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Abstract
In this paper, we introduce a class of nonlinear time series models with random time
delay under random environment, sufficient conditions for nonergodicity of these
models are developed. The so-called Markovnization methods are used, that is,
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1 Introduction
By virtue of their superduper properties, stable (ergodic or recurrent) stochastic processes
are very popular among many researchers, so there has been a large literature devoted
to the stable (ergodic or recurrent) or even stationary stochastic processes. For instance,
Jeantheau [] and Tjøstheim [] established consistency of the estimator they proposed
under stationarity and ergodicity conditions (see also [–]). Fernandes and Grammig []
established conditions for the existence of higher-order moments, strict stationarity, ge-
ometric ergodicity and β-mixing property with exponential decay. This owes a great deal
to the beautiful properties of stable processes, such as an ergodic Markov chain has an
invariant probability measure which is finite, a recurrent stochastic process re-visits an
arbitrary point in its image an infinite number of times. Just because of this, many re-
searchers often like to target ergodicity or recurrence as their assumptions in their papers
or books.
However, in this colorful world, lots and lots of phenomena exhibit instability behavior,

for example, David [] argued that an important lesson from economic history was that
economies exhibited nonergodic behavior along many dimensions. Margolin and Barkai
[] indicated that time series ofmany systems exhibited intermittency, that is to say, at ran-
dom times the systemwill switch from state on (or up) to state off (or down) and vice versa.
One method to characterize such time series is using time average correlation functions
to exhibit a nonergodic behavior.
Hencemore andmore researchers become increasingly interested in these instable pro-

cesses. Recently, some problems of nonergodic stochastic processes have been studied by
many authors. Basawa and Koul [], Basawa and Brockwell [], Basawa and Scott [] and
Feigin [] studied asymptotic inference problems for parameters of nonergodic stochas-
tic processes. Budhiraja and Ocone [] proved an asymptotic stability result for discrete
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time systems in which the signal was allowed to be nonergodic. Durlauf [] considered
nonergodic economic growth. Goodman and Massey [] generalized Jackson’s theorem
so that the large-time behavior can be described for any nonergodic N-node Jackson net-
work system. Griffeath [] developed limit theorems for nonergodic set-valued Markov
processes. Jacod [] constructed the estimators for drift and diffusion coefficients of a
multidimensional diffusion process and obtained consistent results without any kind of
ergodicity or even recurrence assumption on the diffusion process.
Ergodicity criteria with drift functions forMarkov processes have been studied bymany

authors. For instance, see Cline [] and Tweedie [–] and the references therein. As
for nonergodicity criteria forMarkov processes, the readers are referred to [–]. Sheng
et al. [] also developed some sufficient conditions for nonergodicity of some time series
models.
However, the processes considered by many researchers do not reflect the factors of the

interference in a system and the system itself influenced by sudden environmental change.
On the other hand, the time delay in the models studied is usually a fixed constant. In this
paper, we popularize general nonparametric autoregressive models through introducing
random environment and at the same we turn to a random time delay instead of a fixed
time delay.
The remainder of the paper is organized as follows. Section  introduces the nonpara-

metric autoregressive model with random time delay under random environment. Sec-
tion  develops some useful lemmas and gives some sufficient conditions for nonergodic-
ity of the proposed model as our main results. All the proofs are collected in Section .

2 The nonparametric ARmodel with random time delay under random
environment

In this section, we first give some notations which will be used throughout the paper. In
what follows, we always have a probability space (�,F ,P), a finite set E = {, , . . . , r} (r is a
positive integer number), withH as the σ -algebra generated by all sets of E.We also let Rm

be an m-dimensional real space and Bm be the σ -algebra generated by all Boreal subsets
of Rm.
The nonparametric autoregressive model with random time delay under random envi-

ronment is defined as follows:

Xt+ = F(Xt ,Xt–, . . . ,Xt–Zt+ ) + εt+(Zt+), (.)

where {Zt , t ≥ } is an irreducible and aperiodicMarkov chain defined on (�,F ,P), taking
values in E; ∀j ∈ E, F : Rj+ → R is a Borel measurable mapping; εt(Zt) =

∑r
i= εt(i)I{i}(Zt),

where I{i}(Zt) denotes the indicator function of a single element set {i}; {εt()}, {εt()}, . . . ,
{εt(r)} are sequences of i.i.d. random variables defined on (�,F ,P), taking values in (R,B).
In what follows, the density function of {εt(i)}, i ∈ E, is denoted as �(·).
In this paper, we aim to obtain some sufficient conditions for nonergodicity of the pro-

posed newmodel. Since the nonparametric ARmodel with random time delay under ran-
dom environment defined by (.) itself does not have the Markovian property, we con-
sider the following sequence:

(Xt ,Xt–, . . . ,Xt–r ,Zt) =
(
F(Xt–,Xt–, . . . ,Xt–Zt ),Xt–, . . . ,Xt–r ,Zt

)
, t ≤ .
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For simplicity, let

Yt = (Xt ,Xt–, . . . ,Xt–r ,Zt), t ≥ .

From (.) and under mild conditions (see Lemma  below), it is easy to show that the
sequence {Yt} is a Markov chain on Rr+ × E with the following transition probability:

P
(
Yt+ ∈ A× {j}|Yt = x̂× {i}) = pij

r–∏
q=

IAq+ (xq)
∫
A

�j
(
y – F(x,x, . . . ,xj)

)
dy, (.)

where A = A ×A × · · ·×Ar ⊂ Rr+ and Ai ⊂ R; IA(·) denotes the indicator function of A;
pij = P(Zt+ = j|Zt = i) is the transition function of the Markov chain {Zt , t ≥ }.
Let P(t)((x̂, i),A × {j}) = P(Ys+t ∈ A× {j}|Ys = (x̂, i)) be the t-step transition probability

of {Yt}, then by the property of conditional probability and inductive approach we have:
when  ≤ t ≤ r + ,

P(t)((x̂, i),A× {j})

=
r–t∏
q=

IAq+t (xq)
∑

kk···kt–∈E
pikpkk · · ·pkt–j

∫
At–

�k
(
yt– – F(Ut)

)
dyt–

·
∫
At–

�k
(
yt– – F(Ut–)

)
dyt– · · ·

∫
A

�kt–
(
y – F(U)

)
dy

·
∫
A

�j
(
y – F(U)

)
dy,

when t ≥ r + ,

P(t)((x̂, i),A× {j})

=
∑

kk···kt–∈E
pikpkk · · ·pkt–j

∫
R
�k

(
yt– – F(Ut)

)
dyt–

·
∫
R
�k

(
yt– – F(Ut–)

)
dyt– · · ·

∫
R
�kt–(r+)

(
yr+ – F(Ur+)

)
dyr+

·
∫
Ar

�kt–r
(
yr – F(Ur+)

)
dyr · · ·

∫
A

�j
(
y – F(U)

)
dy,

where

Ut = (x,x, . . . ,xk ),

Ut–s = (yt–s, yt–s+, . . . , yt–,x, . . . ,xks+–s),  ≤ s ≤ ks+,

Ut–s = (yt–s, yt–s+, . . . , yt–s+ks+ ), ks+ < s≤ t – .

3 Main results
This section gives the main results of the new model described in Section . We need the
following conditions.
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Assumption  {εt()}, . . . , {εt(r)} are mutually independent, and ∀i ∈ E, εt+(i) is inde-
pendent of {Xs, s ≤ t}. Moreover, for each i, E(εt(i)) is a constant independent of t and
E[εt(i)] <∞.

Assumption  {Zt , t ≥ } is independent of the initial random variable X.

Assumption  ∀i ∈ E, {Zt , t ≥ } is independent of εt+(i).

Assumption  assures the stationarity of {εt(i)}, i ∈ E. Assumption  and Assumption 
guarantee theMarkov property of {Yt}. These are the basic conditions we know that guar-
antee the following lemmas can be used properly throughout the paper.

Lemma  Suppose that Assumptions - hold, then the sequence {Yt} is a time-homogene-
ous Markov chain defined on (�,F ,P) with state space (Rr+ × E,Br+ ×H).

The irreducibility and aperiodicity in Lemma  are standard and can be found in Meyn
and Tweedie [] and Tong []. The two concepts are very useful to derive the noner-
godicity of the sequence {Yt}. But before we state the results about the irreducibility and
aperiodicity of the sequence {Yt}, we need the following condition about the density func-
tion of εt(i), i ∈ E.

Assumption  The density function �i(·) of εt(i), i ∈ E is strictly positive everywhere, i.e.,
∀i ∈ E, �i(·) > .

Lemma  Under Assumptions -, the Markov chain {Yt} is μr+ ×ϕ irreducible and ape-
riodic, where ϕ is a measure on (E,H), μr+ is a Lebesgue measure on (Rr+,Br+) satisfying
μr+ × ϕ(A× B) >  if μr+(A) > , A ∈ Br+, B ∈H.

Remark  Obviously, if the Markov chain {Yt} is ϕ-irreducible, for any nontrivial and
σ -finite measure ϕ which is absolutely continuous with respect to ϕ, then {Yt} is also
ϕ-irreducible. So, we need a normal irreducibility which can define the range of the chain
much more completely than some more arbitrary irreducibility measures one may con-
struct initially. Fortunately, Sheng et al. [] and Meyn and Tweedie [] proved that if
{Yt} is a μr+ × ϕ irreducible Markov chain, then there exists a maximal irreducibility
measure Q. In this paper, we use those subsets whose maximal irreducibility measure is
greater than zero, so here we denote (Br+ ×H)+ = {A ∈ Br+ ×H :Q(A) > }.

Our main results are as follows.

Theorem  Suppose that Assumptions - hold and if there exist a non-negative mea-
surable function g on (Rr+ × E,Br+ × H), a set A × M ∈ Br+ × H, and a non-negative
measurable function h(·) on [,∞) satisfying

max
j∈E

(∫
R
h(u)�j(u)du

)
<∞,

such that
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() For ∀x,x, . . . ,xr , y ∈ R, ∀i, j ∈ E, we have

∣∣g((x,x, . . . ,xr), i) – g
(
(y,x, . . . ,xr), j

)∣∣ ≤ h
(|x – y|

)
;

() For (A×M)c ∈ (Br+ ×H)+, we have

g(x̂, i) ≥ sup
(ŷ,j)∈A×M

g(ŷ, j); (.)

() For ∀(x̂, j) ∈ (A×M)c, we have

g
((
F(x,x, . . . ,xj), y, . . . , yr

)
, j
) ≥ g(x̂, j) +max

j∈E

(∫
R
h(u)�j(u)du

)
, (.)

and there exist B× I ⊂ (A×M)c, B× I ∈ (Br+ ×H)+, ∀(x̂, i) ∈ B× I, such that

g
((
F(x,x, . . . ,xj), y, . . . , yr

)
, j
)
> g(x̂, j) +max

j∈E

(∫
R
h(u)�j(u)du

)
. (.)

Then the Markov chain {Yt} is nonergodic.Moreover, whatever a probability
distribution function of {Xt} is, its probability distribution function will never
converge to some probability distribution function.

Remark  Conditions () and () in the above Theorem  can be substituted for () or ()
as follows:
() For A×M, (A×M)c ∈ (Br+ ×H)+, (.) holds, and ∀(x̂, i) ∈ (A×M)c, (.) holds.
() For A×M ∈ (Br+ ×H)+ and ∀(x̂, i) ∈ Rr+ × E, (.) holds, where when

(x̂, i) ∈ A×M, (.) holds.
That is, under conditions () and () or () and (), we can also show that {Yt} is noner-

godic, and the method of the proof is similar to that under conditions ()-().

4 Proofs

Proof of Lemma  ∀x̂ = (x,x, . . . ,xr), x̂s ∈ Rr+, and ∀i, is ∈ E, where s is an integer number
satisfying  ≤ s < t, we have

P
{
Yt+ ∈ A× {j}|Yt = (x̂, i),Ys = (x̂s, is),  ≤ s < t

}
= P

{
(Xt+,Xt , . . . ,Xt+–r) ∈ A,Zt+ = j|Yt = x̂,Zt = i,Ys = (x̂s, is),  ≤ s < t

}
= P

{
F(Xt ,Xt–, . . . ,Xt–Zt+ ) + εt+(Zt+) ∈ A,

Xt ∈ A,Xt– ∈ A, . . . ,Xt+–r ∈ Ar ,Zt+ = j|
(Xt ,Xt–, . . . ,Xt–r) = (x,x, . . . ,xr),Zt = i,Ys = (x̂s, is),  ≤ s < t

}
= P

{
F(x,x, . . . ,xj) + εt+(j) ∈ A,x ∈ A,x ∈ A, . . . ,xr– ∈ Ar ,Zt+ = j|

(Xt ,Xt–, . . . ,Xt–r) = (x,x, . . . ,xr),Zt = i
}

= P
{
F(x,x, . . . ,xj) + εt+(j) ∈ A,x ∈ A,x ∈ A, . . . ,xr– ∈ Ar

}
P{Zt+ = j|Zt = i}

= pij · P
{
F(x,x, . . . ,xj) + εt+(j) ∈ A,x ∈ A,x ∈ A, . . . ,xr– ∈ Ar

}
,

http://www.advancesindifferenceequations.com/content/2013/1/200
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where the last equation follows from the definition of the (.) model, Assumption  and
the notation pij = P{Zt+ = j|Zt = i}.
On the other hand,

P
{
Yt+ ∈ A× {j}|Yt = (x̂, i)

}
= P

{
(Xt+,Xt , . . . ,Xt+–r) ∈ A,Zt+ = j|(Xt ,Xt–, . . . ,Xt–r) = (x,x, . . . ,xr),Zt = i

}
= P

{
F(Xt ,Xt–, . . . ,Xt–Zt+ ) + εt+(Zt+) ∈ A,

Xt ∈ A,Xt– ∈ A, . . . ,Xt+–r ∈ Ar ,Zt+ = j|
(Xt ,Xt–, . . . ,Xt–r) = (x,x, . . . ,xr),Zt = i

}
= P

{
F(x,x, . . . ,xj)+εt+(j) ∈ A,x ∈ A,x ∈ A, . . . ,xr– ∈ Ar ,Zt+ = j|

(Xt ,Xt–, . . . ,Xt–r) = (x,x, . . . ,xr),Zt = i
}

= P
{
F(x,x, . . . ,xj) + εt+(j) ∈ A,x ∈ A,x ∈ A, . . . ,xr– ∈ Ar

}
P{Zt+ = j|Zt = i}

= pij · P
{
F(x,x, . . . ,xj) + εt+(j) ∈ A,x ∈ A,x ∈ A, . . . ,xr– ∈ Ar

}
.

Hence the sequence {Yt} is a Markov chain, and its time-homogeneity follows from the
stationarity of εt+(j), j ∈ E. This completes the proof. �

Proof of Lemma  Suppose that A× B ∈ Br+ ×H and μr+ × ϕ(A× B) > . Since {Zt} is
irreducible, ∀i, j ∈ E, ∃s > , such that

p(t)ij = P(Zt+s = j|Zs = i) > , ∀t ≥ s,

that is, ∃k,k, . . . ,kt– ∈ E, such that

pikpkk · · ·pkt–j > .

Then from the t-step transition probability of {Yt}, ∀(x̂, i) ∈ Rr+ × E, we have

P(t)(x̂, i;A, j) > ,

so {Yt} is μr+ × ϕ irreducible, and the aperiodicity of {Yt} follows from Tong []. This
completes the proof. �

For x, y ∈ �, z ∈ [, ), let

ψg(x, z) =


 – z

(
zg(x) –

∫
�

P(x,dy)zg(y)
)
.

In order to deal with the proofs of Theorem , we need the following propositions.

Lemma  [] Suppose {Xt} is a ϕ-irreducible Markov chain on the state space (�,F ). If
there exist constants N > ,  < C < , a set A and a nonnegative measurable function g(x)
which satisfies ∀x ∈ �,

∫
�
P(x,dy)g(y) < +∞, such that

() ψg(x, z) ≥ –N , x ∈ �, z ∈ [C, );

http://www.advancesindifferenceequations.com/content/2013/1/200
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() One of the following (i), (ii), (iii) hold:
(i) For Ac ∈F+, ∀x ∈ Ac, we have

g(x)≥ sup
y∈A

g(y),
∫

�

P(x,dy)
[
g(y) – g(x)

] ≥ ;

furthermore, there exist B ⊂ Ac, B ∈F+ such that

∫
�

P(x,dy)
[
g(y) – g(x)

]
> , x ∈ B.

(ii) For A ∈F+, Ac ∈F+, ∀x ∈ Ac, we have

g(x)≥ sup
y∈A

g(y),
∫

�

P(x,dy)
[
g(y) – g(x)

]
> .

(iii) For A ∈F+, we have

∫
�

P(x,dy)
[
g(y) – g(x)

] ≥ , x ∈ �,
∫

�

P(x,dy)
[
g(y) – g(x)

]
> , x ∈ A.

Then {Xt} is nonergodic.

Remark  Condition () in Lemma  is usually called the Kaplan condition; readers can
consult Kaplan [] for details. Sheng et al. [] found a class of functions satisfying this
condition. That is, if there exists a constant N >  such that

∫
g(y)<g(x)

P(x,dy)
[
g(y) – g(x)

] ≥ –N , x ∈ �,

then g(x) is the function wished.

Remark  Generally, the function
∫
�
P(x,dy)[g(y) – g(x)], which we use frequently in

Lemma , goes by the name of g-drift of the point x and is often expressed as γg(x). In
addition, if

∫
�

P(x,dy)g(y) < ∞, x ∈ �,

we have

lim
z→

ψg(x, z) = –g(x) +
∫

�

P(x,dy)g(y) = γg(x).

In fact, dzg(y)
dz = g(y)zg(y)–, so when z ∈ [  , ),

dzg(y)
dz ≤ g(y).

http://www.advancesindifferenceequations.com/content/2013/1/200
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Proof of Theorem  By Lemma  and Lemma  we know that {Yt} is a μr+ ×ϕ irreducible,
aperiodic and time-homogeneous Markov chain with state space (Rr+ × E,Br+ ×H). So,
we only need to check the conditions in Lemma . For simplicity, let

C =max
j∈E

(∫
R
h(u)�j(u)du

)
,

v̂u =
(
F(x,x, . . . ,xj) + u,x, . . . ,xr–

)
,

v̂ =
(
F(x,x, . . . ,xj),x, . . . ,xr–

)
.

Step : To show that
∫
Rr+×E P((x̂, i),d(ŷ, j))g(ŷ, j) < ∞. For x̂ = (x,x, . . . ,xr) ∈ Rr+ and

ŷ = (y, y, . . . , yr) ∈ Rr+, i, j ∈ E, by (.), we have

P
(
(x̂, i),d(ŷ, j)

)
= pij ·

r–∏
q=

δ(yq+ – xq)�j
(
y – F(x, . . . ,xj)

)
dy,

where δ(·) is a δ-function, that is, δ(x – y) =  if x = y and zero otherwise.
So, by the integral transformation theorem, we can get

∫
Rr+×E

P
(
(x̂, i),d(ŷ, j)

)
g(ŷ, j)

=
∑
j∈E

∫
Rr+

P
(
(x̂, i),d(ŷ, j)

)
g(ŷ, j)

=
∑
j∈E

pij
∫
R
�j

(
y – F(x,x, . . . ,xj)

)
g(y,x, . . . ,xr–, j)dy

=
∑
j∈E

pij
∫
R
g(v̂u, j)�j(u)du

≤
∑
j∈E

pij
∫
R
h(u)�j(u)du +

∑
j∈E

pijg(v̂, i)

≤ C + g(v̂, i) < ∞,

where the second-to-last line follows from condition () in the theorem.
Step : To show that when (x̂, i) ∈ (A×M)c, γg(x̂, i) ≥  andwhen (x̂, i) ∈ B× I, γg(x̂, i) > .

In fact,

γg(x̂, i) =
∫
Rr+×E

P
(
(x̂, i),d(ŷ, j)

)[
g(ŷ, j) – g(x̂, i)

]

=
∑
j∈E

∫
Rr+

P
(
(x̂, i),d(ŷ, j)

)[
g(ŷ, j) – g(x̂, i)

]

=
∑
j∈E

∫
R
pij�j

(
y – F(x,x, . . . ,xj)

)[
g(y,x, . . . ,xr–, j) – g(x̂, i)

]
dy

=
∑
j∈E

pij
(∫

R
g(v̂u, j)�j(u)du – g(x̂, i)

)

http://www.advancesindifferenceequations.com/content/2013/1/200
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≥
∑
j∈E

pij
(
–

∫
R
h(u)�j(u)du +

(
g(v̂, i) – g(x̂, i)

))

≥ (
g(v̂, i) – g(x̂, i) –C

)
,

so by condition () we get the results wanted.
Step : We show that ψg((x̂, i), z) has uniformly lower bound. Note that v̂u = (F(x,x, . . . ,

xj) + u, y, . . . , yr), v̂ = (F(x,x, . . . ,xj), y, . . . , yr), we have

–ψg
(
(x̂, i), z

)

=
(∫

Rr+×E
P
(
(x̂, i),d(ŷ, j)

)[
zg(ŷ,j) – zg(x̂,i)

])/
( – z)

=


 – z
∑
j∈E

∫
Rr+

P
(
(x̂, i),d(ŷ, j)

)[
zg(ŷ,j) – zg(x̂,i)

]

=


 – z
∑
j∈E

pij
(∫

R
zg(v̂u ,j)�j(u)du – zg(x̂,i)

)

=


 – z
∑
j∈E

pij
(∫

R
zg(v̂u ,j)

[
 – zg(v̂,i)–g(v̂u ,j)

]
�j(u)du + zg(v̂,i) – zg(x̂,i)

)

and


 – z

∫
R
zg(v̂u ,j)

[
 – zg(v̂,i)–g(v̂u ,j)

]
�j(u)du

≤ 
 – z

∫
R

[
 – zh(|u|)]�j(u)du

≤  +
∫
R
h
(|u|)�j(u)du

≤  +C <∞,

where the third line comes from the inequality –zx
–z ≤  + x, z ∈ [, ).

From condition () of this theorem, we can get when (x̂, i) ∈ (A×M)c, zg(v̂,i) – zg(x̂,i) ≤ ;
when (x̂, i) ∈ A×M, if g(v̂, i) > g(x̂, i), ∀z ∈ [, ), we have zg(v̂,i) – zg(x̂,i) ≤ , if g(v̂, i) ≤ g(x̂, i),
we have

[
zg(v̂,i) – zg(x̂,i)

]
/( – z) = zg(v̂,i)

[
 – zg(x̂,i)–g(v̂,i)

]
/( – z)

≤ [
 – zg(x̂,i)–g(v̂,i)

]
/( – z)

≤  + g(x̂, i) – g(v̂, i)

<  +  inf
(ŷ,j)∈(A×M)c

g(ŷ, j),

where the last inequality lies in the fact that when (x̂, i) ∈ A×M, g(x̂, i) ≤ inf(ŷ,j)∈(A×M)c g(ŷ,
j) < ∞.
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Therefore, for all (x̂, i) ∈ Rr+ × E and z ∈ [, ),

(∫
Rr+×E

P
(
(x̂, i),d(ŷ, j)

)[
zg(ŷ,j) – zg(x̂,i)

])/
( – z)

<
∑
j∈E

pij
(
 +C +  inf

(ŷ,j)∈(A×M)c
g(ŷ, j)

)

≤  +C + C′,

whereC′ = inf(ŷ,j)∈(A×M)c g(ŷ, j). In other words, for all (x̂, i) ∈ Rr+ ×E and z ∈ [, ), we have

ψg
(
(x̂, i), z

)
> –r

(
 +C + C′),

so by Lemma  we know that {Yt} is nonergodic.
Next we will prove whatever an initial probability distribution function of {Xt} is, its

probability distribution function will never converge to some probability distribution
function. We will use reductio ad absurdum to prove it. Suppose that A ∈ Br+ and there
exists a probability distribution π such that

lim
t→∞

∥∥P(Xt ∈ A|X = x̂) – π (A)
∥∥

τ
= , (.)

where ‖ ·‖τ is the total variation norm. As amatter of fact, due to the equivalence of norm,
we can use any norm here. Since

P(Xt ∈ A|X = x̂)

=
∑
j∈E

P(Xt ∈ A,Zt = j|X = x̂)

=
∑
j∈E

∑
i∈E

P(Xt ∈ A,Zt = j|X = x̂,Z = i)P(Z = i|X = x̂)

=
∑
i∈E

P
(
Yt ∈ A× E|Y = (x̂, i)

)
P(Z = i|X = x̂)

=
∑
i∈E

P(t)((x̂, i),A× E
)
P(Z = i|X = x̂).

Define π∗(A× E) = π (A), and it is well known that

π∗(A× E) =
∑
j∈E

∑
i∈E

π∗(A× {j})P(Z = i|X = x̂);

and therefore we have

lim
t→∞

∥∥P(t)((x̂, i),A× E
)
– π∗(A× E)

∥∥
τ
= ,

but this conflicts with the nonergodicity of the Markov chain {Yt}. So, there is no proba-
bility distribution function π such that (.) holds. This completes the proof. �

http://www.advancesindifferenceequations.com/content/2013/1/200


Tang and Wang Advances in Difference Equations 2013, 2013:200 Page 11 of 11
http://www.advancesindifferenceequations.com/content/2013/1/200

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors jointly worked on the results and they read and approved the final manuscript.

Authors’ information
School of Science, Jiangxi University of Science and Technology, No. 86, Hongqi Ave., Ganzhou, 341000, Jiangxi, P.R. China.

Acknowledgements
The authors would like to thank the editor and anonymous referees for their valuable suggestions, which greatly
improved our paper. This research is supported by the NSF of Jiangxi Province (No. 20132BAB211005), the SF of Jiangxi
Provincial Education Department (No. GJJ12356), Key Scientific and Technological Research Project of Department of
Education of Henan Province (No. 12B110006), and Foundation of Jiangxi University of Science and Technology
(No. jxxj12064).

Received: 25 April 2013 Accepted: 19 June 2013 Published: 5 July 2013

References
1. Jeantheau, T: Strong consistence of estimators for multivariate ARCH models. Econom. Theory 14, 70-86 (1998)
2. Tjøstheim, D: Estimation in nonlinear time series models. Stoch. Process. Appl. 21, 251-273 (1986)
3. Fan, J, Yao, Q: Nonlinear Time Series: Nonparametric and Parametric Methods. Springer Series in Statistics. Springer,

New York (2003)
4. Hafner, CM, Preminger, A: On asymptotic theory for multivariate GARCH models. J. Multivar. Anal. 100, 2044-2054

(2009)
5. Lintona, O, Sancetta, A: Consistent estimation of a general nonparametric regression function in time series.

J. Econom. 152, 70-78 (2009)
6. Fernandes, M, Grammig, J: A family of autoregressive conditional duration models. J. Econom. 130, 1-23 (2006)
7. David, PA: Path-dependence: putting the past into the future of economics. Institute for Mathematical Studies in the

Social Sciences. Stanford University (1988)
8. Margolin, G, Barkai, E: Nonergodicity of blinking nanocrystals and other Levy-walk processes. Phys. Rev. Lett. 4, 1-4

(2005)
9. Basawa, IV, Koul, HL: Asymptotically minimax tests of composite hypotheses for nonergodic type processes. Stoch.

Process. Appl. 14, 41-54 (1983)
10. Basawa, IV, Brockwell, PJ: Asymptotic conditional inference for regular nonergodic models with an application to

autoregressive processes. Ann. Stat. 12, 161-171 (1984)
11. Basawa, IV, Scott, DJ: Asymptotic Optimal Inference for Nonergodic Models. Springer Lecture Notes in Statistics, vol.

17. Springer, New York (1983)
12. Feigin, PD: Conditional exponential families and a representation theorem for asymptotic inference. Ann. Stat. 9,

597-603 (1981)
13. Budhiraja, A, Ocone, D: Exponential stability in discrete-time filtering for non-ergodic signals. Stoch. Process. Appl. 82,

245-257 (1999)
14. Durlauf, ST: Nonergodic economic growth. Rev. Econ. Stud. 60, 349-366 (1993)
15. Goodman, JB, Massey, WA: The nonergodic Jackson network. J. Appl. Probab. 21, 860-869 (1984)
16. Griffeath, D: Limit theorems for nonergodic set-valued Markov processes. Ann. Probab. 6, 379-387 (1978)
17. Jacod, J: Parametric inference for discretely observed nonergodic diffusions. Bernoulli 12, 383-401 (2006)
18. Cline, DBH: Regular variation of order 1 nonlinear AR-ARCH models. Stoch. Process. Appl. 117, 840-861 (2008)
19. Tweedie, RL: Sufficient conditions for regularity, recurrence and ergodicity of Markov processes. Math. Proc. Camb.

Philos. Soc. 78, 125-136 (1975)
20. Tweedie, RL: Criteria for ergodicity, exponential ergodicity and strong ergodicity of Markov processes. J. Appl. Probab.

18, 122-130 (1981)
21. Tweedie, RL: Drift conditions and invariant measures for Markov chains. Stoch. Process. Appl. 92, 345-354 (2001)
22. Choi, BD, Kim, B: Non-ergodicity criteria for denumerable continuous time Markov processes. Oper. Res. Lett. 32,

574-580 (2004)
23. Kima, B, Leeb, I: Tests for nonergodicity of denumerable continuous time Markov processes. Comput. Math. Appl. 55,

1310-1321 (2008)
24. Kaplan, M: A sufficient condition for nonergodicity of a Markov chain. IEEE Trans. Inf. Theory 25, 470-471 (1979)
25. Sheng, ZH, Wang, T, Liu, DL: Stability Analysis of Nonlinear Time Series Models - Ergodic Theory and Applications.

Science Press, Beijing (1993)
26. Meyn, SP, Tweedie, RL: Markov Chains and Stochastic Stability. Springer, New York (1993)
27. Tong, H: Nonlinear Time Series: A Dynamical System Approach. Oxford University Press, Oxford (1990)

doi:10.1186/1687-1847-2013-200
Cite this article as: Tang and Wang: On nonergodicity for nonparametric autoregressive models. Advances in
Difference Equations 2013 2013:200.

http://www.advancesindifferenceequations.com/content/2013/1/200

	On nonergodicity for nonparametric autoregressive models
	Abstract
	MSC
	Keywords

	Introduction
	The nonparametric AR model with random time delay under random environment
	Main results
	Proofs
	Competing interests
	Authors' contributions
	Authors' information
	Acknowledgements
	References


