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Abstract
In this paper we establish the general solutions of the following mixed type
quadratic-additive functional equation:
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in the class of functions between real vector spaces. Moreover, we prove the
generalized Hyers-Ulam-Rassias stability of this equation in Banach spaces.
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1 Introduction
The stability problems of functional equations go back to  when Ulam [] proposed
the following question:

Let f be a mapping from a group G to a metric group G with the metric d(·, ·) such
that

d
(
f (xy), f (x)f (y)

) ≤ ε.

Then does there exist a group homomorphism L :G →G and δε >  such that

d
(
f (x),L(x)

) ≤ δε

for all x ∈G?

This question was solved affirmatively by Hyers [] under the assumption that G is a
Banach space. He proved that if f is a mapping between Banach spaces satisfying ‖f (x +
y) – f (x) – f (y)‖ ≤ ε for some fixed ε ≥ , then there exists a unique additive mapping A
such that ‖f (x)–A(x)‖ ≤ ε. In , Rassias [] generalizedHyers’ result to the unbounded
Cauchy difference. Since then, the stability problems of various functional equations have
been extensively studied and generalized by a number of authors (see [–]).
In particular, Kannappan [] introduced the following mixed type quadratic-additive

functional equation:

f (x + y + z) + f (x) + f (y) + f (z) = f (x + y) + f (y + z) + f (z + x) (.)
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and proved that a function on a real vector space is a solution of (.) if and only if
there exist a symmetric biadditive function B and an additive function A such that f (x) =
B(x,x) + A(x). In addition, Jung [] investigated the Hyers-Ulam stability of (.) on re-
stricted domains and applied the result to the study of an interesting asymptotic behavior
of the quadratic functions. More generally, Jun and Kim [] solved the general solutions
and proved the stability of the following functional equation, which is a generalization of
(.):

f

( n∑
i=

xi

)
+ (n – )

n∑
i=

f (xi) =
∑

≤i<j≤n

f (xi + xj) (n > ).

Najati and Moghimi [] introduced another mixed type quadratic-additive functional
equation

f (x + y) + f (x – y) = f (x + y) + f (x – y) + f (x) – f (x)

and investigated the generalized Hyers-Ulam-Rassias stability of this equation in quasi-
Banach spaces.
In this paper, we introduce the following quadratic-additive functional equation:

f
(
x + y + z



)
+ 

[
f
(
x – y


)
+ f

(
y – z


)
+ f

(
z – x


)]

= 
[
f (x) + f (y) + f (z)

]
(.)

to establish the general solutions and stability problems of this equation. For real vector
spaces X and Y , we prove in Section  that a mapping f : X → Y satisfies (.) if and only
if there exist a quadratic mapping Q : X → Y satisfying

Q(x + y) +Q(x – y) = Q(x) + Q(y) (.)

and an additive mapping A : X → Y satisfying

A(x + y) = A(x) +A(y) (.)

such that

f (x) =Q(x) +A(x)

for all x ∈ X. We refer to [–] for the stability results of other mixed type functional
equations. In Section , we prove the generalized Hyers-Ulam-Rassias stability of (.) in
Banach spaces.

2 General solutions of (1.2)
Throughout this section, X and Y will be real vector spaces. In order to solve the general
solutions of (.), we need the following two lemmas.

Lemma . If an evenmapping f : X → Y satisfies (.) for all x, y ∈ X, then f is quadratic.
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Proof Putting x = y = z =  in (.), we have f () = . Putting z = –x in (.) yields

f
(
y


)
+ 

[
f
(
x – y


)
+ f

(
x + y


)
+ f (x)

]
= f (x) + f (y) (.)

for all x, y ∈ X. Replacing y with x in (.) gives

f
(
x


)
= f (x) (.)

for all x ∈ X. Putting y =  in (.), we have

f
(
x


)
= f (x) (.)

for all x ∈ X. Using (.) and (.), we can rewrite (.) as

f (x + y + z) + f (x – y) + f (y – z) + f (z – x) = 
[
f (x) + f (y) + f (z)

]
(.)

for all x, y, z ∈ X. Putting z =  in (.), we obtain

f (x + y) + f (x – y) = f (x) + f (y)

for all x, y ∈ X. �

Lemma . If an odd mapping f : X → Y satisfies (.) for all x, y ∈ X, then f is additive.

Proof Putting x = y = z =  in (.), we have f () = . Putting z = –x in (.) yields

f
(
y


)
+ 

[
f
(
x – y


)
+ f

(
x + y


)
– f (x)

]
= f (y) (.)

for all x, y ∈ X. Replacing y by x in (.) gives

f
(
x


)
= f (x) (.)

for all x ∈ X. Putting y =  in (.), we have

f
(
x


)
= f (x) (.)

for all x ∈ X. It follows from (.), (.) and (.) that

f
(
x + y


)
+ f

(
x – y


)
= f (x) (.)

for all x, y ∈ X. Replacing x with x + y and y with x – y in (.), we obtain

f (x + y) = f (x) + f (y)

for all x, y ∈ X. �
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Now we are ready to establish the general solutions of (.).

Theorem . A function f : X → Y satisfies (.) for all x, y, z ∈ X if and only if there exist
a symmetric biadditive mapping B : X ×X → Y and an additive mapping A : X → Y such
that

f (x) = B(x,x) +A(x)

for all x ∈ X.

Proof (Necessity) We decompose f into the even part and the odd part by putting

fe(x) =


(
f (x) + f (–x)

)
, fo(x) =



(
f (x) – f (–x)

)

for all x ∈ X. By Lemmas . and . we have the result.
(Sufficiency) This is obvious. �

3 Stability of (1.2)
In what follows, X and Y will be a real normed linear space and a real Banach space,
respectively. For convenience, we define

Df (x, y, z) := f
(
x + y + z



)
+ 

[
f
(
x – y


)
+ f

(
y – z


)
+ f

(
z – x


)]

– 
[
f (x) + f (y) + f (z)

]

for all x, y, z ∈ X. Let ϕ : X×X×X → [,∞) be a mapping satisfying one of the conditions
(A), (B) and one of the conditions (C), (D):

(A) �(x, y, z) :=
∞∑
k=


k

ϕ
(
kx, ky, kz

)
< ∞,

(B) �(x, y, z) :=
∞∑
k=

kϕ
(

x
k

,
y
k

,
z
k

)
<∞,

(C) �(x, y, z) :=
∞∑
k=


k

ϕ
(
kx, ky, kz

)
< ∞,

(D) �(x, y, z) :=
∞∑
k=

kϕ
(

x
k

,
y
k

,
z
k

)
<∞,

for all x, y, z ∈ X. We note that the condition (C) implies (A). Similarly, the condition (B)
implies (D). One of the conditions (A), (B) will be needed to derive a quadratic mapping,
and one of the conditions (C), (D) will be required to derive an additive mapping in the
following theorem.

Theorem . Suppose that a mapping f : X → Y satisfies

∥∥Df (x, y, z)∥∥ ≤ ϕ(x, y, z) (.)
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for all x, y, z ∈ X. Then there exist a unique quadratic mapping Q : X → Y satisfying (.)
and an additive mapping A : X → Y satisfying (.) such that

∥∥∥∥f (x) –Q(x) –A(x) +


f ()

∥∥∥∥
≤ 


[
�i(x,x, –x) +�i(–x, –x,x)

]
+



[
�j(x,x, –x) +�j(–x, –x,x)

]
,

∥∥∥∥ f (x) + f (–x)


–Q(x) +


f ()

∥∥∥∥ ≤ 

[
�i(x,x, –x) +�i(–x, –x,x)

]
,

and

∥∥∥∥ f (x) – f (–x)


–A(x)
∥∥∥∥ ≤ 


[
�j(x,x, –x) +�j(–x, –x,x)

]

for all x ∈ X and for i =  or , j =  or . The mappings Q and A are given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q(x) = limn→∞ 
·n [f (

nx) + f (–nx)] if condition (A) holds,

Q(x) = limn→∞ n
 [f (

x
n ) + f (– x

n )], f () =  if condition (B) holds,
A(x) = limn→∞ 

·n [f (
nx) – f (–nx)] if condition (C) holds,

A(x) = limn→∞ n
 [f (

x
n ) – f (– x

n )], f () =  if condition (D) holds

for all x ∈ X.

Proof We first consider the even part of f . Let fe : X → Y be a function defined by fe(x) :=
f (x)+f (–x)

 for all x ∈ X. Then fe(–x) = fe(x) and

∥∥Dfe(x, y, z)∥∥ ≤ 

[
ϕ(x, y, z) + ϕ(–x, –y, –z)

]
(.)

for all x, y, z ∈ X. Putting y = x, z = –x in (.), we have

∥∥∥∥g
(
x


)
– g(x)

∥∥∥∥ ≤ 

[
ϕ(x,x, –x) + ϕ(–x, –x,x)

]
(.)

for all x ∈ X, where g(x) := fe(x) + 
 f ().

Case . Assume that ϕ satisfies the condition (A). Replacing x by x in (.) and dividing
by  yield

∥∥∥∥g(x) – g(x)


∥∥∥∥ ≤ 
 · 

[
ϕ(x, x, –x) + ϕ(–x, –x, x)

]
(.)

for all x ∈ X. Making use of an induction argument in (.) implies

∥∥∥∥g(x) – g(nx)
n

∥∥∥∥ ≤ 


n∑
k=


k

[
ϕ
(
kx, kx, –kx

)
+ ϕ

(
–kx, –kx, kx

)]
(.)
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for all n ∈N and x ∈ X. From (.) we figure out

∥∥∥∥g(mx)m
–
g(nx)
n

∥∥∥∥ =

m

∥∥∥∥g(mx) – g(n–m · mx)
n–m

∥∥∥∥
≤ 



n∑
k=m+


k

[
ϕ
(
kx, kx, –kx

)
+ ϕ

(
–kx, –kx, kx

)]

for all n,m ∈ N with n >m and x ∈ X. The right-hand side of the inequality above tends
to  as m → ∞, the sequence {g(nx)/n} is a Cauchy sequence for all x ∈ X and thus
converges by the completeness of Y . Therefore, we can define a mapping Q : X → Y by

Q(x) := lim
n→∞

g(nx)
n

= lim
n→∞

f (nx) + f (–nx)
 · n

for all x ∈ X. Note that Q() = , Q(–x) =Q(x) for all x ∈ X. It follows from the condition
(A) and (.) that Q satisfies

Q
(
x + y + z



)
+ 

[
Q

(
x – y


)
+Q

(
y – z


)
+Q

(
z – x


)]
= 

[
Q(x) +Q(y) +Q(z)

]

for all x, y, z ∈ X. According to Lemma ., the mapping Q satisfies (.). Letting n → ∞
in (.), we have

∥∥g(x) –Q(x)
∥∥ ≤ 


[
�(x,x, –x) +�(–x, –x,x)

]
(.)

for all x ∈ X. Now we are going to prove the uniqueness of Q. Assume that Q′ is an-
other quadratic function satisfying (.) and (.). Obviously, we have Q(nx) = nQ(x)
and Q′(nx) = nQ′(x) for all x ∈ X. Then we figure out

∥∥Q(x) –Q′(x)
∥∥ = –n

∥∥Q(
nx

)
–Q′(nx)∥∥

≤ –n
∥∥Q(

nx
)
– g

(
nx

)∥∥ + –n
∥∥g(nx) –Q′(nx)∥∥

≤
∞∑

k=n+


k

[
ϕ
(
kx, kx, –kx

)
+ ϕ

(
–kx, –kx, kx

)]

for all n ∈ N and x ∈ X. Taking the limit as n → ∞, we conclude that Q(x) = Q′(x) for all
x ∈ X.
Case . If ϕ satisfies the condition (B) (and hence implies (D)), the proof is analogous to

that of Case . By virtue of the condition (B) and (.), we have ϕ(, , ) =  and f () = .
An induction argument on (.) implies

∥∥∥∥nfe
(

x
n

)
– fe(x)

∥∥∥∥ ≤ 


n–∑
k=

k
[
ϕ

(
x
k

,
x
k

, –
x
k

)
+ ϕ

(
–
x
k

, –
x
k

,
x
k

)]
(.)

for all n ∈ N and x ∈ X. Using a similar argument to that ofCase , we see that the sequence
{nfe( x

n )} is a Cauchy sequence for all x ∈ X. Thus we can define a mapping Q : X → Y by

Q(x) := lim
n→∞nfe

(
x
n

)
= lim

n→∞
n



[
f
(

x
n

)
+ f

(
–
x
n

)]
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for all x ∈ X. Note that Q() =  and Q(–x) = Q(x) for all x ∈ X. From the condition (B)
and (.), we see that Q satisfies

Q
(
x + y + z



)
+ 

[
Q

(
x – y


)
+Q

(
y – z


)
+Q

(
z – x


)]
= 

[
Q(x) +Q(y) +Q(z)

]

for all x, y, z ∈ X. By Lemma . the mapping Q satisfies (.). Taking the limit as n → ∞
in (.), we obtain

∥∥fe(x) –Q(x)
∥∥ ≤ 


[
�(x,x, –x) +�(–x, –x,x)

]
for all x ∈ X. The rest of the proof is similar to that of Case .
Next, we consider the odd part of f . Now, let fo : X → Y be a function defined by fo(x) :=


 [f (x) – f (–x)] for all x ∈ X. Then fo() = , fo(–x) = –fo(x) and

∥∥Dfo(x, y, z)∥∥ ≤ 

[
ϕ(x, y, z) + ϕ(–x, –y, –z)

]
(.)

for all x, y, z ∈ X. Putting y = x, z = –x in (.) and dividing by  yield

∥∥∥∥fo
(
x


)
– fo(x)

∥∥∥∥ ≤ 


[
ϕ(x,x, –x) + ϕ(–x, –x,x)

]
(.)

for all x ∈ X.
Case . Assume that ϕ satisfies the condition (C) (and hence implies (A)). Replacing x

by x in (.) and dividing by , we have

∥∥∥∥fo(x) – fo(x)


∥∥∥∥ ≤ 
 · 

[
ϕ(x, x, –x) + ϕ(–x, –x, x)

]
(.)

for all x ∈ X. Making use of an induction argument in (.) implies

∥∥∥∥fo(x) – fo(nx)
n

∥∥∥∥ ≤ 


n∑
k=


k

[
ϕ
(
kx, kx, –kx

)
+ ϕ

(
–kx, –kx, kx

)]
(.)

for all n ∈ N and x ∈ X. From (.) we can show that the sequence {f (nx)/n} is a Cauchy
sequence for all x ∈ X. Define a mapping A : X → Y by

A(x) := lim
n→∞

fo(nx)
n

= lim
n→∞

f (nx) – f (–nx)
 · n

for all x ∈ X. By the oddness of f , we see that A(–x) = –A(x) for all x ∈ X. Also, from the
condition (C) and (.), we verify that A satisfies

A
(
x + y + z



)
+ 

[
A

(
x – y


)
+A

(
y – z


)
+A

(
z – x


)]
= 

[
A(x) +A(y) +A(z)

]

for all x, y, z ∈ X. According to Lemma ., the mapping A satisfies (.). Letting n → ∞
in (.), we have

∥∥fo(x) –A(x)
∥∥ ≤ 


[
�(x,x, –x) +�(–x, –x,x)

]
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for all x ∈ X. Using a similar argument to that of Case , we can easily see the uniqueness
of A.
Case . If ϕ satisfies the condition (D), the proof is analogous to that of Case . An

induction argument on (.) implies

∥∥∥∥fo(x) – nfo
(

x
n

)∥∥∥∥ ≤
n–∑
k=

k



[
ϕ

(
x
k

,
x
k

, –
x
k

)
+ ϕ

(
–
x
k

, –
x
k

,
x
k

)]
(.)

for all n ∈N and x ∈ X. It follows from (.) that {nf (–nx)} is a Cauchy sequence for all
x ∈ X. Thus we can define a mapping A : X → Y by

A(x) := lim
n→∞nfo

(
x
n

)
= lim

n→∞
n



[
f
(

x
n

)
– f

(
–
x
n

)]

for all x ∈ X. Note that A(–x) = –A(x) for all x ∈ X. Also, from the condition (C) and (.),
we verify that A satisfies

A
(
x + y + z



)
+ 

[
A

(
x – y


)
+A

(
y – z


)
+A

(
z – x


)]
= 

[
A(x) +A(y) +A(z)

]

for all x, y, z ∈ X. According to Lemma ., the mapping A satisfies (.). Taking the limit
as n→ ∞ in (.), we have

∥∥fo(x) –A(x)
∥∥ ≤ 


[
�(x,x, –x) +�(–x, –x,x)

]
for all x ∈ X. Similarly, we can show the uniqueness of A. �

From the theorem above, we have the following corollary immediately.

Corollary . Let p 	= , p 	=  and ε ≥  be real numbers. Suppose that a mapping f : X →
Y satisfies

∥∥Df (x, y, z)∥∥ ≤ ε
(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X (x, y, z ∈ X\{} if p < ). Then for each three cases p < ,  < p <  and
p > , there exist a unique quadratic mapping Q : X → Y satisfying (.) and an additive
mapping A : X → Y satisfying (.) such that

∥∥∥∥f (x) –Q(x) –A(x) +


f ()

∥∥∥∥ ≤ pε
(


| – p| +


| – p|

)
‖x‖p,

∥∥∥∥ f (x) + f (–x)


–Q(x) +


f ()

∥∥∥∥ ≤ p+ε
| – p| ‖x‖

p,

and
∥∥∥∥ f (x) – f (–x)


–A(x)

∥∥∥∥ ≤ pε
| – p| ‖x‖

p

for all x ∈ X (x ∈ X\{} if p < ), where f () =  if p > .

http://www.advancesindifferenceequations.com/content/2013/1/198
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Proof Let ϕ(x, y, z) := ε(‖x‖p+‖y‖p+‖z‖p) for all x, y, z ∈ X. Then ϕ(x,x–x) = ϕ(–x, –x,x) =
ε‖x‖p for all x ∈ X (x ∈ X\{} if p < ). If p < , the mapping ϕ satisfies (A). Thus, we
figure out



[
�(x,x, –x) +�(–x, –x,x)

]
=

∞∑
k=

ε‖x‖p · (p–)k = ε‖x‖p p+

 – p

for all x ∈ X (x ∈ X\{} if p < ). If p > , the mapping ϕ satisfies (B). Thus, we have



[
�(x,x, –x) +�(–x, –x,x)

]
=

∞∑
k=

ε‖x‖p · (–p)k = ε‖x‖p p+

p – 

for all x ∈ X. If p < , the mapping ϕ satisfies (C). Thus, we get



[
�(x,x, –x) +�(–x, –x,x)

]
=

∞∑
k=

ε‖x‖p · (p–)k = ε‖x‖p p

 – p

for all x ∈ X (x ∈ X\{} if p < ). If p > , the mapping ϕ satisfies (D). Thus, we obtain



[
�(x,x, –x) +�(–x, –x,x)

]
=

∞∑
k=

ε‖x‖p · (–p)k = ε‖x‖p p

p – 

for all x ∈ X. Therefore, we have

∥∥∥∥f (x) –Q(x) –A(x) +


f ()

∥∥∥∥ ≤

⎧⎪⎪⎨
⎪⎪⎩
pε‖x‖p( 

p– +


p– ) if p > ,

pε‖x‖p( 
–p +


p– ) if  < p < ,

pε‖x‖p( 
–p +


–p ) if p < 

for all x ∈ X (x ∈ X\{} if p < ). �

Corollary . Let ε ≥  be a real number. Suppose that a mapping f : X → Y satisfies

∥∥Df (x, y, z)∥∥ ≤ ε

for all x, y, z ∈ X. Then there exist a unique quadratic mapping Q : X → Y satisfying (.)
and an additive mapping A : X → Y satisfying (.) such that

∥∥∥∥f (x) –Q(x) –A(x) +


f ()

∥∥∥∥ ≤ 


ε,
∥∥∥∥ f (x) + f (–x)


–Q(x) +



f ()

∥∥∥∥ ≤ 

ε,

and ∥∥∥∥ f (x) – f (–x)


–A(x)
∥∥∥∥ ≤ 


ε

for all x ∈ X.
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