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1 Introduction
The so-called Fibonacci zeta function and Lucas zeta function defined by

ζF (s) =
∞∑
n=


Fs
n

and ζL(s) =
∞∑
n=


Lsn

,

where the Fn and Ln denote the Fibonacci numbers and Lucas numbers, have been con-
sidered in several different ways. Navas [] discussed the analytic continuation of these
series. Elsner et al. [] obtained that for any positive distinct integer s, s, s, the numbers
ζF (s), ζF (s), and ζF (s) are algebraically independent if and only if at least one of s,
s, s is even.
Ohtsuka and Nakamura [] studied the partial infinite sums of reciprocal Fibonacci

numbers and proved the following conclusions:

⌊( ∞∑
k=n


Fk

)–⌋
=

{
Fn– if n is even and n≥ ;
Fn– –  if n is odd and n≥ .

⌊( ∞∑
k=n


F
k

)–⌋
=

{
Fn–Fn –  if n is even and n≥ ;
Fn–Fn if n is odd and n≥ .

Where �·� denotes the floor function.
Further, Wu and Zhang [, ] generalized these identities to the Fibonacci polynomials

and Lucas polynomials. Similar properties were also investigated in [–]. Related prop-
erties of the Fibonacci polynomials and Lucas polynomials can be found in [–].
Recently, some authors considered the nearest integer of the sums of reciprocal Fi-

bonacci numbers and other famous sequences and obtained several new interesting iden-
tities, see [] and []. Kilic and Arikan [] defined a kth-order linear recursive sequence
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{un} for any positive integer p ≥ q and n > k as follows:

un = pun– + qun– + un– + · · · + un–k ,

and they proved that there exists a positive integer n such that

∥∥∥∥∥
( ∞∑

k=n


uk

)–∥∥∥∥∥ = un – un– (n≥ n),

where ‖ · ‖ denotes the nearest integer. (Clearly, ‖x‖ = �x + 
�.)

In this paper, we unify the above results by proving some theorems that include all the
results, [–] and [–], as special cases.We consider the following type of higher-order
recurrence sequences. For any positive integer a,a, . . . ,am, we define mth-order linear
recursive sequences {un} for n >m as follows:

un = aun– + aun– + · · · + am–un–m+ + amun–m, ()

with initial values ui ∈ N for  ≤ i < m and at least one of them is not zero. If m = ,
a = a = , then un = Fn are the Fibonacci numbers. If m = , a = , a = , then un = Pn

are the Pell numbers. Our main results are the following.

Theorem  Let {un} be anmth-order sequence defined by ()with the restriction a ≥ a ≥
· · · ≥ am ≥ . For any positive real number β > , there exists a positive integer n such that

∥∥∥∥∥
(�βn�∑

k=n


uk

)–∥∥∥∥∥ = un – un– (n≥ n).

Taking β → +∞, from Theorem  we may immediately deduce the following.

Corollary  Let {un} be anmth-order sequence defined by ()with the restriction a ≥ a ≥
· · · ≥ am ≥ . Then there exists a positive integer n such that

∥∥∥∥∥
( ∞∑

k=n


uk

)–∥∥∥∥∥ = un – un– (n≥ n).

For a positive real number  < β ≤ , whether there exits an identity for

∥∥∥∥∥
(�βn�∑

k=n


uk

)–∥∥∥∥∥
is an interesting open problem.

2 Several lemmas
To complete the proof of our theorem, we need the following.
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Lemma  Let a,a, . . . ,am be positive integers with a ≥ a ≥ · · · ≥ am ≥  and m ∈ N

with m ≥ . Then, for the polynomial

f (x) = xm – axm– – axm– – · · · – am–x – am,

we have
(I) Polynomial f (x) has exactly one positive real zero α with a < α < a + .
(II) Other m –  zeros of f (x) lie within the unit circle in the complex plane.

Proof For any positive integer a ≥ a ≥ · · · ≥ am ≥  andm ≥ , we have

f (a) = am – am – aam–
 – · · · – am–a – am

= –aam–
 – · · · – am–a – am < ,

and

f (a + ) = (a + )m – a(a + )m– – a(a + )m– – · · · – am

> (a + )m – a
(
(a + )m– + (a + )m– + · · · + 

)
= (a + )m – a · (a + )m – 

a
=  > .

Thus there exits a positive real zero α of f (x) with a < α < a + . According to Descarte’s
rule of signs, f (x) =  has at most one positive real root. So, f (x) has exactly one positive
real zero α with a < α < a + . This completes the proof of (I) in Lemma .
Observe that from (I) in Lemma  we have

if x ∈R such that x > α, then f (x) > , ()

if x ∈R such that  < x < α, then f (x) < . ()

Let

g(x) = (x – )f (x)

= xm+ – (a + )xm + (a – a)xm– + (a – a)xm– + · · · + (am– – am)x + am.

Since f (x) has exactly one positive real zero α, g(x) has two positive real zeros α and .
Observe that

if x ∈R such that x > α, then g(x) > , ()

if x ∈R such that  < x < α, then g(x) < . ()

To complete the proof of (II) in Lemma , it is sufficient to show that there is no zero on
and outside of the unit circle. �

Claim  f (x) has no complex zero z with |z| > α.
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Proof Assume that there exits such a zero. So, we have

f (z) = zm – azm–
 – azm–

 – · · · – am–z – am = ,

then we obtain

∣∣zm ∣∣ ≤ a
∣∣zm–


∣∣ + a

∣∣zm–


∣∣ + · · · + am–|z| + am,

f
(|z|) = ∣∣zm ∣∣ – a

∣∣zm–


∣∣ – a
∣∣zm–


∣∣ – · · · – am–|z| – am ≤ .

This contradicts with (). �

Claim  f (x) has no complex zero z with  < |z| < α.

Proof Assume that there exits such a zero. Since f (z) = ,

g(z) = zm+
 – (a + )zm + (a – a)zm–

 + · · · + (am– – am)z + am = ,

then we obtain

(a + )|z|m ≤ |z|m+ + (a – a)|z|m– + · · · + (am– – am)|z| + am.

So, we have g(|z|) ≥ , which contradicts with (). �

Claim  On the circle |z| = α and |z| = , f (x) has the unique zero α.

Proof If f (z) = , then

g(z) = zm+
 – (a + )zm + (a – a)zm–

 + · · · + (am– – am)z + am = ,

then we obtain

(a + )|z|m ≤ |z|m+ + (a – a)|z|m– + · · · + (am– – am)|z| + am. ()

If z = α or z = , then g(z) = , so () must be an equality. Therefore, zm+
 , (a –

a)zm–
 , (a – a)zm–

 , . . . , (am– – am)z and am all lie on the same ray issuing from the
origin. Since (a – a), (a – a), . . . ,am, are all the elements of R+, zm+

 , zm–
 , zm–

 , . . . , z
must be the elements of R+. Therefore we obtain f (z) ∈ R

+. On the circle |z| = α and
|z| = , there are two conditions z =  or z = α. Since f () 
= , α is the unique zero of
f (x), Claim  holds.
From the three claims, (II) in Lemma  is proven. �

Lemma  Let m ≥  and let {un}n≥ be an integer sequence satisfying the recurrence for-
mula (). Then the closed formula of un is given by

un = cαn +O
(
d–n) (n→ ∞),

where c > , d > , and a < α < a +  is the positive real zero of f (x).

http://www.advancesindifferenceequations.com/content/2013/1/189


Wu and Zhang Advances in Difference Equations 2013, 2013:189 Page 5 of 8
http://www.advancesindifferenceequations.com/content/2013/1/189

Proof Let α,α, . . . ,αt be the distinct roots of f (x) = , where f (x) =  is the characteristic
equation of the recurrence formula (). From Lemma  we know that α is the simple root
of f (x) =  , then let rj, for j = , , . . . , t, denote the multiplicity of the root αj. From the
properties ofmth-order linear recursive sequences, un can be expressed as follows:

un = cαn +
t∑
i=

Pi(n)αn
i , ()

where

Pi(n) ∈R[n], degPi(n) = ri – , r + r + · · · + rt =m – , and c ∈R.

For example, for positive integers  ≤ u, v,w≤ t, if αu is the simple root of f (x), then Pu(n) =
g, where g ∈ R, and degPu(n) = ; if αv is the double root of f (x), then Pv(n) = gn + g,
where g, g ∈R, and degPv(n) = ; if αw is themultiple root of f (x) with themultiplicity rw,
then Pw(n) = bnrw– +bnrw– + · · ·+brw–n+brw , where b,b, . . . ,brw ∈R, and degPw(n) =
rw – .
From Lemma  we have |αi| <  for  ≤ i ≤ t. Since each term of tail in () goes to  as

n→ ∞, we can find the constantM ∈R and d ∈R with d >  for n > n such that

∣∣∣∣∣
t∑
i=

Pi(n)αn
i

∣∣∣∣∣ ≤
t∑
i=

∣∣Pi(n)αn
i
∣∣ ≤ Md–n,

which completes the proof (note that if all the roots of f (x) are distinct, we can choose
d– =max{|α|, |α|, . . . , |αm–|} andM =m – ). �

3 Proof of Theorem 1
In this section, we shall complete the proof of Theorem . From the geometric series as
ε → , we have


± ε

= ∓ ε +O
(
ε

)
=  +O(ε).

Using Lemma , we have


uk

=


cαk +O(d–k)
=


cαk( +O((αd)–k))

=


cαk

(
 +O

(
(αd)–k

))
=


cαk +O

((
αd

)–k). ()

Thus

�βn�∑
k=n


uk

=

c

�βn�∑
k=n


αk +O

(�βn�∑
k=n

(
αd

)–k)

=
α

c(α – )
· α–n –


c(α – )

· α–�βn� +O
(
α–nd–n)
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=
α

c(α – )
· α–n +O

(
α–nα–�βn�+n) +O

(
α–nd–n)

=
α

c(α – )
α–n +O

(
α–nh

)
,

where h =max{α–�βn�+n,d–n}.
Taking reciprocal, we get

(�βn�∑
k=n


uk

)–

=


α
c(α–)α

–n( +O(α–nh))

=
α – 

α
cαn( +O

(
α–nh

))
=

α – 
α

cαn +O(h)

= un – un– +O(h).

Since h = max{α–�βn�+n,d–n} < , there exists n ≥ n sufficient large so that the modulus
of the last error term becomes less than /, which completes the proof.

Proof of Corollary  From identity (), we have


uk

=


cαk +O
((

αd
)–k).

Thus

∞∑
k=n


uk

=

c

∞∑
k=n


αk +O

( ∞∑
k=n

(
αd

)–k) =
α

c(α – )
α–n +O

((
αd

)–n).
Taking reciprocal, we get

( ∞∑
k=n


uk

)–

=


α
c(α–)α

–n( +O((αd)–n))

=
α – 

α
cαn( +O

(
(αd)–n

))
=

α – 
α

cαn +O
(
d–n)

= un – un– +O
(
d–n).

So, there exists n≥ n sufficiently large so that themodulus of the last error term becomes
less than /, which completes the proof. �

4 Related results
The following results are obtained similarly.

Theorem Let {un} be anmth-order sequence defined by ()with the restriction a ≥ a ≥
· · · ≥ am ≥ . Let p and q be positive integers with  ≤ q < p. For any real number β > ,

http://www.advancesindifferenceequations.com/content/2013/1/189
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there exist positive integers n, n and n depending on a,a, . . . , and am such that

(a)

∥∥∥∥∥
(�βn�∑

k=n

(–)k

uk

)–∥∥∥∥∥ = (–)n(un + un–) (n≥ n),

(b)

∥∥∥∥∥
(�βn�∑

k=n


upk+q

)–∥∥∥∥∥ = upn+q – upn–p+q (n≥ n),

(c)

∥∥∥∥∥
(�βn�∑

k=n

(–)k

upk+q

)–∥∥∥∥∥ = (–)n(upn+q + upn–p+q) (n≥ n).

For β → +∞, we deduce the following identity of infinite sum as a special case of Theo-
rem .

Corollary  Let {un} be an mth-order sequence defined by () with the restriction a ≥
a ≥ · · · ≥ am ≥ . Let p and q be positive integers with  ≤ q < p. Then there exist positive
integers n, n and n depending on a,a, . . . , and am such that

(e)

∥∥∥∥∥
( ∞∑

k=n

(–)k

uk

)–∥∥∥∥∥ = (–)n(un + un–) (n≥ n),

(f )

∥∥∥∥∥
( ∞∑

k=n


upk+q

)–∥∥∥∥∥ = upn+q – upn–p+q (n≥ n),

(g)

∥∥∥∥∥
( ∞∑

k=n

(–)k

upk+q

)–∥∥∥∥∥ = (–)n(upn+q + upn–p+q) (n≥ n).

Proof We shall prove only (c) in Theorem  and other identities are proved similarly. From
Lemma  we have

(–)k

upk+q
=

(–)k

cαpk+q +O(d–pk–q)
=

(–)k

cαpk+q

(
 +O

(
(αd)–pk–q

))
.

Thus

�βn�∑
k=n

(–)k

upk+q
=

(–)nαp

cαpn+q(αp + )
+

(–)nαp

cαp�βn�+q(αp + )
+O

((
αd

)–pn–q)

=
(–)nαp

cαpn+q(αp + )
+O

(
α–p�βn�–q) +O

(
α–pn–qd–pn–q)

=
(–)nαp

cαpn+q(αp + )
+O

(
α–pnα–p�βn�+pn) +O

(
α–pnd–pn)

=
(–)nαp

cαpn+q(αp + )
+O

(
α–pnhp

)
,

where h =max{α–�βn�+n,d–n}.
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Taking reciprocal, we get

(�βn�∑
k=n

(–)k

upk+q

)–

= (–)n
(
cαpn+q + cαpn–p+q)( +O

(
α–pnhp

))

= (–)n(upn+q + upn–p+q) +O
(
hp

)
.

Since h =max{α–�βn�+n,d–n} < , there exists n≥ n sufficiently large so that the modulus
of the last error term becomes less than /, which completes the proof. �
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