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Abstract
In this paper, we investigate the exponential synchronization issue of coupling
delayed switching complex dynamical networks via impulsive control. Basing on the
Lyapunov functional method and establishing a new impulsive delay differential
inequality, we derive some sufficient conditions which depend on delay and impulses
to guarantee the exponential synchronization of the coupling delay switching
complex dynamical network. Finally, numerical simulations are given to illustrate the
effectiveness of the obtained results.

Keywords: exponential synchronization; complex dynamical network; switching
topology; delayed coupling

1 Introduction
During the last two decades, synchronization and control problems of complex dynamical
networks have been focused on inmany different fields such asmathematics, engineering,
social and economic science, etc. [–]. Many effective methods, like feedback control,
adaptive control, sampled-data control and impulsive control, are used to stabilize and
synchronize a coupled complex dynamical network. At the same time, a wide variety of
synchronization criteria have also been presented for different network coupling such as
switch topology, time delays, impulsive characters, etc.
Up to now, plenty of researchers have devotedmuch effort to guarantee synchronization

of complex dynamical networks with fixed topology [–]. However, in real situations,
many complex systems may be subject to abrupt changes in their connection structure or
networkmode switching caused by somephenomena such as link failures, component fail-
ures or repairs, changing subsystem interconnections, and abrupt environmental distur-
bance, etc.Although some synchronization criteria of networkswith uncertain topological
structure and continuous time-varying topology have been studied, those methods may
not work for the network topology when it becomes discontinued or changes very quickly
[, ]. Hence, to study the synchronization of the switched networks is still very useful
and meaningful. Because of this reason, the synchronization of a complex network with
switching topology has attracted researchers’ interest [–]. Wang et al. [] provided
several synchronization criteria for switched networks, in which synchronization could be
evaluated by the time average of the second smallest eigenvalue that corresponded to the
Laplaciansmatrix of switching topology. Authors in [] studied the local and global expo-
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nential synchronization of switched networks with time-varying coupling delays, whose
inner and outer coupling matrices take values in two finite sets of matrices via a switch-
ing signal. An adaptive controller was designed to synchronize a switched network under
arbitrary switching in []. Yu et al. [] explored the synchronization of switched neural
networks, and some sufficient conditions were given to guarantee the global synchroniza-
tion. Jia et al. [] investigated the leader-following problem of network, in which the net-
work topology is assumed to be arbitrarily switched among a finite set of topologies, and
time-varying delay exists in the coupling of agents.
In many systems, the impulsive effects are common phenomena due to instantaneous

perturbations at certain moments. In general, there are two kinds of impulse in terms of
synchronization in complex dynamical networks: desynchronizing impulse and synchro-
nizing impulse []. In previous literature, most of the results were devoted to investigat-
ing the desynchronizing impulse (the impulsive effect can suppress the synchronization of
the complex dynamical networks) [–]. The global exponential synchronization was
studied for linear coupled neural networks with impulsive disturbances in []. Zhu et al.
gave some global impulsive exponential synchronization criteria for time-delayed coupled
chaotic systems []. In [], some impulsive control schemes were given to guarantee
the consensus of nonlinear multi-agent systems with switching topology. Yang and Cao
[] studied the exponential synchronization of a coupling delay complex dynamical net-
work with impulsive effects and proved that the network can achieve synchronization for
a desynchronizing impulse. All of them have a common feature that the network must be
synchronous. As we all know that the network is not always synchronous, there are some
factors that will lead to an unstable network such as the change of topology structure, time
delays and low strength of the coupling. Impulsive control (synchronizing impulse) may
give an efficient method to deal with a dynamical system which is unstable. It is worth
mentioning that synchronization and the control problems in complex networks with fix
topology and synchronizing impulse have been widely studied [, –], but research
into switched topology and synchronizing impulse is rare.
In this paper, we investigate the problem of exponential synchronization of a switching

complex dynamical network via impulsive control. The contribution of this paper is to pro-
pose a new impulsive delay differential inequality. By utilizing the Lyapunov stability and
impulsive control theory on delayed dynamical networks, some sufficient conditions of
exponential synchronization for a switching complex dynamical network are presented. It
shows that impulsive controller (synchronizing impulsive) can control the coupling delay
switching complex dynamical network to a homogenous solution. Numerical simulations
are given to show the validity of the developed results.

2 Model and preliminaries
The switching complex dynamical networks investigated in this paper consist ofN nodes,
whose state is described as⎧⎪⎪⎨

⎪⎪⎩
ẋi(t) = f (xi(t)) + c

∑N
j= g

σ (t)
ij �xj(t – τ ), t �= tk ,

�xi(tk) = xi(t+k ) – xi(t–k ) = bkxi(t–k ), t = tk ,

k ∈ Z+, i = , , . . . ,N ,

()

where xi(t) = (xi(t),xi(t), . . . ,xin(t))T ∈ Rn is the state vector of node i; f : Rn → Rn is a
continuous vector value function, c >  is the coupling strength, τ is a coupling delay;
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� = diag(γ,γ, . . . ,γn) is an inner couplingmatrix between the two connected nodes; σ (t) :
[,∞) → ℵ = {, , . . . ,m} is a switching signal, which is a piecewise constant function;
Gσ (t) = (gσ (t)

ij ) ∈ RN×N is a Laplacian matrix associated with the switching function σ (t), in
which the entries ofmatrixGσ (t) are defined as follows: if nodes i and j (i �= j) are connected,
then gσ (t)

ij > ; otherwise, gσ (t)
ij = , and the diagonal entries of matrix Gσ (t) are defined by

gσ (t)
ii = –

∑N
j=,j �=i g

σ (t)
ij . Note that the coupling matrix Gσ (t) is not assumed to be irreducible;

bk is the ith node impulsive gain at t = tk . The discrete set {tk} satisfies  ≤ t < t < · · · <
tk < · · · , tk → +∞ as k → +∞, note x(t–k ) = limt→t–k x(t), and x(t+k ) = limt→t+k x(t) = x(tk).
We assume that the network () satisfies the following initial conditions: xi (t) =

(xi(t),xi(t), . . . ,xin(t))T ∈ C([t – τ , t],Rn).
To discuss exponential synchronization, we define the set

s(t) =
N∑
j=

ξjxj(t), ()

which is the synchronization state for the network (), where ξi >  and
∑N

j= ξj = .

Remark  In general, the synchronization state s(t) may be an equilibrium point, a peri-
odic orbit, or a chaotic attractor. In this paper, we did not need (ξ, ξ, . . . , ξN ) to be the left
eigenvector of coupling matrix G corresponding to eigenvalue .

Definition  The network () is said to achieve exponentially synchronization if there
exist some constants ε >  andM >  such that

lim
t→∞

∥∥xi(t) – s(t)
∥∥≤ Me–ε(t–t)

for all initial conditions xi (t) ∈ C([t – τ , t],Rn) and i = , , . . . ,N .

Definition  [, ] Let P = diag(p,p, . . . ,pn) be a positive definite diagonal matrix, and
let � = diag(δ, δ, . . . , δn) be a diagonal matrix. QUAD(�,P) denotes a class of continuous
functions f (x) : Rn → Rn satisfying

(x – y)TP
(
f (x) – f (y) –�(x – y)

)≤ –α(x – y)TP(x – y)

for some α > , all x, y ∈ Rn and t > t.

Remark  It is easy to verify that the function class QUAD exists in almost all the well-
known chaotic systems with or without time delays such as Lorenz systems, Rössler sys-
tem, Chen system, Chua’s circuit, delayed Hopfield neural networks and delayed cellular
neural networks (cNN), etc.

Define error state ei(t) = xi(t) – s(t) ( ≤ i ≤ N ). It is easy to verify that
∑N

i= ξiei(t) = 
and the dynamical equation of s(t) and ei(t) satisfies

ṡ(t) =
N∑
i=

ξi

[
f
(
xi(t)

)
+ c

N∑
j=

gσ (t)
ij �xj(t – τ )

]
, ()
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⎧⎪⎪⎨
⎪⎪⎩
ėi(t) = f̃ (ei(t)) + c

∑N
j= g

σ (t)
ij �ej(t – τ ) + J , t �= tk ,

�ei(tk) = ei(t+k ) – ei(t–k ) = bkei(t–k ), t = tk ,

k ∈ Z+, i = , , . . . ,N ,

()

where f̃ (ei(t)) = f (xi(t)) – f (s(t)) and J =
∑N

j= ξj · {[f (s(t)) – f (xj(t))] –
∑N

k= g
σ (t)
jk �xk(t – τ )}.

In order to derive the main results, it is necessary to propose the following lemmas.

Lemma  Let u(t) : [t – τ ,∞)→ [,∞) satisfy the scalar impulsive differential inequality

⎧⎨
⎩u̇(t)≤ pu(t) + qu(t – τ ), t �= tk , t ≥ t,

u(tk)≤ αku(t–k ), u(t) = φ(t), t ∈ [t – τ , t],
()

where p,q > , αk > , u(t) is continuous at t �= tk , t ≥ t, u(tk) = u(t+k ) = limt→t+k u(t) and
u(t–k ) = limt→t–k u(t) exists, φ ∈ C([t – τ , t],R+). Then

u(t) ≤
( k∏

i=

αi

)
e(p+q)(t–t+kτ )

[
sup

t–τ≤s≤t
φ(s)

]

for t ∈ [tk , tk+).

The proof is given in the Appendix.

Lemma [] For real constantmatrices Z,Z,Z ∈ RN×N with Z = ZT
 ,Z = ZT

 , and di-
agonal matrix � = diag(λ,λ, . . . ,λN ), where λi ∈ R, the matrices K = diag(K,K, . . . ,KN )
and

� =

[
IN ⊗ Z � ⊗ Z

� ⊗ ZT
 IN ⊗ Z

]

share the same eigenvalues, where IN indicates the N dimensional identity matrix and
Ki =

[ Z λiZ
λiZT

 Z

]
.

3 Main result
In this section, we investigate the exponential synchronization of error system (), in
which coupling matrixGσ is divided into two cases: symmetric or asymmetric. Some new
criteria are presented for the exponential synchronization of the network () based on
the Lyapunov functional method, linear matrix inequality approach and establishing an
impulsive delay differential inequality.
Case . Asymmetric connected of switching topology

Theorem  The network () is exponential synchronization if there exist positive definite
diagonalmatrices P = diag(p,p, . . . ,pn) andQ = diag(q,q, . . . ,qn), and positive constants
β and η such that

() f (x) ∈QUAD(�,P),

() (δj – α)pj� +
(cpjγj)

qj

(
Gσ

)T
�Gσ – βpj� ≤ , j = , , . . . ,n,∀σ ∈ ℵ,
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() (β + a)
(
 +

τ

Tmin

)
+
 ln | + b|

Tmax
≤ –η,

where a = {maxqi
minpj

|i, j = , , . . . ,N}, � = diag(ξ, ξ, . . . , ξN ), | + b| = max{| + bk||k ∈ Z+},
Tmin =min{tk – tk–|k ∈ Z+}, and Tmax =max{tk – tk–|k ∈ Z+}.

Proof Condition () of Theorem  implies that the impulsive gains bk ∈ (–, ).
Choose the Lyapunov function as follows:

V (t) =
N∑
i=

ξieTi (t)Pei(t).

Then the derivative of V (t) with respect to time t along the solution of Eq. () can be
calculated as follows:

V̇ (t) = 
N∑
i=

ξieTi (t)Pėi(t)

= 
N∑
i=

ξieTi (t)P

[
f
(
xi(t)

)
– f

(
s(t)

)
–�

(
xi(t) – s(t)

)

+�
(
xi(t) – s(t)

)
+ c

N∑
j=

gσ (t)
ij �ej(t – τ ) + J

]
.

Since
∑N

i= ξiei(t) = , we have

N∑
i=

ξieTi (t)PJ =
N∑
i=

ξieTi (t)P

[ N∑
j=

ξj
(
f
(
s(t)

)
– f

(
xj(t)

))
– c

N∑
j=

N∑
k=

ξjgσ (t)
jk �ek(t)

]
= .

Considering the time intervals in which the σ th topology is being activated and using
the QUAD condition, we have

V̇ (t) ≤
N∑
i=

ξieTi (t)P(–αIn +�)ei(t) +
N∑
i=

N∑
j=

cξigσ
ij e

T
i (t)P�ej(t – τ )

–
N∑
i=

ξieTi (t – τ )Qei(t – τ ) +
N∑
i=

ξieTi (t – τ )Qei(t – τ )

=
n∑
j=

(δj – α)pjẽTj (t)�ẽj(t) + c
n∑
j=

pjγjẽTj (t)�Gσ ẽj(t – τ )

–
n∑
j=

qjẽTj (t – τ )�ẽj(t – τ ) +
N∑
i=

ξieTi (t – τ )Qei(t – τ )

=
n∑
j=

[
ẽTj (t) ẽTj (t – τ )

][(δj – α)pj� cpjγj�Gσ

cpjγj(Gσ )T� –qj�

][
ẽj(t)

ẽj(t – τ )

]

+
N∑
i=

ξieTi (t – τ )Qei(t – τ ), ()

where ẽj(t) = (ej(t), ej(t), . . . , eNj(t))T and � = diag(ξ, ξ, . . . , ξN ).
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According to Condition () of Theorem  and linear matrix inequality, it is not difficult
to verify that

[
(δj – α – β)pj� cpjγj�Gσ

cpjγj(Gσ )T� –qj�

]
≤ . ()

Substituting () into () yields

V̇ (t) ≤
N∑
i=

βpjẽTj (t)�ẽj(t) +
N∑
i=

ξieTi (t – τ )Qei(t – τ )

≤ β

N∑
i=

ξieTi (t)Pei(t) +
maxqi
minpj

N∑
i=

ξieTi (t – τ )Pei(t – τ )

= βV (t) +
maxqi
minpj

V (t – τ )

= βV (t) + aV (t – τ ), ()

where a = {maxqi
minpj

|i, j = , , . . . ,N}.
On the other hand, from the construction of V (t), we have

V (tk) =
N∑
i=

ξieTi (tk)Pei(tk) =
N∑
i=

( + bk)ξieTi
(
t–k
)
Pei

(
t–k
)

= ( + bk)V
(
t–k
)
. ()

Hence, for t ∈ [tk , tk+), by Lemma  and Eqs. ()-(), one can show that

V (t) ≤
( k∏

i=

( + bi)
)
e(β+a)(t–t+kτ )

(
sup

t–τ≤s≤t
Vs

)
. ()

Let | + b| = max{| + bk||k ∈ Z+}, Tmin = min{tk – tk–|k ∈ Z+}, and Tmax = max{tk –
tk–|k ∈ Z+}, then

V (t) ≤
(

sup
t–τ≤s≤t

V (s)
)
e(β+a)(t–t+kτ )+k ln |+b|

≤
(

sup
t–τ≤s≤t

V (s)
)
e[(β+a)(+

τ
Tmin

)+ ln |+b|
Tmax

](t–t).

Using Condition () of Theorem , we get

V (t) ≤
(

sup
t–τ≤s≤t

V (s)
)
e–η(t–t).

From the construction of V (t), we have

V (t) ≥ ξieTi (t)Pei(t).

Hence, ‖ei(t)‖ ≤ (
supt–τ≤s≤t V (s)

pξi
)  e–

η
 (t–t), where p =min{pj|j = , , . . . ,n}.

The proof of Theorem  is completed. �
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If the switching signal σ (t) ≡ , then the network () has only one coupling matrix G.
Suppose G is irreducible and ξT = (ξ, ξ, . . . , ξN ) is the left eigenvector of coupling matrix
G corresponding to eigenvalue . By the proof of Theorem , we can derive the exponen-
tial synchronization criteria of the network () with only one topology, which is given as
follows.

Corollary  The network ()with only one topology is exponential synchronization if there
exist positive definite diagonal matrices P = diag(p,p, . . . ,pn) and Q = diag(q,q, . . . ,qn)
and positive constants β and η such that

() f (x) ∈QUAD(�,P),

()

[
(δj – α – β)pj� cpjγj�G

cpjγjGT� –qj�

]
≤ , j = , , . . . ,n,

() (β + a)
(
 +

τ

Tmin

)
+
 ln | + b|

Tmax
≤ –η,

where a = {maxqi
minpj

|i, j = , , . . . ,N}, � = diag(ξ, ξ, . . . , ξN ), | + b| = max{| + bk||k ∈ Z+},
Tmin =min{tk – tk–|k ∈ Z+}, and Tmax =max{tk – tk–|k ∈ Z+}.

Remark  The result of Theorem  in [] must satisfy p > , where p =min≤j≤n{(σ –
δi–γi)pj}. However, for almost chaotic systems there exists j such that δj –σ > . It means
that the condition of Theorem  (in []) is not true. In Corollary  of this paper, there
exists β >  such that δj – α – β < . So, Corollary  is more common than Theorem 
in [].

Case . Symmetric connected of switching topology

Theorem  Suppose that Gσ is a symmetric matrix. If there exist positive constants β and
η and positive definite diagonal matrices P = diag(p,p, . . . ,pn) and Q = diag(q,q, . . . ,qn)
such that

() f (x) ∈QUAD(�,P),

() ξ
[
P� – (α + β)P

]
+
(cλ)

ξ
P�Q–�P ≤ ,

() (β + a)
(
 +

τ

Tmin

)
+ 

ln | + b|
Tmax

< –η,

then the network () is exponential synchronization, where a = {maxqi
minpj

|i, j = , , . . . ,N},
| + b| = max{| + bk||k ∈ Z+}, ξ = min{ξi|i = , , . . . ,N}, Tmin = min{tk – tk–|k ∈ Z+},
T = max{tk – tk–|k ∈ Z+}, λ = max{|λi(�Gσ )||i = , , . . . ,n;σ ∈ ℵ} and λi(�Gσ ) are the
eigenvalues of matrices �Gσ .

Proof Construct the following Lyapunov function:

V (t) =
N∑
i=

ξieTi (t)Pei(t) = eT (t)(� ⊗ P)e(t),

where e(t) = (eT (t), eT (t), . . . , eTN (t))T .

http://www.advancesindifferenceequations.com/content/2013/1/195
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Then, taking the derivative of V (t) with respect to time t along the solution of Eq. (),
we have

V̇ (t) ≤
N∑
i=

ξieTi (t)P

{
(–αIn +�)ei(t) + c

N∑
j=

gσ
ij �ej(t – τ )

}

=
N∑
i=

ξieTi (t)P
(
–(α + β)In + �

)
ei(t) + c

N∑
i=

N∑
j=

ξigσ
ij e

T
i (t)P�ej(t – τ )

+
N∑
i=

βξieTi (t)Pei(t) –
N∑
i=

ξieTi (t – τ )Qei(t – τ ) +
N∑
i=

ξieTi (t – τ )Qei(t – τ )

≤ ξeT (t)
[
IN ⊗ (

P� – (α + β)P
)]
e(t) + ceT (t)

(
�Gσ ⊗ P�

)
e(t – τ )

+ βeT (t)(� ⊗ P)e(t) – ξeT (t – τ )(IN ⊗Q)e(t – τ )

+ eT (t – τ )(� ⊗Q)e(t – τ ), ()

where ξ =min{ξi|i = , , . . . ,N}.
Consider the properties of a symmetric matrix. There exists an orthogonal matrix

Uσ = (uσ
 ,uσ

 , . . . ,uσ
n ) ∈ RN×N such that UT

σ (�Gσ )Uσ = diag(λσ ,λσ, . . . ,λσN ) = �σ and
σ ∈ ℵ. Let Zσ (t) = ((Uσ ⊗ In)e(t)). According to Eq. () and the properties of the Kro-
necker product, we can get

V̇ (t) ≤ ξZT
σ (t)

[
IN ⊗ (

P� – (α + β)P
)]
Zσ (t) + cZT

σ (t)(�σ ⊗ P�)Zσ (t – τ )

+ βeT (t)(� ⊗ P)e(t) – ξZT
σ (t – τ )(IN ⊗Q)Zσ (t – τ ) + eT (t – τ )(� ⊗Q)e(t – τ )

=
[
ZT

σ (t) ZT
σ (t – τ )

][ξ IN ⊗ (P� – (α + β)P) c�σ ⊗ P�

c�σ ⊗ P� –ξ IN ⊗Q

][
Zσ (t)

Zσ (t – τ )

]

+ βeT (t)(� ⊗ P)e(t) + eT (t – τ )(� ⊗Q)e(t – τ ).

Basing on Condition () of Theorem  and λ = max{|λi(�Gσ )||i = , , . . . ,n;σ ∈ ℵ},
where λi(�Gσ ) are the eigenvalues of matrices �Gσ , for all i = , , . . . ,n and σ ∈ ℵ, we
have

ξ
[
P� – (α + β)P

]
+
(cλσ i)

ξ
P�Q–�P ≤ .

By the linear matrix inequality, for all i = , , . . . ,n, σ ∈ ℵ, one gets
[
ξ [P� – (α + β)P] cλσ iP�

cλσ i�P –ξQ

]
≤ .

Then, applying Lemma , we obtain

[
ξ IN ⊗ (P� – (α + β)P) c�σ ⊗ P�

c�σ ⊗ P� ξ IN ⊗Q

]
≤ .

http://www.advancesindifferenceequations.com/content/2013/1/195
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Hence,

V̇ (t)≤ βeT (t)(� ⊗ P)e(t) + eT (t – τ )(� ⊗Q)e(t – τ ) ≤ βV (t) + aV (t – τ ), ()

where a = {maxqi
minpj

|i, j = , , . . . ,N}.
According to Eqs. ()-() and (), for any t ∈ [tk , tk+), we have

V (t) ≤
(

sup
t–τ≤s≤t

V (s)
)
e[(β+a)(+

τ
Tmin

)+ ln |+b|
Tmax

](t–t).

Using Condition () of Theorem , we get

V (t) ≤
(

sup
t–τ≤s≤t

V (s)
)
e–η(t–t).

It is clear that ξieTi (t)Pei(t) ≤ V (t).
So, ‖ei(t)‖ ≤ (

(supt–τ≤s≤t V (s))
pξi

)  e–
η
 (t–t), where p =min{pj|j = , , . . . ,n}.

The proof of Theorem  is completed. �

Let impulsive gains bk = b, and choose the synchronization state s(t) = 
N
∑N

i= xi(t). By
the proof of Theorem , we can derive the exponential synchronization criteria of the
network () with the fixed impulsive gain, which is given as follows.

Corollary  The network () with the fixed impulsive gain is exponential synchroniza-
tion if there exist positive definite diagonal matrices P = diag(p,p, . . . ,pn) and Q =
diag(q,q, . . . ,qn), and positive constants β and η such that

() f (x) ∈QUAD(�,P),

() P� – (α + β)P + (cλ)P�Q–�P ≤ ,

() (β + a)
(
 +

τ

Tmin

)
+ 

ln | + b|
Tmax

< –η,

where a = {maxqi
minpj

|i, j = , , . . . ,N}, Tmin =min{tk – tk–|k ∈ Z+}, Tmax =max{tk – tk–|k ∈ Z+},
λ =max{|λi(Gσ )||i = , , . . . ,n;σ ∈ ℵ} and λi(Gσ ) are the eigenvalues of matrices Gσ .

4 Numerical simulation
In this section, we give two numerical simulations to illustrate the feasibility and effective-
ness of the theoretical results presented in the previous sections.
Consider a three-order Chua’s circuit [] (see Figure ) described as follows:

ẋ(t) = f
(
x(t)

)
,

where x(t) = (x(t),x(t),x(t))T and the function f (x(t)) was chosen as follows:

f
(
x(t)

)
=

⎡
⎢⎣
m[x – h(x)]
x – x + x

–nx

⎤
⎥⎦ ,

where h(x) = 
x –


 [|x + | – |x – |],m =  and n = 

 .
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Figure 1 Chaotic behavior of Chua’s circuit.

Example  Consider a networkmodel consisting of five nodes and three connective topol-
ogy. Each node in the network is three-order Chua’s circuit described by

⎧⎪⎪⎨
⎪⎪⎩
ẋi(t) = f (xi(t)) + c

∑
j= g

σ (t)
ij �xj(t – τ ), t �= tk ,

�xi(tk) = xi(tk) – xi(t–k ) = bkxi(t–k ), t = tk ,

i = , , . . . , ,

()

where c = ., τ = . and � = .I.
If the couplingmatrices are selected as follows and bk =  (without impulsive controller),

then the network () is not synchronized (see Figure ).

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

–    
 –   
  –  
   – 
    –

⎤
⎥⎥⎥⎥⎥⎥⎦
, G =

⎡
⎢⎢⎢⎢⎢⎢⎣

–    
 –   
  –  
   – 
    –

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

–    
 –   
  –  
   – 
    –

⎤
⎥⎥⎥⎥⎥⎥⎦
.

If we choose P = I and � = I, then the function f (x) satisfies the condition of the
function class QUAD(�,P), where α = .. The switch time is t = .s. Let β = .,
Q = .I, | + b| = ., Tmax = Tmin = . and let the synchronization state be s(t) =
.x + .x + .x + .x + .x, then all the conditions in Theorem  are satisfied,
and η = –., a = ., so the asymmetric coupled network () can achieve exponen-
tial synchronization. The simulation results are given in Figures -. It can be seen clearly
from Figures - that all states of the asymmetric coupled network () tend to the syn-
chronization state s(t).
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Figure 2 Time evolution of errors eij(t), i = 1,2, . . . , 5, j = 1,2, 3 of the asymmetric coupled network (13)
without impulsive controller.

Figure 3 Time evolution of synchronization errors ei1(t), i = 1,2, . . . , 5 of the asymmetric coupled
network (13) with random initial values.

Example  The network model is the same as Example . If the coupling matrices are
chosen as follows and bk =  (without impulsive controller), then the network () is not
synchronized (see Figure ).

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

–    
 –   
  –  
   – 
    –

⎤
⎥⎥⎥⎥⎥⎥⎦
, G =

⎡
⎢⎢⎢⎢⎢⎢⎣

–    
 –   
  –  
   – 
    –

⎤
⎥⎥⎥⎥⎥⎥⎦
,
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Figure 4 Time evolution of synchronization errors ei2(t), i = 1,2, . . . , 5 of the asymmetric coupled
network (13) with random initial values.

Figure 5 Time evolution of synchronization errors ei3(t), i = 1,2, . . . , 5 of the asymmetric coupled
network (13) with random initial values.

and

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

–    
 –   
  –  
   – 
    –

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Hence, λ = {|λi(Gσ )||i = , . . . , ,σ = , , } = . Choose the synchronization state s(t) =
.

∑
i= xi(t) and switch time t = .s. If β = ., Q = .I, | + b| = ., and Tmax =

Tmin = ., then all the conditions in Theorem  are satisfied, and η = –., a = ., so
the symmetric coupled network () can achieve exponential synchronization. The simu-
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Figure 6 Time evolution of errors eij(t), i = 1,2, . . . , 5, j = 1,2, 3 of the symmetric coupled network (13)
without impulsive controller.

Figure 7 Time evolution of synchronization errors ei1(t), i = 1,2, . . . , 5 of the symmetric coupled
network (13) with random initial values.

lation results are given in Figures -. It can be seen clearly from Figures - that all states
of the symmetric coupled network () tend to the synchronization state s(t).

5 Conclusions
In this paper, by establishing an impulsive delay differential inequality, the exponential
synchronization of the coupling delay switching complex networks has been investigated.
Based on Lyapunov stability theory, some simple yet generic criteria for exponential syn-
chronization have been derived. It shows that criteria can provide an effective impulsive

http://www.advancesindifferenceequations.com/content/2013/1/195
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Figure 8 Time evolution of synchronization errors ei2(t), i = 1,2, . . . , 5 of the symmetric coupled
network (13) with random initial values.

Figure 9 Time evolution of synchronization errors ei3(t), i = 1,2, . . . , 5 of the symmetric coupled
network (13) with random initial values.

control scheme to synchronize for an arbitrary given switch topology. Furthermore, the
effectiveness of the presented method has been verified by numerical simulations.

Appendix

Proof of Lemma  For t ∈ [tk , tk+), integrating both sides of equation () from tk to t, we
can get

u(t) – u(tk) ≤
∫ t

tk
pu(s) + qu(s – τ )ds

=
∫ t

tk
pu(s)ds +

∫ t

tk
qu(s – τ )ds.

http://www.advancesindifferenceequations.com/content/2013/1/195
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It is easy to obtain that

u(t) ≤ u(tk) +
∫ t

tk–τ

pu(s)ds +
∫ t

tk–τ

qu(s)ds

= u(tk) +
∫ t

tk–τ

(p + q)u(s)ds. ()

Now, we begin to prove that

u(t) ≤
( k∏

i=

αi

)
e(p+q)(t–t+kτ )

(
sup

t–τ≤s≤t
φ(s)

)
, t ∈ [tk , tk+),k ∈ Z+. ()

We shall show this by induction.
For t ∈ [t, t), by Lemma  in [], we have

u(t) ≤ u(t) +
∫ t

t

[
pu(s) + q sup

s–τ≤θ≤s
u(θ )

]
ds

≤
(

sup
t–τ≤s≤t

φ(s)
)
e(p+q)(t–t). ()

In view of (), we see that () holds when k = . Under the inductive assumption that
() holds for some k ≥ , we shall show that () still holds for k + .
For t ∈ [tk+, tk+), without any loss of generality, we assume that there are l first-class

intermittent points, then () can be rewritten as

u(t) ≤ u(tk+) +
∫ tk–l+

tk+–τ

(p + q)u(s)ds

+
l∑

i=

∫ tk–i+

tk–i+
(p + q)u(s)ds +

∫ t

tk+
(p + q)u(s)ds. ()

Noting z(t) =
∫ t
tk+

(p + q)u(s)ds +
∑l

i=
∫ tk–i+
tk–i+

(p + q)u(s)ds +
∫ tk–l+
tk+–τ

(p + q)u(s)ds, then the
derivative of z(t) can be calculated as follows:

ż(t) = (p + q)u(t)

≤ (p + q)u(t) + (p + q)

(∫ t

tk+
(p + q)u(s)ds

+
l∑

i=

∫ tk–i+

tk–i+
(p + q)u(s)ds +

∫ tk–l+

tk+–τ

(p + q)u(s)ds

)

= (p + q)u(tk+) + (p + q)z(t).

It is not difficult to show that

[
ż(t) – (p + q)z(t)

]
e–(p+q)(t–tk++τ ) ≤ (p + q)u(tk+)e–(p+q)(t–tk++τ ).

Clearly,

d
dt
[
z(t)e–(p+q)(t–tk++τ )]≤ (p + q)u(tk+)e–(p+q)(t–tk++τ ).
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Hence, we have

z(t)e–(p+q)(t–tk++τ ) – z(tk+ – τ ) ≤ (p + q)u(tk+)
∫ t

tk+–τ

e–(p+q)(s–tk++τ ) ds.

Since z(tk+ – τ ) = , one has

z(t) ≤ e(p+q)(t–tk++τ )
∫ t

tk+–τ

(p + q)u(tk+)e–(p+q)(s–tk++τ ) ds

= u(tk+)e(p+q)(t–tk++τ ) – u(tk+). ()

Substituting () into () yields

u(t) ≤ αk+u
(
t–k+

)
e(p+q)(t–tk++τ )

≤
( k+∏

i=

αi

)(
sup

t–τ≤s≤t
φ(s)

)
e(p+q)(t–t+(k+)τ ).

That is, () holds for k + . Hence, by induction, () holds for all k ≥ .
The proof is complete. �
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