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Abstract
This paper studies the difference equation xn+3xn = a + xn+1 + xn+2 + γ x2n , where a and
γ are arbitrary positive real numbers and the initial values x0, x1, x2 > 0. It is known
that for γ = 0 the above equation is the third-order Lyness’ one, studied in several
papers. Using an extension of the quasi-Lyapunov method, we prove that for
0 < γ < 1 the sequences generated by the perturbed third-order Lyness equation are
globally asymptotically stable. Moreover, we show that if γ ≥ 1 all solutions of it
converge to +∞. Therefore, the values 0 and 1 are two bifurcation points for the
equation containing the parameter γ .
MSC: 39A11; 39A20

Keywords: difference equation; quadratic perturbations; bifurcation point; first
integral; Lyapunov function; global asymptotic stability

1 Introduction
Lyness [–] discovered that the solutions of the second-order difference equation
xn+xn = xn+ +a is -periodic for a =  and positive initial conditions while he was working
on a problem in Number Theory. The third-order Lyness equation is

xn+xn = a + xn+ + xn+, a > ,x,x,x > . ()

According to Lyness [–], Toddhas discovered every solution of equation () is -periodic
if a = . So, this equation is also known as Todd’s equation. First Zeeman [] and, after and
independently, Bastien et al. [] gave a complete description of global dynamics of the
second-order Lyness equation with a >  by the interpretation of the iteration of the map
F induced by this recurrence on the Lyness’ cubic which passes through the initial points
(x,x). Cima et al. [] applied an approach different to the ones in Refs. [, ] to study
equation (). That is, theirmain tool is the study of an ordinary differential equation associ-
ated to equation (). They proved that for each a �=  the periods of the sequences generated
by equation () can be almost all natural numbers, depending on the initial points (x,x).
In recent years various generalized Lyness difference equations, including the Lyness dif-
ference equation with variable coefficients, the order k Lyness difference equation and the
perturbed Lyness-type order k difference equation, have been extensively studied [–].
It is well known that there are no convergent nontrivial solutions for the Lyness difference
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equation. In [], Li found the convergent solutions of the Lyness difference equation with
variable coefficients

xn+ =
an + xn+

xn
, x,x > ,

where {an} is a monotonic non-increasing positive sequence, which demonstrates the es-
sential difference between Lyness difference equation with constant coefficients and Ly-
ness difference equation with variable coefficients.
In this paper we study the global asymptotic behavior of all solutions of the perturbed

third-order Lyness difference equation

xn+ =
a + xn+ + xn+ + γ xn

xn
, n = , , . . . , ()

where a,γ ∈ (, +∞) and the initial values x,x,x ∈ (, +∞). It is clear that the quadratic
term xn is a small perturbation for small positive number γ . The invariant curve of dif-
ference equations often plays a critical role in studying the stability behavior of their so-
lutions; see [, , ]. Kocic et al. [] have applied KAM theory to prove the stability of
the solutions of the Lyness equation. Meanwhile, Lyapunov functions have been found in
this area by several papers; see [, , ]. Here, using an extension of the method intro-
duced in [], which itself generalizes an idea ofMerino [], we obtain the preservation of
global asymptotic stability for the third-order Lyness difference equation under quadratic
perturbations.
Our main result is the following.

Theorem . () If  < γ < , then the positive equilibrium point lγ of equation () is glob-
ally asymptotically stable, where

lγ =
 +

√
 + a( – γ )
 – γ

.

() If γ ≥ , then the sequence {xn}∞n= generated by equation () converges to +∞.

Cima et al. [] proved that for a given a >  there exist periodic sequences {xn}∞n= gen-
erated by equation () which have almost all long periods and that for a full measure set
of initial conditions the sequences {xn}∞n= are dense in either one or two disjoint bounded
intervals of R. In summary, the sequences {xn}∞n= are periodic or strictly oscillatory, and
the equilibrium point l is locally stable, with l = +

√
 + a. That is, for every ε > , there

is a δ >  so that, for any positive initial values x, x and x with |xi – l| < δ for i = , , ,
one has |xn – l| < ε for all n ≥ . According to Theorem ., the sequences {xn}∞n= of so-
lutions of equation () are converging to lγ if  < γ < . So, the qualitative nature of the
solutions of equation () changes when γ vanishes. Note that the sequences {xn}∞n= are
increasing to +∞ if γ ≥ . So, the behavior of the solutions of equation () is completely
different from the case  < γ < . Thus, the values  and  are two bifurcation points for
the difference equation () containing the parameter γ .
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2 Lyapunov function
In this section we assume that  < γ < . We begin by introducing the nonlinear map

F(x, y, z) =
(
y, z,

a + y + z + γ x

x

)
. ()

Let {xn}∞n= be the sequence generated by equation () with positive initial conditions, then
it is not difficult to check that F(xn,xn+,xn+) = (xn+,xn+,xn+) for all n ≥ . Moreover,
(lγ , lγ , lγ ) is a unique fixed point of F in R

+, where R
+ = {(x, y, z)|x > , y > , z > } and

lγ = +
√

+a(–γ )
–γ

. It is well known [, ] that for γ =  equation () possesses the following
first integral:

V (x, y, z) =
(x + )(y + )(z + )(a + x + y + z)

xyz
.

In other words, F maps the level surface V–(k) into itself for every k when γ = . In order
to study the global convergence properties of the recurrence () for  < γ < , we introduce
a very important function I(x, y, z) given by

I(x, y, z) =
[( – γ )x + ][( – γ )y + ][( – γ )z + ](a + x + y + z)

( – γ )xyz
. ()

In fact, the function I(x, y, z) is the same as V (x, y, z) for γ = . Using the function I , we
construct the Lyapunov function L(x, y, z) of equation (). Set kγ = I(lγ , lγ , lγ ), then we
show that the Lyapunov function is

L(x, y, z) = I(x, y, z) – I(lγ , lγ , lγ ) = I(x, y, z) – kγ .

Let us determine some properties of the function I(x, y, z). Note that if  ≤ γ <  , we get
the relations

lim
x→+

I(x, y, z) = lim
y→+

I(x, y, z) = lim
z→+

I(x, y, z) = +∞,

lim
x+y→+∞

I(x, y, z) = lim
x+z→+∞

I(x, y, z) = lim
y+z→+∞

I(x, y, z) = +∞

and

lim
x+y+z→+∞

I(x, y, z) = +∞.

It is easy to see that the function I(x, y, z) has continuous second partial derivatives in R
+.

Thus, the possible critical points are the stationary points obtained by setting Ix(x, y, z),
Iy(x, y, z) and Iz(x, y, z) equal to zero. Taking partial derivatives and setting them equal to 
gives

Ix(x, y, z) =
[( – γ )y + ][( – γ )z + ][( – γ )x – a – y – z]

( – γ )xyz
= ,

Iy(x, y, z) =
[( – γ )x + ][( – γ )z + ][( – γ )y – a – x – z]

( – γ )xyz
= ,
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Iz(x, y, z) =
[( – γ )x + ][( – γ )y + ][( – γ )z – a – x – y]

( – γ )xyz
= .

The unique positive solution to this system of equations is

xc = yc = zc = lγ =
 +

√
 + a( – γ )
 – γ

.

Next, we check the Hessian H at the stationary point Pγ = (xc, yc, zc) = (lγ , lγ , lγ ), where

H =

⎛
⎜⎝A B B
B A B
B B A

⎞
⎟⎠ .

Computing the second-order derivatives of I , we get

A =
∂I
∂x

∣∣∣∣
Pγ

=
∂I
∂y

∣∣∣∣
Pγ

=
∂I
∂z

∣∣∣∣
Pγ

=
[( – γ )lγ + ]

( – γ )lγ
> 

and

B =
∂I

∂x ∂y

∣∣∣∣
Pγ

=
∂I

∂x ∂z

∣∣∣∣
Pγ

=
∂I

∂y ∂z

∣∣∣∣
Pγ

=
[( – γ )lγ + ][a + lγ – ( – γ )lγ ]

( – γ )lγ
.

Let Hm be themth-order principal minor of the Hessian H . Then we obtain

detH = A > , detH =
[( – γ )lγ + ][( – γ )lγ – ]

( – γ )lγ
> ,

and

detH =
[( – γ )lγ + ][( – γ )lγ + ][( – γ )lγ – ]

( – γ )lγ
> .

Thus, the function I(x, y, z) attains a strict minimum at (lγ , lγ , lγ ) in R
+, and it has no other

critical point. We obtain

kγ = I(lγ , lγ , lγ ) =
(
√
( – γ )a +  + )[( – γ )a +  + 

√
( – γ )a + ]

[
√
( – γ )a +  + ]

.

Let Ik = {(x, y, z)|I(x, y, z) = k, (x, y, z) ∈ R
+} be the level surface of I for k > kγ . It is well

known that the function V (x, y, z) has a minimum at (x̃, x̃, x̃) in R
+, where x̃ = +

√
 + a. In

order to study the third-order Lyness equation, Cima et al. [] proved the following result.

Lemma . Let Lk = {(x, y, z)|V (x, y, z) = k, (x, y, z) ∈ R
+}, and put kc = V (x̃, x̃, x̃). Then set

Lk is diffeomorphic to a sphere � for k > kc.

To describe the level surface I(x, y, z) = k for k > kγ , we apply the invertible linear trans-
formation of variables

(u, v,w) = ϕ(x, y, z) =
(
( – γ )x, ( – γ )y, ( – γ )z

)
, ()
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which induces an isomorphism between the set Ik and the level surface L̃k = {(u, v,w)|
Va(–γ )(u, v,w) = k, (u, v,w) ∈ R

+}, where

Va(–γ )(u, v,w) =
(u + )(v + )(w + )[a( – γ ) + u + v +w]

uvw
.

By using Lemma ., we have that L̃k is diffeomorphic to a sphere for  < γ < . This means
that Ik is also diffeomorphic to a sphere for k > kγ . So, we proved the corollary as follows.

Proposition . For k > kγ the level surface Ik is diffeomorphic to a sphere.

It is easy to see that the set Ik is compact for k > kγ . Moreover, Cima et al. [] introduced
an important curve L that is an invariant, where

L =
{(

t,
t + a
t – 

, t
)∣∣∣t > 

}
.

Here, according to the map F , we define a curve L̃ given by

L̃ :=
{(

s,
s + a

( – γ )s – 
, s

)∣∣∣∣s > 
 – γ

}
⊂ R

+.

It is easy to check that L̃ contains the unique fixed point (lγ , lγ , lγ ). Let

h(s) = I|L̃ = I
(
s,

s + a
( – γ )s – 

, s
)
=
[( – γ )s + ][( – γ )(s + a) – ]

( – γ )s(s + a)[( – γ )s – ]
, s >


 – γ

.

A straightforward calculation shows that lγ is the unique solution of h′(s) =  and that
lim(–γ )s→+ h(s) = lims→+∞ h(s) = +∞. Hence, Ik ∩ L̃ consists of two points for every k > kγ .
It is easy to show that the set Dk = {(x, y, z)|I(x, y, z) ≤ k, (x, y, z) ∈ R

+} contains the unique
critical point (lγ , lγ , lγ ) for k > kγ . Moreover, Dk is compact with k > kγ .

Remark . According to the transformation (), we have I(x, y, z) = Va(–γ )(u, v,w). In
[], the authors obtained a classical property of the function Va(–γ )(u, v,w): it tends to
+∞ at the infinity point of the locally compact space {(u, v,w) | u > , v > ,w > }. Then
the property of I(x, y, z) is the same as this one of Va(–γ )(u, v,w). This is a direct proof
about the property of the set Dk for k > kγ . Furthermore, the sets Dk for k > kγ form a
system of compact neighborhood of the fixed point (lγ , lγ , lγ ).

In order to simplify the proof of our main result, we need the following result.

Proposition . Set S = {(x, y, z)|( – γ )x = a + y + z, (x, y, z) ∈ R
+} and � = {(x, y, z)|( –

γ )x = a + y + z, ( – γ )y = a + x + z, (x, y, z) ∈ R
+}. If  < γ < , then

() I(F(x, y, z)) < I(x, y, z) for all points (x, y, z) ∈ R
+ \ S, and I(F(x, y, z)) = I(x, y, z) for

(x, y, z) ∈ S.
() I(F(x, y, z)) < I(x, y, z) for every point (x, y, z) ∈ S \ �, and I(F(x, y, z)) = I(x, y, z) for

(x, y, z) ∈ �.
() I(F(x, y, z)) < I(x, y, z) for all (x, y, z) ∈ � except the fixed point (lγ , lγ , lγ ).
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Proof Note that γ satisfies the relation  < γ < . Using () and (), we have

L(x, y, z) – L
(
F(x, y, z)

)
= I(x, y, z) – I

(
F(x, y, z)

)
=
[( – γ )y + ][( – γ )z + ]

( – γ )yz

×
{
[( – γ )x + ](a + x + y + z)

x
–
[( – γ ) a+y+z+γ x

x + ](a + y + z + a+y+z+γ x
x )

a+y+z+γ x
x

}

= –
[( – γ )y + ][( – γ )z + ]
( – γ )yz(a + y + z + γ x)

×
{
( – γ )x

(
a + y + z + γ x

x

)

–
[
a + y + z + ( – γ )x

]a + y + z + γ x

x
+ x(a + y + z)

}

=
[( – γ )y + ][( – γ )z + ]

( – γ )xyz
x

a + y + z + γ x
( – γ )

× x
[
a + y + z + γ x

x
–
a + y + z
( – γ )x

](
x –

a + y + z + γ x

x

)

=
x

a + y + z + γ x
[( – γ )y + ][( – γ )z + ]γ

( – γ )yz

[
( – γ )x –

a + y + z
x

]

≥ .

Therefore, from the above expression, we obtained the assertion ().
For every point (x, y, z) belonging to S, then the equality ( – γ )x = a + y + z is fulfilled.

From this, we conclude that

F
(
F(x, y, z)

)
= F

(
y, z,

a + y + z + γ x

x

)
= F(y, z,x) =

(
z,x,

a + z + x + γ y

y

)
.

Thus,

L(x, y, z) – L
(
F
(
F(x, y, z)

))
= I(x, y, z) – I

(
z,x,

a + z + x + γ y

y

)

=
[( – γ )z + ][( – γ )x + ]

( – γ )xz

×
{
[( – γ )y + ](a + x + y + z)

y
–
[( – γ ) a+z+x+γ y

y + ](a + x + z + a+z+x+γ y
y )

a+z+x+γ y
y

}

=
y

a + x + z + γ y
[( – γ )x + ][( – γ )z + ]γ

( – γ )xz

[
( – γ )y –

a + x + z
y

]

≥ .

If  < γ < , then the expression I(x, y, z)– I(F(F(x, y, z))) equals zero if and only if a+x+z =
( – γ )y. Note that the coordinates of the point (x, y, z) satisfy the equality a + y + z =
( – γ )x. From these equations, we proved the assertion ().
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Suppose that (x, y, z) ∈ �, then it is easy to check that

F(x, y, z) = F(y, z,x) = F
(
z,x,

a + z + x + γ y

y

)
= F(z,x, y) =

(
x, y,

a + x + y + γ z

z

)
.

Therefore,

L(x, y, z) – L
(
F(x, y, z)

)
= I(x, y, z) – I

(
x, y,

a + x + y + γ z

z

)

=
[( – γ )x + ][( – γ )y + ]

( – γ )xy

×
{
[( – γ )z + ](a + x + y + z)

z
–
[( – γ ) a+x+y+γ z

z + ](a + x + y + a+x+y+γ z
z )

a+x+y+γ z
z

}

=
z

a + x + y + γ z
[( – γ )x + ][( – γ )y + ]γ

( – γ )xy

[
( – γ )z –

a + x + y
z

]

≥ .

Obviously, the expression I(x, y, z)–I(F(x, y, z)) equals zero if and only if a+x+y = (–γ )z

for  < γ < . Note that the point (x, y, z) belongs to �. It is easy to see that there exists a
unique positive solution (x, y, z) = (lγ , lγ , lγ ) such that I(x, y, z) = I(F(x, y, z)) (see first from
the three equations ( – γ )x = a + y + z, ( – γ )y = a + x + z and ( – γ )z = a + x + y that
x = y = z). Then we proved the assertion (). �

Remark . It is clear that the inequality L(F(x, y, z)) ≤ L(x, y, z) holds for  < γ < . Then
L(x, y, z) is called a Lyapunov function []. In summary, we deduce that I(F(x, y, z)) <
I(x, y, z) holds for (x, y, z) ∈ R

+ except the unique fixed point (lγ , lγ , lγ ). Let the map F in
the case γ =  be denoted by F|γ=. The level surface V (x, y, z) = k is an invariant [, ]
for F|γ=. We also call the function V (x, y, z) the first integral of the map F|γ=. Using the
function V (x, y, z), we obtain the Lyapunov function I(x, y, z) for equation ().

3 Proof of Theorem 1.1
In this section we prove the main result.

Proof Now, we show that the positive equilibrium point lγ of equation () is globally
asymptotically stable for  < γ < .
Recall that kγ = I(lγ , lγ , lγ ) is a global minimum value for the function I(x, y, z) in ().

By Proposition ., the level surface I(x, y, z) = k is diffeomorphic to a sphere for every
k > kγ . Moreover, the level surface I(x, y, z) = k continuously shrinks to a point (lγ , lγ , lγ )
as k → k+γ . Note that the equality I(xn,xn+,xn+) = I(Fn(x,x,x)) is fulfilled for all pos-
itive initial conditions, where the sequence {xn}∞n= is the solution of equation (). It follows
fromProposition . that for (x, y, z) �= (lγ , lγ , lγ ) themonotone sequence {I(Fn(x, y, z))}∞n=
converges to kγ as n → ∞. Otherwise, there must be a real number k > kγ such that
limn→∞ I(Fn(x,x,x)) = k for some (x,x,x) ∈ R

+. It is easy to see that the sequence
{Fn(x,x,x)}∞n= belongs to a set D = {(x, y, z)|k ≤ I(x, y, z) ≤ I(x,x,x), (x, y, z) ∈ R

+}.
Obviously, the set D is closed, bounded and compact. Since there must be a subsequence

http://www.advancesindifferenceequations.com/content/2013/1/193
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{Fnl (x,x,x)}∞l= such that liml→∞ Fnl (x,x,x) = (̃x, ỹ, z̃), where (̃x, ỹ, z̃) ∈D. Next, con-
sidering another subsequence {F(Fnl (x,x,x))}∞l= of {Fn(x,x,x)}∞n=, we obtain that
liml→∞ I(F(Fnl (x,x,x))) = k. Because I(x, y, z) and F(x, y, z) are continuous functions
in R

+, it is not difficult to deduce that I (̃x, ỹ, z̃) = liml→∞ I(Fnl (x,x,x)) = k and

k = lim
l→∞

I
(
F(Fnl (x,x,x)

))
= I

(
F lim

l→∞
(
Fnl (x,x,x)

))
= I

(
F(̃x, ỹ, z̃)

)
< I (̃x, ỹ, z̃).

This is a contradiction. So, we have limn→∞ I(Fn(x, y, z)) = kγ for all (x, y, z) ∈ R
+. There-

fore, we have the limits limn→∞ xn = lγ , limn→∞ xn+ = lγ and limn→∞ xn+ = lγ . That
is, the positive equilibrium point lγ of equation () is globally asymptotically stable when
 < γ < .
Finally, we give the proof of the assertion () of Theorem .. Note that the initial values

x, x and x are positive real numbers, and the parameters a and γ are also positive in
equation (). For γ ≥ , we have

xn+ =
a + xn+ + xn+ + γ xn

xn
>

a
xn

+ xn > xn. ()

So, the subsequences {xn}∞n=, {xn+}∞n= and {xn+}∞n=of solution {xn}∞n= of equation ()
are monotonically increasing. Then the sequence {xn}∞n= converges to +∞ as n → ∞.
Otherwise, there must be an integer m such that limn→∞ xn+m = b for  ≤ m ≤ . We
write n +m in place of n in equation (). This gives the recurrence relation

xn+m+ >
a

xn+m
+ xn+m.

Take the limits on both sides of the above inequality and obtain b ≥ a
b + b. This is a con-

tradiction. Hence, the sequence {xn}∞n= converges to +∞ as n → ∞ if γ ≥ . The proof is
completed. �

Remark . Indeed, using the extension of the quasi-Lyapounov method, we can obtain
the global asymptotic behavior of the second-order Lyness equation xn+xn = a+xn+ +γ xn
for certain domains of values for parameters.
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