1}-a_{m}\right) z_{3}$ and a_{m} all lie on the same ray issuing from the origin. Since $\left(a_{1}-a_{2}\right),\left(a_{2}-a_{3}\right), \ldots, a_{m}$, are all the elements of $\mathbb{R}^{+}, z_{3}^{m+1}, z_{3}^{m-1}, z_{3}^{m-2}, \ldots, z_{3}$ must be the elements of \mathbb{R}^{+}. Therefore we obtain $f\left(z_{3}\right) \in \mathbb{R}^{+}$. On the circle $\left|z_{3}\right|=\alpha$ and $\left|z_{3}\right|=1$, there are two conditions $z_{3}=1$ or $z_{3}=\alpha$. Since $f(1) \neq 0, \alpha$ is the unique zero of $f(x)$, Claim 3 holds.

From the three claims, (II) in Lemma 1 is proven.

Lemma 2 Let $m \geq 2$ and let $\left\{u_{n}\right\}_{n \geq 0}$ be an integer sequence satisfying the recurrence formula (1). Then the closed formula of u_{n} is given by

$$
u_{n}=c \alpha^{n}+\mathcal{O}\left(d^{-n}\right) \quad(n \rightarrow \infty),
$$

where $c>0, d>1$, and $a_{1}<\alpha<a_{1}+1$ is the positive real zero of $f(x)$.

Proof Let $\alpha, \alpha_{1}, \ldots, \alpha_{t}$ be the distinct roots of $f(x)=0$, where $f(x)=0$ is the characteristic equation of the recurrence formula (1). From Lemma 1 we know that α is the simple root of $f(x)=0$, then let r_{j}, for $j=1,2, \ldots, t$, denote the multiplicity of the root α_{j}. From the properties of m th-order linear recursive sequences, u_{n} can be expressed as follows:

$$
\begin{equation*}
u_{n}=c \alpha^{n}+\sum_{i=1}^{t} P_{i}(n) \alpha_{i}^{n} \tag{7}
\end{equation*}
$$

where

$$
P_{i}(n) \in \mathbb{R}[n], \quad \operatorname{deg} P_{i}(n)=r_{i}-1, r_{1}+r_{2}+\cdots+r_{t}=m-1, \quad \text { and } \quad c \in \mathbb{R} .
$$

For example, for positive integers $1 \leq u, v, w \leq t$, if α_{u} is the simple root of $f(x)$, then $P_{u}(n)=$ g_{1}, where $g_{1} \in \mathbb{R}$, and $\operatorname{deg} P_{u}(n)=0$; if α_{ν} is the double root of $f(x)$, then $P_{v}(n)=g_{2} n+g_{3}$, where $g_{2}, g_{3} \in \mathbb{R}$, and $\operatorname{deg} P_{v}(n)=1$; if α_{w} is the multiple root of $f(x)$ with the multiplicity r_{w}, then $P_{w}(n)=b_{1} n^{r_{w}-1}+b_{2} n^{r_{w}-2}+\cdots+b_{r_{w}-1} n+b_{r_{w}}$, where $b_{1}, b_{2}, \ldots, b_{r_{w}} \in \mathbb{R}$, and $\operatorname{deg} P_{w}(n)=$ $r_{w}-1$.

From Lemma 1 we have $\left|\alpha_{i}\right|<1$ for $1 \leq i \leq t$. Since each term of tail in (7) goes to 0 as $n \rightarrow \infty$, we can find the constant $M \in \mathbb{R}$ and $d \in \mathbb{R}$ with $d>1$ for $n>n_{0}$ such that

$$
\left|\sum_{i=1}^{t} P_{i}(n) \alpha_{i}^{n}\right| \leq \sum_{i=1}^{t}\left|P_{i}(n) \alpha_{i}^{n}\right| \leq M d^{-n}
$$

which completes the proof (note that if all the roots of $f(x)$ are distinct, we can choose $d^{-1}=\max \left\{\left|\alpha_{1}\right|,\left|\alpha_{2}\right|, \ldots,\left|\alpha_{m-1}\right|\right\}$ and $\left.M=m-1\right)$.

3 Proof of Theorem 1

In this section, we shall complete the proof of Theorem 1 . From the geometric series as $\epsilon \rightarrow 0$, we have

$$
\frac{1}{1 \pm \epsilon}=1 \mp \epsilon+\mathcal{O}\left(\epsilon^{2}\right)=1+\mathcal{O}(\epsilon)
$$

Using Lemma 2, we have

$$
\begin{align*}
\frac{1}{u_{k}} & =\frac{1}{c \alpha^{k}+\mathcal{O}\left(d^{-k}\right)}=\frac{1}{c \alpha^{k}\left(1+\mathcal{O}\left((\alpha d)^{-k}\right)\right)} \\
& =\frac{1}{c \alpha^{k}}\left(1+\mathcal{O}\left((\alpha d)^{-k}\right)\right) \\
& =\frac{1}{c \alpha^{k}}+\mathcal{O}\left(\left(\alpha^{2} d\right)^{-k}\right) \tag{8}
\end{align*}
$$

Thus

$$
\begin{aligned}
\sum_{k=n}^{\lfloor\beta n\rfloor} \frac{1}{u_{k}} & =\frac{1}{c} \sum_{k=n}^{\lfloor\beta n\rfloor} \frac{1}{\alpha^{k}}+\mathcal{O}\left(\sum_{k=n}^{\lfloor\beta n\rfloor}\left(\alpha^{2} d\right)^{-k}\right) \\
& =\frac{\alpha}{c(\alpha-1)} \cdot \alpha^{-n}-\frac{1}{c(\alpha-1)} \cdot \alpha^{-\lfloor\beta n\rfloor}+\mathcal{O}\left(\alpha^{-2 n} d^{-n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\alpha}{c(\alpha-1)} \cdot \alpha^{-n}+\mathcal{O}\left(\alpha^{-2 n} \alpha^{-\lfloor\beta n\rfloor+2 n}\right)+\mathcal{O}\left(\alpha^{-2 n} d^{-n}\right) \\
& =\frac{\alpha}{c(\alpha-1)} \alpha^{-n}+\mathcal{O}\left(\alpha^{-2 n} h\right)
\end{aligned}
$$

where $h=\max \left\{\alpha^{-\lfloor\beta n\rfloor+2 n}, d^{-n}\right\}$.
Taking reciprocal, we get

$$
\begin{aligned}
\left(\sum_{k=n}^{\lfloor\beta n\rfloor} \frac{1}{u_{k}}\right)^{-1} & =\frac{1}{\frac{\alpha}{c(\alpha-1)} \alpha^{-n}\left(1+\mathcal{O}\left(\alpha^{-n} h\right)\right)} \\
& =\frac{\alpha-1}{\alpha} c \alpha^{n}\left(1+\mathcal{O}\left(\alpha^{-n} h\right)\right) \\
& =\frac{\alpha-1}{\alpha} c \alpha^{n}+\mathcal{O}(h) \\
& =u_{n}-u_{n-1}+\mathcal{O}(h)
\end{aligned}
$$

Since $h=\max \left\{\alpha^{-\lfloor\beta n\rfloor+2 n}, d^{-n}\right\}<1$, there exists $n \geq n_{1}$ sufficient large so that the modulus of the last error term becomes less than $1 / 2$, which completes the proof.

Proof of Corollary 1 From identity (8), we have

$$
\frac{1}{u_{k}}=\frac{1}{c \alpha^{k}}+\mathcal{O}\left(\left(\alpha^{2} d\right)^{-k}\right)
$$

Thus

$$
\sum_{k=n}^{\infty} \frac{1}{u_{k}}=\frac{1}{c} \sum_{k=n}^{\infty} \frac{1}{\alpha^{k}}+\mathcal{O}\left(\sum_{k=n}^{\infty}\left(\alpha^{2} d\right)^{-k}\right)=\frac{\alpha}{c(\alpha-1)} \alpha^{-n}+\mathcal{O}\left(\left(\alpha^{2} d\right)^{-n}\right)
$$

Taking reciprocal, we get

$$
\begin{aligned}
\left(\sum_{k=n}^{\infty} \frac{1}{u_{k}}\right)^{-1} & =\frac{1}{\frac{\alpha}{c(\alpha-1)} \alpha^{-n}\left(1+\mathcal{O}\left((\alpha d)^{-n}\right)\right)} \\
& =\frac{\alpha-1}{\alpha} c \alpha^{n}\left(1+\mathcal{O}\left((\alpha d)^{-n}\right)\right) \\
& =\frac{\alpha-1}{\alpha} c \alpha^{n}+\mathcal{O}\left(d^{-n}\right) \\
& =u_{n}-u_{n-1}+\mathcal{O}\left(d^{-n}\right)
\end{aligned}
$$

So, there exists $n \geq n_{2}$ sufficiently large so that the modulus of the last error term becomes less than $1 / 2$, which completes the proof.

4 Related results

The following results are obtained similarly.

Theorem 2 Let $\left\{u_{n}\right\}$ be an mth-order sequence defined by (1) with the restriction $a_{1} \geq a_{2} \geq$ $\cdots \geq a_{m} \geq 1$. Let p and q be positive integers with $0 \leq q<p$. For any real number $\beta>2$,
there exist positive integers n_{3}, n_{4} and n_{5} depending on a_{1}, a_{2}, \ldots, and a_{m} such that
(a) $\left\|\left(\sum_{k=n}^{\lfloor\beta n\rfloor} \frac{(-1)^{k}}{u_{k}}\right)^{-1}\right\|=(-1)^{n}\left(u_{n}+u_{n-1}\right) \quad\left(n \geq n_{3}\right)$,
(b) $\left\|\left(\sum_{k=n}^{\lfloor\beta n\rfloor} \frac{1}{u_{p k+q}}\right)^{-1}\right\|=u_{p n+q}-u_{p n-p+q} \quad\left(n \geq n_{4}\right)$,
(c) $\left\|\left(\sum_{k=n}^{\lfloor\beta n\rfloor} \frac{(-1)^{k}}{u_{p k+q}}\right)^{-1}\right\|=(-1)^{n}\left(u_{p n+q}+u_{p n-p+q}\right) \quad\left(n \geq n_{5}\right)$.

For $\beta \rightarrow+\infty$, we deduce the following identity of infinite sum as a special case of Theorem 2.

Corollary 2 Let $\left\{u_{n}\right\}$ be an mth-order sequence defined by (1) with the restriction $a_{1} \geq$ $a_{2} \geq \cdots \geq a_{m} \geq 1$. Let p and q be positive integers with $0 \leq q<p$. Then there exist positive integers n_{6}, n_{7} and n_{8} depending on a_{1}, a_{2}, \ldots, and a_{m} such that
(e) $\left\|\left(\sum_{k=n}^{\infty} \frac{(-1)^{k}}{u_{k}}\right)^{-1}\right\|=(-1)^{n}\left(u_{n}+u_{n-1}\right) \quad\left(n \geq n_{6}\right)$,
(f) $\left\|\left(\sum_{k=n}^{\infty} \frac{1}{u_{p k+q}}\right)^{-1}\right\|=u_{p n+q}-u_{p n-p+q} \quad\left(n \geq n_{7}\right)$,
(g) $\left\|\left(\sum_{k=n}^{\infty} \frac{(-1)^{k}}{u_{p k+q}}\right)^{-1}\right\|=(-1)^{n}\left(u_{p n+q}+u_{p n-p+q}\right) \quad\left(n \geq n_{8}\right)$.

Proof We shall prove only (c) in Theorem 2 and other identities are proved similarly. From Lemma 2 we have

$$
\frac{(-1)^{k}}{u_{p k+q}}=\frac{(-1)^{k}}{c \alpha^{p k+q}+\mathcal{O}\left(d^{-p k-q}\right)}=\frac{(-1)^{k}}{c \alpha^{p k+q}}\left(1+\mathcal{O}\left((\alpha d)^{-p k-q}\right)\right)
$$

Thus

$$
\begin{aligned}
\sum_{k=n}^{\lfloor\beta n\rfloor} \frac{(-1)^{k}}{u_{p k+q}} & =\frac{(-1)^{n} \alpha^{p}}{c \alpha^{p n+q}\left(\alpha^{p}+1\right)}+\frac{(-1)^{n} \alpha^{p}}{c \alpha^{p\lfloor\beta n\rfloor+q}\left(\alpha^{p}+1\right)}+\mathcal{O}\left(\left(\alpha^{2} d\right)^{-p n-q}\right) \\
& =\frac{(-1)^{n} \alpha^{p}}{c \alpha^{p n+q}\left(\alpha^{p}+1\right)}+\mathcal{O}\left(\alpha^{-p\lfloor\beta n\rfloor-q}\right)+\mathcal{O}\left(\alpha^{-2 p n-2 q} d^{-p n-q}\right) \\
& =\frac{(-1)^{n} \alpha^{p}}{c \alpha^{p n+q}\left(\alpha^{p}+1\right)}+\mathcal{O}\left(\alpha^{-2 p n} \alpha^{-p\lfloor\beta n\rfloor+2 p n}\right)+\mathcal{O}\left(\alpha^{-2 p n} d^{-p n}\right) \\
& =\frac{(-1)^{n} \alpha^{p}}{c \alpha^{p n+q}\left(\alpha^{p}+1\right)}+\mathcal{O}\left(\alpha^{-2 p n} h^{p}\right)
\end{aligned}
$$

where $h=\max \left\{\alpha^{-\lfloor\beta n\rfloor+2 n}, d^{-n}\right\}$.

Taking reciprocal, we get

$$
\begin{aligned}
\left(\sum_{k=n}^{\lfloor\beta n\rfloor} \frac{(-1)^{k}}{u_{p k+q}}\right)^{-1} & =(-1)^{n}\left(c \alpha^{p n+q}+c \alpha^{p n-p+q}\right)\left(1+\mathcal{O}\left(\alpha^{-p n} h^{p}\right)\right) \\
& =(-1)^{n}\left(u_{p n+q}+u_{p n-p+q}\right)+\mathcal{O}\left(h^{p}\right) .
\end{aligned}
$$

Since $h=\max \left\{\alpha^{-\lfloor\beta n\rfloor+2 n}, d^{-n}\right\}<1$, there exists $n \geq n_{5}$ sufficiently large so that the modulus of the last error term becomes less than $1 / 2$, which completes the proof.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

ZW obtained the theorems and completed the proof. HZ corrected and improved the final version. Both authors read and approved the final manuscript.

Acknowledgements

The authors express their gratitude to the referee for very helpful and detailed comments. This work is supported by the N.S.F. (11071194, 11001218) of P.R. China and G.I.C.F. (YZZ12062) of NWU.

Received: 22 May 2013 Accepted: 4 June 2013 Published: 27 June 2013

References

1. Navas, L: Analytic continuation of the Fibonacci Dirichlet series. Fibonacci Q. 39, 409-418 (2001)
2. Elsner, C, Shimomura, S, Shiokawa, I: Algebraic relations for reciprocal sums of odd sums of Fibonacci numbers. Acta Arith. 148(3), 205-223 (2011)
3. Ohtsuka, H, Nakamura, S: On the sum of reciprocal Fibonacci numbers. Fibonacci Q. 46/47, 153-159 (2008/2009)
4. Wu, Z, Zhang, W: The sums of the reciprocal of Fibonacci polynomials and Lucas polynomials. J. Inequal. Appl. 134, 1-8 (2012)
5. Wu, Z, Zhang, W: Several identities involving Fibonacci polynomials and Lucas polynomials. J. Inequal. Appl. 205, 1-14 (2013)
6. Holliday, S, Komatsu, T: On the sum of reciprocal generalized Fibonacci numbers. Integers 11, 441-455 (2011)
7. Zhang, G: The infinite sum of reciprocal of the Fibonacci numbers. J. Math. Res. Expo. 31, 1030-1034 (2011)
8. Zhang, W, Wang, T: The infinite sum of reciprocal Pell numbers. Appl. Math. Comput. 218, 6164-6167 (2012)
9. Falcón, S, Plaza, Á: On the Fibonacci k-numbers. Chaos Solitons Fractals 32, 1615-1624 (2007)
10. Ma, R, Zhang, W: Several identities involving the Fibonacci numbers and Lucas numbers. Fibonacci Q. 45, 164-170 (2007)
11. Wang, T, Zhang, W: Some identities involving Fibonacci, Lucas polynomials and their applications. Bull. Math. Soc. Sci. Math. Roum. 55, 95-103 (2012)
12. Yi, Y, Zhang, W: Some identities involving the Fibonacci polynomials. Fibonacci Q. 40, 314-318 (2002)
13. Komatsu, T: On the nearest integer of the sum of reciprocal Fibonacci numbers. Aportaciones Matematicas Investigacion 20, 171-184 (2011)
14. Komatsu, T, Laohakosol, V: On the sum of reciprocals of numbers satisfying a recurrence relation of order s. J. Integer Seq. 13, Article ID 10.5.8 (2010)
15. Kilic, E, Arikan, T: More on the infinite sum of reciprocal usual Fibonacci, Pell and higher order recurrences. Appl. Math. Comput. 219, 7783-7788 (2013)
[^0]
[^0]: doi:10.1186/1687-1847-2013-189
 Cite this article as: Wu and Zhang: On the reciprocal sums of higher-order sequences. Advances in Difference Equations 2013 2013:189.

