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Abstract
A stochastic non-autonomous predator-prey system with Beddington-DeAngelis
functional response is proposed, the existence of a global positive solution and
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1 Introduction
In population dynamics, the relationship between predator and prey plays an important
role due to its universal existence. There are many significant functional responses in or-
der to model various different situations. In fact, most of the functional responses are
prey-dependent; however, the functional response should also be predator-dependent, es-
pecially when predators have to search for food. Beddington [] and DeAngelis et al. []
in  first introduced the Beddington-DeAngelis type predator-prey model taking the
form

⎧⎨
⎩

du
dt = ru – gu – fuv

β+γu+δv ,
dv
dt = rv – gv + fuv

β+γu+δv ,
()

where u and v denote the population densities of prey and predator. Although the
Beddington-DeAngelis functional response is similar to the Holling type-II functional,
it can reflect mutual interference among predators. That is to say, this kind of functional
response is affected by both predator and prey. In the last years, some experts have studied
the system [–]. In the following, we introduce a non-autonomous predator-prey model
with Beddington-DeAngelis functional response:

⎧⎨
⎩

dx
dt = x(a(t) – b(t)x – c(t)y

m(t)+m(t)x+m(t)y
),

dy
dt = y(–a(t) – b(t)y + c(t)x

m(t)+m(t)x+m(t)y
),

()
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where x(t) and y(t) represent the population density of prey and predator at time t, re-
spectively. a(t) denotes the intrinsic growth rate of prey. b(t) and b(t) stand for the
density-dependent coefficients of prey and predator, respectively. a(t) is the death rate
of predator. c(t) is the capturing rate of predator, c(t) represents the rate of conversion
of nutrients into the reproduction of predator. For the other coefficients’ biological repre-
sentation, we refer the reader to [] and [].
On the other hand, population systems are often subject to environmental noise; there-

fore, it is important to study how the noise affects the population systems. In fact, stochas-
tic population systems have been studied recently bymany authors [–]. However, there
are not many papers considering non-autonomous stochastic systems [–]. In this pa-
per, considering the effect of environmental noise, we introduce stochastic perturbation
into the intrinsic growth rate of prey and the death rate of predator in system () and as-
sume the parameters a(t) and a(t) are disturbed to a(t)+α(t)dB(t), –a(t)+β(t)dB(t),
respectively. Then corresponding to the deterministic system (), we obtain the following
stochastic system:

⎧⎨
⎩
dx = x(a(t) – b(t)x – c(t)y

m(t)+m(t)x+m(t)y
)dt + α(t)xdB(t),

dy = y(–a(t) – b(t)y + c(t)x
m(t)+m(t)x+m(t)y

)dt + β(t)ydB(t).
()

We assume all the coefficients are continuous bounded nonnegative functions on R+ =
[,+∞).
If f (t) is a continuous bounded function on R+, define

f u = sup
t∈R+

f (t), f l = inf
t∈R+

f (t).

Throughout this paper, suppose that al > ,ml
i >  (i = , , ), bli >  (i = , ).

Definition  () The population x(t) is said to be non-persistent in the mean if 〈x〉∗ = ,
where 〈f (t)〉 = 

t
∫ t
 f (s)ds, f

∗ = lim supt→+∞ f (t), f∗ = lim inft→+∞ f (t).
() The population x(t) is said to be weakly persistent in the mean if 〈x〉∗ > .
() The population x(t) is said to be strongly persistent in the mean if 〈x〉∗ > .

Throughout this paper, unless otherwise specified, let (�,F ,P) be a complete probabil-
ity space with a filtration {Ft}t∈R satisfying the usual conditions (i.e., it is right continuous
and increasing and F contains all P-null sets), here Ḃi(t) (i = , ) is a standard Brownian
motion defined on this probability space. In addition, R

+ denotes {(x, y) ∈ R : x > , y > }.
Here we give the following auxiliary statements which are introduced in []. Consider

the d-dimensional stochastic differential equation

dx(t) = f
(
x(t), t

)
dt + g

(
x(t), t

)
dB(t), t ≥ t.

Denote by C,(Rd × [t,∞);R+) the family of all nonnegative functions V (x, t) defined on
Rd × [t,∞) such that they are continuously twice differentiable in x and once in t. The
differential operator L of the above equation is defined by the formula

L =
∂

∂t
+

d∑
i=

fi(x, t)
∂

∂xi
+



d∑
i,j=

[
gT (x, t)g(x, t)

]
ij

∂

∂xi ∂xi
.
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If L acts on a function V ∈ C,(Rd × [t,∞);R+), then

LV (x, t) = Vt(x, t) +Vx(x, t)f (x, t) +


trace

[
gT (x, t)Vxx(x, t)g(x, t)

]
.

2 Global positive solution and stochastic boundedness
For a model of population dynamics, the first thing considered is whether the solu-
tion is globally existent and nonnegative, hence in this section we will show it. In or-
der for a stochastic differential equation to have a unique global solution for any given
initial value, the coefficients of the equation are generally required to satisfy the linear
growth condition and the local Lipschitz condition []. The coefficients of model ()
do not satisfy the linear growth condition, though they are locally Lipschitz continuous,
the solution of system () may explode at a finite time (cf. []). In the following, using
the Lyapunov analysis method, we can prove that system () has a global positive solu-
tion.

Theorem For any initial value (x, y) ∈ R
+, there is a unique solution (x(t), y(t)) of system

() on t ≥ , and the solution will remain in R
+ with probability .

Proof Since the coefficients of model () are locally Lipschitz continuous, for any given
initial value (x, y) ∈ R

+, there is a unique local solution (x(t), y(t)) on t ∈ [, τe), where τe

is the explosion time []. To show the solution is global, we need to show that τe = ∞.
Let n >  be sufficiently large for x and y lying within the interval [/n,n]. For each

integer n > n, we define the stopping times

τn = inf
{
t ∈ [, τe) : x(t) /∈ (/n,n) or y(t) /∈ (/n,n)

}
,

where, throughout this paper, we set inf∅ = ∞ (∅ denotes the empty set). Obviously, τn is
increasing as n→ ∞. Let τ∞ = limn→∞ τn, hence, τ∞ ≤ τe a.s. Now, we only need to show
τ∞ = ∞. If this statement is false, there is a pair of constants T >  and ε ∈ (, ) such that
P{τ∞ ≤ T} > ε. Consequently, there exists an integer n ≥ n such that

P{τn ≤ T} > ε, n≥ n. ()

Define a C-function V : R
+ → R+ by

V (x, y) = (x –  – logx) + (y –  – log y).

The nonnegativity of this function can be seen from u –  – logu ≥ , ∀u > . Applying
Itô’s formula, we get

dV = (x – )
(
a(t) – b(t)x –

c(t)y
m(t) +m(t)x +m(t)y

)
dt +

α(t)


dt

+ (y – )
(
–a(t) – b(t)y +

c(t)x
m(t) +m(t)x +m(t)y

)
dt +

β(t)


dt

+ (x – )α(t)dB(t) + (y – )β(t)dB(t), ()
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then

LV = a(t)x – b(t)x –
c(t)xy

m(t) +m(t)x +m(t)y

– a(t) + b(t)x +
c(t)y

m(t) +m(t)x +m(t)y

+
α(t)


– a(t)y – b(t)y +
c(t)xy

m(t) +m(t)x +m(t)y
+ a(t) + b(t)y

–
c(t)x

m(t) +m(t)x +m(t)y
+

β(t)


≤ a(t)x – b(t)x – a(t) + b(t)x +
c(t)y

m(t) +m(t)x +m(t)y
+

α(t)


– a(t)y – b(t)y +
c(t)xy

m(t) +m(t)x +m(t)y
+ a(t) + b(t)y +

β(t)


≤ au x – blx
 – al + bu x +

cu
ml


+
(αu)


– aly – bly

 +
cu
ml


y + au + buy +

(βu)



≤ (
au + bu

)
x – blx

 – al +
cu
ml


+
(αu)



+
(
bu +

cu
ml


– al

)
y – bly

 + au +
(βu)



≤ K ,

where K is a positive number. Substituting this inequality into Eq. (), we see that

dV
(
x(t), y(t)

) ≤ K dt + (x – )α(t)dB(t) + (y – )β(t)dB(t),

which implies that

∫ τn∧T


dV

(
x(t), y(t)

) ≤
∫ τn∧T


K dt +

∫ τn∧T


α(s)

(
x(s) – 

)
dB(s)

+
∫ τn∧T


β(s)

(
y(s) – 

)
dB(s),

where τn ∧ T =min{τn,T}. Taking the expectations of the above inequality leads to

EV
(
x(τn ∧ T), y(τn ∧ T)

) ≤ V (x, y) +KE(τn ∧ T) ≤ V (x, y) +KT . ()

Let �n = {τn ≤ T} for n ≥ n, then by () we have P(�n) ≥ ε. Note that for every
ω ∈ �n, there is at least one of x(τn,ω) and y(τn,ω) equaling either n or 

n ; therefore,
V (x(τn,ω), y(τn,ω)) is no less than min{(n –  – logn), ( n –  – log 

n )}. It then follows from
() that

V (x, y) +KT ≥ E
[
�n(ω)V

(
x(τn), y(τn)

)]

≥ εmin

{
(n –  – logn),

(

n
–  – log


n

)}
,
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where �n(ω) is the indicator function of �n, letting n→ ∞, we have that

∞ > V (x, y) +KT = ∞

is a contradiction, then we must have τ∞ = ∞. Therefore, the solution of system () will
not explode at a finite time with probability . This completes the proof. �

Definition  The solution X(t) = (x(t), y(t)) of system () is said to be stochastically ulti-
mately bounded if for any ε ∈ (, ), there is a positive constant χ (χ (ε)) such that for any
initial value (x, y) ∈ R

+, the solution of () has the property that

lim sup
t→∞

P
{∣∣X(t)∣∣ > χ

}
< ε.

Lemma  Let (x(t), y(t)) be a solution of system () with initial value (x, y) ∈ R
+, for all

p > , there exist K(p) and K(p) such that

E
[
xp(t)

] ≤ K(p), E
[
yp(t)

] ≤ K(p), t ∈ [, +∞),

where K(p) =max{K̄(p), (
au +


 p(α

u)

bl
)p+ ε̃},K(p) =max{K̄(p), (

cu
ml

+ 
 p(β

u)

bl
)p+ ε̃}, K̄i(p) (i =

, ) and ε̃ are both positive constants.

Proof Define V(x) = xp for x ∈ R+, where p > . Applying Itô’s formula leads to

dV(x) = pxp– dx +


p(p – )xp–(dx)

= pxp
[
a(t) – b(t)x –

c(t)y
m(t) +m(t)x +m(t)y

+


(p – )α(t)

]
dt

+ pxpα(t)dB(t)

≤ pxp
[
au +



p
(
αu) – blx

]
dt + pxpα(t)dB(t).

Similarly, we have

dyp = pyp
[
–a(t) – b(t)y +

c(t)x
m(t) +m(t)x +m(t)y

+


(p – )β(t)

]
dt

+ pypβ(t)dB(t)

≤ pyp
[
cu
ml


+


p
(
βu) – bly

]
dt + pypβ(t)dB(t).

Taking expectation, we have

dE[xp(t)]
dt

≤ p
{[

au +


p
(
αu)]E[

xp(t)
]
– blE

[
xp+(t)

]}

≤ p
{[

au +


p
(
αu)]E[

xp(t)
]
– bl

[
E
[
xp(t)

]]+ 
p

}

≤ E
[
xp(t)

]
p
{[

au +


p
(
αu)] – bl

[
E
[
xp(t)

]] 
p

}

http://www.advancesindifferenceequations.com/content/2013/1/19
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and

dE[yp(t)]
dt

≤ p
{[

cu
ml


+


p
(
βu)]E[

yp(t)
]
– blE

[
yp+(t)

]}

≤ p
{[

cu
ml


+


p
(
βu)]E[

yp(t)
]
– bl

[
E
[
yp(t)

]]+ 
p

}

≤ E
[
yp(t)

]
p
{[

cu
ml


+


p
(
βu)] – bl

[
E
[
yp(t)

]] 
p

}
.

Therefore, by the comparison theorem, we get

lim sup
t→∞

E
[
xp(t)

] ≤
(au +


p(α

u)

bl

)p

, lim sup
t→∞

E
[
yp(t)

] ≤
( cu

ml

+ 

p(β
u)

bl

)p

.

Thus, for a given constant ε̃ > , there exists a T >  such that for all t > T ,

E
[
xp(t)

] ≤
(au +


p(α

u)

bl

)p

+ ε̃, E
[
yp(t)

] ≤
( cu

ml

+ 

p(β
u)

bl

)p

+ ε̃.

Together with the continuity of E[xp(t)] and E[yp(t)], there exist K̄(p) > , K̄(p) >  such
that E[xp(t)]≤ K̄(p), E[yp(t)] ≤ K̄(p) for t ≤ T . Let

K(p) =max

{
K̄(p),

(au +

p(α

u)

bl

)p

+ ε̃

}
,

K(p) =max

{
K̄(p),

( cu
ml

+ 

p(β
u)

bl

)p

+ ε̃

}
,

then for all t ∈ R+,

E
[
xp(t)

] ≤ K(p), E
[
yp(t)

] ≤ K(p). �

Theorem  The solutions of system () with initial value (x, y) ∈ R
+ are stochastically

ultimately bounded.

Proof If X = (x, y) ∈ R, its norm here is denoted by |X| = (x + y)  , then

∣∣X(t)∣∣p ≤ 
p

(∣∣x(t)∣∣p + ∣∣y(t)∣∣p)

by Lemma , E|X(t)|p ≤ K(p), t ∈ (, +∞). K(p) is dependent of (x, y) and defined by
K(p) = 

p
 (K(p) +K(p)). By virtue of Chebyshev’s inequality, the above result is straight-

forward. �

3 Persistence in themean and extinction
Lemma  The solutions of system () with initial value (x, y) ∈ R

+ have the following
properties:

lim sup
t→∞

lnx(t)
t

≤ , lim sup
t→∞

ln y(t)
t

≤ , a.s.

http://www.advancesindifferenceequations.com/content/2013/1/19
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Proof It follows from system () that

⎧⎨
⎩
dx≤ x(a(t) – b(t)x)dt + α(t)xdB(t),

dy≤ y( c(t)
m(t)

– b(t)y)dt + β(t)ydB(t).
()

Set
⎧⎨
⎩
dx̄ = x̄(a(t) – b(t)x̄)dt + α(t)x̄ dB(t),

dȳ = ȳ( c(t)
m(t)

– b(t)ȳ)dt + β(t)ȳ dB(t),
()

where (x̄(t), ȳ(t)) is a solution of system () with initial value x >  and y > . By the
comparison theorem for stochastic differential equations, it is easy to have

x(t)≤ x̄(t), y(t) ≤ ȳ(t), a.s. t ∈ [, +∞). ()

By Lemma . in [], it is easy to get the following result:

dx(t) = x(t)
[(
b(t) – a(t)x(t)

)
dt + σ (t)dB(t)

]

here b(t), a(t) and σ (t) are all nonnegative functions defined on R+. If al > , then
lim supt→∞

ln(|x(t)|)
ln t ≤ , a.s.

Note that bli >  (i = , ), then it follows from Eqs. () and (),

lim sup
t→∞

lnx(t)
ln t

≤ lim sup
t→∞

ln x̄(t)
ln t

≤ , lim sup
t→∞

ln y(t)
ln t

≤ lim sup
t→∞

ln ȳ(t)
ln t

≤ , a.s.

In addition,

lim sup
t→∞

lnx(t)
t

= lim sup
t→∞

lnx(t)
ln t

lim sup
t→∞

ln t
t

≤ lim sup
t→∞

ln t
t

= ;

therefore, it leads to lim supt→∞
lnx(t)

t ≤ , a.s. Similarly, we can have lim supt→∞
ln y(t)

t ≤ ,
a.s. �

Lemma  [] Suppose that x(t) ∈ C[� × R+,R
+], where R

+ := {a|a > ,a ∈ R}.
(I) If there are positive constants λ, T and λ ≥  such that

lnx(t)≤ λt – λ

∫ t


x(s)ds +

n∑
i=

βiBi(t)

for t ≥ T , where βi is a constant,  ≤ i≤ n, then 〈x〉∗ ≤ λ/λ, a.s. (i.e., almost surely).
(II) If there are positive constants λ, T and λ ≥  such that

lnx(t)≥ λt – λ

∫ t


x(s)ds +

n∑
i=

βiBi(t)

for t ≥ T , where βi is a constant,  ≤ i≤ n, then 〈x〉∗ ≥ λ/λ, a.s.

http://www.advancesindifferenceequations.com/content/2013/1/19
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In the following, we give the result about weak persistence in the mean and extinction
of the prey and predator population. Applying Itô’s formula to Eq. () leads to

d lnx =
(
a(t) –

α(t)


– b(t)x –
c(t)y

m(t) +m(t)x +m(t)y

)
dt + α(t)dB(t) ()

d ln y =
(
–a(t) –

β(t)


– b(t)y +
c(t)x

m(t) +m(t)x +m(t)y

)
dt + β(t)dB(t). ()

Let r(t) = a(t) – α(t)
 , r(t) = –a(t) – β(t)

 , then 〈r〉∗ < . For the prey population x(t) of
system (), we have

Theorem  (i) If 〈r〉∗ < , then the prey population x(t) will go to extinction a.s.
(ii) If 〈r〉∗ = , then the prey population x(t) will be non-persistent in the mean a.s.
(iii) If 〈r〉∗ > , then the prey population x(t) will be weakly persistent in the mean a.s.
(iv) If 〈r〉∗ – 〈 c(t)

m(t)
〉∗ > , then the prey population x(t) will be strongly persistent in the

mean a.s.

Proof (i) It follows from () that

lnx(t) – lnx =
∫ t



[
r(s) – b(s)x(s) –

c(s)y(s)
m(s) +m(s)x(s) +m(s)y(s)

]
ds

+
∫ t


α(s)dB(s), ()

lnx(t)– lnx ≤ ∫ t
 r(s)ds+

∫ t
 α(s)dB(s), setM(t) =

∫ t
 α(s)dB(s), it is amartingale whose

quadratic variation is 〈M,M〉t =
∫ t
 α(s)ds≤ (αu)t.Making use of the strong lawof large

numbers for martingale yields

lim
t→+∞

M(t)
t

= , a.s. ()

then

lnx(t) – lnx
t

≤ 
t

∫ t


r(s)ds +

M(t)
t

. ()

Taking superior limit on both sides of inequality () leads to lim supt→+∞
lnx(t)

t ≤ 〈r〉∗ < ,
we can see that limt→+∞ x(t) = .
(ii) By Eq. (), we have

lnx(t) – lnx
t

≤ 〈r〉 – bl
〈
x(t)

〉
+
M(t)
t

. ()

It follows from the property of superior limit and () that for arbitrary ε > , there exists
T >  such that 〈r〉 ≤ 〈r〉∗ + ε

 and M(t)
t ≤ ε

 for all t ≥ T . Substituting these inequalities
into () yields

lnx(t) – lnx ≤
(

〈r〉∗ + ε



)
t – bl

∫ t


x(s)ds +

ε


t ≤ (〈r〉∗ + ε

)
t – bl

∫ t


x(s)ds,

http://www.advancesindifferenceequations.com/content/2013/1/19
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when 〈r〉∗ = , then

ln
x(t)
x

≤ εt – blx
∫ t



x(s)
x

ds.

By bl >  and Lemma , we have 〈x(t)〉∗ ≤ ε

bl
, by virtue of the arbitrariness of ε, 〈x(t)〉∗ ≤ .

Since the solution of system () is nonnegative, it is easy to have 〈x(t)〉∗ = , that is to say,
the prey population x(t) is non-persistent in the mean a.s.
(iii) We only need to show that there exists a constant μ >  such that for any solution

(x(t), y(t)) of system () with initial value (x, y) ∈ R
+, 〈x(t)〉∗ ≥ μ >  a.s. Otherwise, for

arbitrary ε > , there exists a solution (x̃(t), ỹ(t)) with positive initial value x >  and y > 
such that P{〈x̃(t)〉∗ < ε} > .
Let ε be sufficiently small so that

〈r〉∗ – bu ε > , 〈r〉∗ + cu
ml


ε < . ()

It follows from Eq. () that

ln ỹ(t) – ln y
t

≤ 〈r〉 – bl
〈
ỹ(t)

〉
+

cu
ml



〈
x̃(t)

〉
+
M(t)
t

()

hereM(t) =
∫ t
 β(s)dB(s), it also has

lim
t→∞

M(t)
t

= . ()

By virtue of (), it leads to [t– ln ỹ(t)]∗ ≤ 〈r〉∗ + cu
ml

ε < , thus

lim
t→∞ ỹ(t) = . ()

On the other hand, it follows from Eq. () that

ln x̃(t) – lnx
t

≥ 〈r〉 – bu
〈
x̃(t)

〉
–

cu
ml



〈
ỹ(t)

〉
+
M(t)
t

.

Taking the superior limit to the above inequality and making use of (), () and (), we
have [t– ln x̃(t)]∗ ≥ 〈r〉∗ – bu ε > , that is to say, we have shown P{[t– ln x̃(t)]∗ > } > ,
this is a contradiction to Lemma . Therefore, 〈x(t)〉∗ > , the prey population x(t) will be
weakly persistent in the mean a.s.
(iv) By Eq. (), we get

d lnx≥
(
r(t) – b(t)x –

c(t)
m(t)

)
dt + α(t)dB(t).

It is easy to have

lnx(t) – lnx
t

≥ 〈r〉 –
〈
c(t)
m(t)

〉
– bu

〈
x(t)

〉
+
M(t)
t

.
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If 〈r〉∗ – 〈 c(t)
m(t)

〉∗ > , there exists sufficiently small ε >  such that 〈r〉∗ – 〈 c(t)
m(t)

〉∗ – ε > . It
follows from the property of superior limit, interior limit and () that for positive number
ε, there exists a T >  such that

〈r〉 > 〈r〉∗ – ε


,

〈
c(t)
m(t)

〉
<

〈
c(t)
m(t)

〉∗
+

ε


,

M(t)
t

> –
ε



for all t > T . Then

lnx(t) – lnx
t

≥ 〈r〉∗ – ε


–

〈
c(t)
m(t)

〉∗
–

ε


– bu

〈
x(t)

〉
–

ε



≥
(

〈r〉∗ –
〈
c(t)
m(t)

〉∗
– ε

)
– bu

〈
x(t)

〉
.

By virtue of Lemma  and the arbitrariness of ε, we have

〈
x(t)

〉
∗ ≥ 〈r〉∗ – 〈 c(t)

m(t)
〉∗

bu
> .

In other words, the prey population x(t) is strongly persistent in the mean a.s. �

Remark  The results of Theorem  illustrate that 〈r〉∗ is the threshold between weak
persistence in the mean and extinction. Note r(t) = a(t) – α(t)

 , if α(t)
 > a(t), then the

prey population will be extinct, no matter whether there are predators. However, the prey
population will survive when not considering environmental noise. This indicates that
when the density of environmental noise is larger than the intrinsic growth rate of prey,
it will cause the extinction of prey population. Therefore, it is more suitable to take into
account stochastic perturbation in the systems. Here we can also find that the condition
(iv) implies condition (iii), that is to say, the prey population must be weakly persistent in
the mean when it is strongly persistent in the mean.

For the predator population, we have the following result.

Theorem  (i) If (b)∗〈r〉∗ + ( c(t)
m(t)

)∗〈r〉∗ < , then the predator population y(t) will go to
extinction a.s.
(ii) If (b)∗〈r〉∗+( c(t)

m(t)
)∗〈r〉∗ = , then the predator population y(t)will be non-persistent

in the mean a.s.
(iii) If 〈r〉∗ + 〈 c(t)x̄(t)

m(t)+m(t)x̄(t)+m(t)ȳ(t)
〉∗ > , then the predator population y(t) will be weakly

persistent in the mean a.s. where (x̄(t), ȳ(t)) is the solution of Eq. () with initial value
(x, y) ∈ R

+.
(iv) If 〈r〉∗ + 〈 c(t)

m(t)
〉∗ > , then the predator population y(t) has a superior bound in time

average, that is, 〈y(t)〉∗ ≤ 〈r〉∗+〈 c(t)
m(t)

〉∗
bl

.

Proof (i) If 〈r〉∗ ≤ , then it follows from Theorem  that 〈x(t)〉∗ = . By Eq. (),

ln y(t) – ln y
t

≤ 〈r〉 + cu
ml



〈
x(t)

〉
+
M(t)
t

;

therefore, [t– ln y(t)]∗ ≤ 〈r〉∗ < , then limt→∞ y(t) = .

http://www.advancesindifferenceequations.com/content/2013/1/19
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Now, if 〈r〉∗ > , it follows from the property of superior limit, interior limit and ()
that for sufficiently small ε, there exists a T >  such that

lnx(t) – lnx
t

≤ 〈r〉 – (b)∗
〈
x(t)

〉
+
M(t)
t

≤ 〈r〉∗ + ε


– (b)∗

〈
x(t)

〉
+

ε



for all t > T . Applying Lemma  and the arbitrariness of ε yield

〈
x(t)

〉∗ ≤ 〈r〉∗
(b)∗

. ()

Substituting the above inequality into () gives

[
t– ln y(t)

]∗ ≤ 〈r〉∗ +
〈
c(t)
m(t)

x(t)
〉∗

≤ 〈r〉∗ +
(
c(t)
m(t)

)∗〈
x(t)

〉∗

≤ 〈r〉∗ +
(
c(t)
m(t)

)∗ 〈r〉∗
(b)∗

, ()

then

[
t– ln y(t)

]∗ ≤ (b)∗〈r〉∗ + ( c(t)
m(t)

)∗〈r〉∗
(b)∗

< ,

which means limt→∞ y(t) =  a.s.
(ii) In the case (i), we have shown that if 〈r〉∗ ≤ , then limt→∞ y(t) = , therefore,

〈y(t)〉∗ = . Now, we will prove that 〈y(t)〉∗ =  is still valid when 〈r〉∗ > . Otherwise, if
〈y(t)〉∗ > , then it follows from Lemma  that [t– ln y(t)]∗ = . Making use of (), one can
see that

 =
[
t– ln y(t)

]∗ ≤ 〈r〉∗ +
(
c(t)
m(t)

)∗〈
x(t)

〉∗. ()

On the other hand, for arbitrary ε > , there exists a T̄ >  such that

〈r〉 < 〈r〉∗ + ε


,

〈
c(t)
m(t)

x(t)
〉
<

(
c(t)
m(t)

)∗〈
x(t)

〉∗ + ε


,

M(t)
t

<
ε



for all t > T̄ . Substituting these inequalities into () yields

ln y(t) – ln y
t

≤ 〈r〉 +
〈
c(t)
m(t)

x(t)
〉
–

〈
b(t)y(t)

〉
+
M(t)
t

≤ 〈r〉∗ + ε


+

(
c(t)
m(t)

)∗〈
x(t)

〉∗ + ε


– (b)∗

〈
y(t)

〉
+

ε



≤ 〈r〉∗ + ε +
(
c(t)
m(t)

)∗〈
x(t)

〉∗ – (b)∗
〈
y(t)

〉
.
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Then an application of Lemma  and () results in 〈y(t)〉∗ ≤ 〈r〉∗+ε+( c(t)m(t)
)∗〈x(t)〉∗

(b)∗ . By virtue
of () and the arbitrariness of ε,

〈
y(t)

〉∗ ≤ 〈r〉∗(b)∗ + ( c(t)
m(t)

)∗〈r〉∗
(b)∗(b)∗

= ,

which is a contradiction to our assumption, therefore, 〈y(t)〉∗ =  a.s.
(iii) In the following, we need to show that 〈y(t)〉∗ >  a.s. Otherwise, for arbitrary ε > ,

there exists a solution (x̂(t), ŷ(t)) of system () with positive initial value (x, y) ∈ R
+ such

that P{〈ŷ(t)〉∗ < ε} > . Let ε be sufficiently small so that

〈r〉∗ +
〈

c(t)x̄(t)
m(t) +m(t)x̄(t) +m(t)ȳ(t)

〉∗
>

(
bu +

cu cu
bl(ml

)

)
ε. ()

It follows from () that

ln ŷ(t) – ln y
t

= 〈r〉 +
〈

c(t)x̄(t)
m(t) +m(t)x̄(t) +m(t)ȳ(t)

〉
–

〈
b(t)ŷ(t)

〉
+
M(t)
t

+
〈

c(t)x̂(t)
m(t) +m(t)x̂(t) +m(t)ŷ(t)

–
c(t)x̄(t)

m(t) +m(t)x̄(t) +m(t)ȳ(t)

〉
.

Here (x̄(t), ȳ(t)) is the solution of model () with initial value (x, y) ∈ R
+ and x̂(t) ≤ x̄(t),

ŷ(t) ≤ ȳ(t), a.s. for t ∈ [, +∞).
Because of

c(t)x̂(t)
m(t) +m(t)x̂(t) +m(t)ŷ(t)

–
c(t)x̄(t)

m(t) +m(t)x̄(t) +m(t)ȳ(t)

=
c(t)m(t)x̄(ȳ – ŷ) – c(t)m(t)(x̄ – x̂) – c(t)m(t)ȳ(x̄ – x̂)

(m(t) +m(t)x̂(t) +m(t)ŷ(t))(m(t) +m(t)x̄(t) +m(t)ȳ(t))

≥ c(t)m(t)x̄(ȳ – ŷ)
(m(t) +m(t)x̂(t) +m(t)ŷ(t))(m(t) +m(t)x̄(t) +m(t)ȳ(t))

–
c(t)m(t)
m

 (t)
(x̄ – x̂) –

c(t)m(t)ȳ
m(t)m(t)ȳ

(x̄ – x̂)

≥ –
c(t)
m(t)

(x̄ – x̂)

then

ln ŷ(t) – ln y
t

≥ 〈r〉 +
〈

c(t)x̄(t)
m(t) +m(t)x̄(t) +m(t)ȳ(t)

〉
–

〈
b(t)ŷ(t)

〉
+
M(t)
t

–
〈
c(t)
m(t)

(
x̄(t) – x̂(t)

)〉

≥ 〈r〉 +
〈

c(t)x̄(t)
m(t) +m(t)x̄(t) +m(t)ȳ(t)

〉
–

〈
b(t)ŷ(t)

〉
+
M(t)
t

–
〈
cu
ml



(
x̄(t) – x̂(t)

)〉
. ()
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Consider the Lyapunov function V(t) = | ln x̄(t) – ln x̂(t)|, then V(t) is a positive function
on R+, by Itô’s formula, () and (), we have

d+V(t) =
[
–b(t)

(
x̄(t) – x̂(t)

)
+

c(t)ŷ(t)
m(t) +m(t)x̂(t) +m(t)ŷ(t)

]
dt

≤
[
cu
ml


ŷ(t) – bl

(
x̄(t) – x̂(t)

)]
dt.

Integrating from  to t and dividing by t on both sides of the inequality yield

V(t) –V()
t

≤ cu
ml



〈
ŷ(t)

〉
– bl

〈
x̄(t) – x̂(t)

〉
.

Owing to V(t)
t ≥ , it leads to

bl
〈
x̄(t) – x̂(t)

〉 ≤ cu
ml



〈
ŷ(t)

〉
+
V()
t

,

here V() = , then 〈x̄(t) – x̂(t)〉 ≤ cu
ml
b

l

〈ŷ(t)〉. Substituting the above inequality into (),

we have

ln ŷ(t) – ln y
t

≥ 〈r〉 +
〈

c(t)x̄(t)
m(t) +m(t)x̄(t) +m(t)ȳ(t)

〉

–
〈
b(t)ŷ(t)

〉
+
M(t)
t

–
cu cu
bl(ml

)
〈
ŷ(t)

〉
.

Taking superior limit of the above inequality, we get

[
t– ln ŷ(t)

]∗ ≥ 〈r〉∗ +
〈

c(t)x̄(t)
m(t) +m(t)x̄(t) +m(t)ȳ(t)

〉∗
–

(
bu +

cu cu
bl(ml

)

)
ε > ,

which contradicts Lemma , then 〈y(t)〉∗ >  a.s., that is to say, the predator population
y(t) is weakly persistent in the mean a.s.
(iv) It follows from Eq. () that

d ln y≤
(
r(t) – b(t)y +

c(t)
m(t)

)
dt + β(t)dB(t),

that is to say,

ln y(t) – ln y
t

≤ 〈r〉 +
〈
c(t)
m(t)

〉
– bl

〈
y(t)

〉
+
M(t)
t

.

The following proof is similar to the proof of (iv) in Theorem , here we omit it. �

Remark  From the proof of Theorem , we can observe that if 〈r〉∗ < , then (b)∗〈r〉∗ +
( c(t)
m(t)

)∗〈r〉∗ <  is straightforward. It shows that if the prey population goes to extinction,
the predator population will also go to extinction, which is consistent with the reality. In
the other case, 〈r〉∗ > , (b)∗〈r〉∗ + ( c(t)

m(t)
)∗〈r〉∗ < , which means the prey population
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will survive, but the predator population will go to extinction. Notice r(t) = –a(t) – β(t)
 ,

this phenomenon may be caused by the large death rate of predator a(t) or the noise
density β(t).

4 Global attractiveness of the solution
In this section, we give sufficient conditions of global attractiveness.

Definition  System () is said to be globally attractive if

lim
t→∞

∣∣x(t) – x(t)
∣∣ = lim

t→∞
∣∣y(t) – y(t)

∣∣ =  a.s.,

where (x(t), y(t)) and (x(t), y(t)) are two arbitrary positive solutions of system () with
initial values (x, y) ∈ R

+ and (x, y) ∈ R
+.

To give the result of global attractiveness, we show some lemmas first.

Lemma [] Suppose that an n-dimensional stochastic process X(t) on t ≥  satisfies the
condition

E
∣∣X(t) –X(s)

∣∣α ≤ c|t – s|+α ,  ≤ s, t < ∞

for some positive constants α, α and c.Then there exists a continuousmodification X̃(t) of
X(t)which has the property that for every ϑ ∈ (,α/α), there is a positive random variable
h(ω) such that

P
{
ω : sup

<|t–s|<h(ω),≤s,t<∞
|X̃(t,ω) –X(t,ω)|

|t – s|ϑ ≤ 
 – –ϑ

}
= .

In other words, almost every sample path of X̃(t) is locally but uniformly Hölder continuous
with an exponent ϑ .

Lemma  Let (x(t), y(t)) be a solution of system () on t ≥  with initial value (x, y) ∈ R
+,

then almost every sample path of (x(t), y(t)) is uniformly continuous.

Proof Equation () is equivalent to the following stochastic integral equation:

x(t) = x +
∫ t


x(s)

[
a(s) – b(s)x(s) –

c(s)y(s)
m(s) +m(s)x(s) +m(s)y(s)

]
ds

+
∫ t


α(s)x(s)dB(s).

Let f (s) = x(s)[a(s) – b(s)x(s) – c(s)y(s)
m(s)+m(s)x(s)+m(s)y(s)

], g(s) = α(s)x(s), notice that

E
∣∣f (t)∣∣p = E

∣∣∣∣x
(
a(t) – b(t)x –

c(t)y
m(t) +m(t)x +m(t)y

)∣∣∣∣
p

= E
[
|x|p

∣∣∣∣a(t) – b(t)x –
c(t)y

m(t) +m(t)x +m(t)y

∣∣∣∣
p]

http://www.advancesindifferenceequations.com/content/2013/1/19
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≤ 

E|x|p + 


E
∣∣∣∣a(t) – b(t)x –

c(t)y
m(t) +m(t)x +m(t)y

∣∣∣∣
p

≤ 

E|x|p + 


E
∣∣∣∣au + bu x +

cu
ml


y
∣∣∣∣
p

≤ 

E|x|p + 


p–

[(
au

)p + (
bu

)pE|x|p +
(
cu
ml



)p

E|y|p
]

≤ 

K(p) +

p–



[(
au

)p + (
bu

)pK(p) +
(
cu
ml



)p

K(p)
]

=: F(p),

E
∣∣g(t)∣∣p = E

∣∣α(t)x(t)∣∣p ≤ (
αu)pE|x|p ≤ (

αu)pK(p) =:G(p).

Moreover, in view of the moment inequality for stochastic integrals in [, p.], one can
obtain that for  ≤ t ≤ t and p > ,

E
∣∣∣∣
∫ t

t
g(s)dB(s)

∣∣∣∣
p

≤
[
p(p – )



] p

(t – t)

(p–)


∫ t

t
E
∣∣g(s)∣∣p ds

≤
[
p(p – )



] p

(t – t)

p
G(p).

Then for  < t < t < ∞, t – t ≤ , 
p +


q = , we have

E
∣∣x(t) – x(t)

∣∣p

= E
∣∣∣∣
∫ t

t
f (s)ds +

∫ t

t
g(s)dB(s)

∣∣∣∣
p

≤ p–E
∣∣∣∣
∫ t

t
f (s)ds

∣∣∣∣
p

+ p–E
∣∣∣∣
∫ t

t
g(s)dB(s)

∣∣∣∣
p

≤ p–
(∫ t

t
q ds

) p
q
E
(∫ t

t

∣∣f (s)∣∣p ds
)
+ p–

[
p(p – )



] p

(t – t)

p
G(p)

≤ p–(t – t)
p
q F(p)(t – t) + p–

[
p(p – )



] p

(t – t)

p
G(p)

≤ p–(t – t)pF(p) + p–
[
p(p – )



] p

(t – t)

p
G(p)

≤ p–(t – t)
p


{
(t – t)

p
 +

[
p(p – )



] p

}
M(p)

≤ p–(t – t)
p


{
 +

[
p(p – )



] p

}
M(p),

whereM(p) = F(p)+G(p), it follows fromLemma  that almost every sample path of x(t) is
locally but uniformly Hölder continuous with an exponent ϑ for ϑ ∈ (, p–p ) and therefore
almost every sample path of x(t) is uniformly continuous on t ∈ R+. In the same way, we
can demonstrate that almost every sample path of y(t) is uniformly continuous. �
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Lemma  [] Let f be a nonnegative function defined on R+ such that f is integrable and
is uniformly continuous, then limt→∞ f (t) = .

Theorem  System () is globally attractive if

bl –
cu
ml


–

cumu


ml
ml


> , bl –

cu
ml


> . ()

Proof For (x(t), y(t)) and (x(t), y(t)), any two positive solutions of system () with initial
values (x, y) ∈ R

+ and (x, y) ∈ R
+ define

V (t) =
∣∣lnx(t) – lnx(t)

∣∣ + ∣∣ln y(t) – ln y(t)
∣∣,

then V (t) is a continuous positive function on t ≥ . A direct calculation of the right dif-
ferential d+V (t) of V (t), by () and () and Itô’s formula,

d+V (t) = sgn(x – x)
{[

dx
x

–
(dx)

x

]
–

[
dx
x

–
(dx)

x

]}

+ sgn(y – y)
{[

dy
y

–
(dy)

y

]
–

[
dy
y

–
(dy)

y

]}

=
{
–b(t) sgn(x – x)(x – x) – b(t) sgn(y – y)(y – y)

– sgn(x – x)
c(t)m(t)(y – y) + c(t)m(t)[x(y – y) – y(x – x)]
(m(t) +m(t)x +m(t)y)(m(t) +m(t)x +m(t)y)

+ sgn(y – y)
c(t)m(t)(x – x) – c(t)m(t)[x(y – y) – y(x – x)]
(m(t) +m(t)x +m(t)y)(m(t) +m(t)x +m(t)y)

}
dt

≤
{
–b(t)|x – x| – b(t)|y – y|

+
c(t)m(t)|y – y| + c(t)m(t)x|y – y| + c(t)m(t)y|x – x|

(m(t) +m(t)x +m(t)y)(m(t) +m(t)x +m(t)y)

+
c(t)m(t)|x – x| – c(t)m(t)x|y – y| + c(t)m(t)y|x – x|

(m(t) +m(t)x +m(t)y)(m(t) +m(t)x +m(t)y)

}
dt

≤
{
–b(t)|x – x| – b(t)|y – y| + c(t)

m(t)
|y – y| + c(t)

m(t)
|y – y|

+
c(t)m(t)
m(t)m(t)

|x – x| + c(t)
m(t)

|x – x| + c(t)
m(t)

|x – x|
}
dt

≤
{
–
(
b(t) –

c(t)
m(t)

–
c(t)m(t)
m(t)m(t)

)
|x – x| –

(
b(t) –

c(t)
m(t)

)
|y – y|

}
dt

≤
{
–
(
bl –

cu
ml


–

cumu


ml
ml



)
|x – x| –

(
bl –

cu
ml



)
|y – y|

}
dt.

Integrating both sides leads to

V (t) ≤ V () –
∫ t



(
bl –

cu
ml


–

cumu


ml
ml



)∣∣x(s) – x(s)
∣∣ +

(
bl –

cu
ml



)∣∣y(s) – y(s)
∣∣ds.
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Consequently,

V (t) +
∫ t



(
bl –

cu
ml


–

cumu


ml
ml



)∣∣x(s) –x(s)∣∣+
(
bl –

cu
ml



)∣∣y(s) – y(s)∣∣ds≤ V () <∞.

It then follows from V (t) ≥  and () that

∣∣x(t) – x(t)
∣∣ ∈ L[, +∞),

∣∣y(t) – y(t)
∣∣ ∈ L[, +∞).

Then from Lemmas  and , we get the desired assertion. �

5 Numerical simulation
In this section, to support themain results in our paper, some simulation figures are intro-
duced. Here we use theMilsteinmethodmentioned in Higham [] to simulate stochastic
equations, considering the following discrete equations:

xk+ = xk + xk
[
a(k�t) – b(k�t)xk –

c(k�t)yk
m(k�t) +m(k�t)xk +m(k�t)yk

]
�t

+ α(k�t)xk
√

�tξk +
α(k�t)


xk

(
ξ 
k – 

)
�t,

yk+ = yk + yk
[
–a(k�t) – b(k�t)yk +

c(k�t)xk
m(k�t) +m(k�t)xk +m(k�t)yk

]
�t

+ β(k�t)yk
√

�tηk +
β(k�t)


yk

(
η
k – 

)
�t,

ξk and ηk (k = , , . . . ,n) are the Gaussian random variables N(, ). Let a(t) = . +
. sin t, b(t) = . + . sin t, c(t) = . + . sin t, c(t) = . + . sin t, a(t) =
. + . sin t, b(t) = . + . sin t, m(t) = . + . sin t, m(t) = . + . sin t,
m(t) = . + . sin t with initial value (x, y) = (., .). In Figure , we choose α(t)

 =
.+. sin t, β(t)

 = .+. sin t, then it is easy to have 〈r〉∗ = –. < . In view of The-
orems  and , both prey population x and predator population y go to extinction. Figure 
confirms this. In Figure , we choose α(t)

 = .+. sin t, β(t)
 = .+. sin t, the other

parameters are the same. At this time, we get 〈r〉∗ = . >  and (b)∗〈r〉∗ + ( c(t)
m(t)

)∗〈r〉∗ =
–. < . By virtue of Theorems  and , the prey population x is weakly persistent in
the mean and the predator population y goes to extinction, which is shown in Figure .
In Figure , we choose c(t) = . + . sin t, c(t) = . + . sin t,m = . + . sin t,

α(t)
 = . + . sin t, β(t)

 = . + . sin t, the other parameters are the same; then
〈r〉∗ = . > , but 〈r〉∗ + 〈 c(t)x̄(t)

m(t)+m(t)x̄(t)+m(t)ȳ(t)
〉∗ >  is difficult to verify at present. Fig-

ure  illustrates that the situation that both prey population x and predator population y
are weakly persistent in the mean exists.

6 Conclusions
Owing to theoretical and practical importance, the predator-prey system with Bed-
dington-DeAngelis functional response has received great attention and has been studied
extensively, but for stochastic non-autonomous case, there is none. Here, we consider a
stochastic non-autonomous predator-prey systemwith Beddington-DeAngelis functional
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Figure 1 Both populations go to extinction. Solutions of system (3) for α2(t) = 1 + 0.04 sin t,
β2(t) = 0.6 + 0.04 sin t, with step size �t = 0.05 > 0. Prey and predator populations are represented by red line
and blue line with a star, respectively.

Figure 2 Prey is weakly persistent in the mean, predator goes to extinction. Solutions of system (3) for
α2(t) = 0.4 + 0.04 sin t, β2(t) = 0.8 + 0.04 sin t, with step size �t = 0.05 > 0. Prey and predator populations are
represented by red line and blue line with a star, respectively.

response. Firstly, we show that the solution of system () is globally positive and stochas-
tically ultimately bounded. Sufficient conditions for extinction, non-persistence in the
mean, weak persistence in the mean and strong persistence in the mean are obtained. The
threshold between weak persistence and extinction for prey population is established.We
also show that the solution of system () is globally attractive under some sufficient con-
ditions. These results are useful to estimate the risk of extinction of species in the system.
Besides, global attractiveness means that all the species in the community can coexist.
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Figure 3 Both populations are weakly persistent in the mean. Solutions of system (3) for
α2(t) = 0.04 + 0.04 sin t, β2(t) = 0.04 + 0.04 sin t, with step size �t = 0.1 > 0. Prey and predator populations are
represented by red line and blue dotted line, respectively.

There are still some interesting questions deserved to be study. For example, here the
condition of the weak persistence in the mean for predator is only a sufficient condition,
which is not so ideal. Maybe we can give the threshold between weak persistence in the
mean and extinction for predator in the future. Moreover, we can consider colored noise
in themodels owing to sudden environmental changes caused by seasons or other reasons.
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