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Abstract
In this paper, we consider the following high-order p-Laplacian generalized neutral
differential equation

(ϕp(x(t) – cx(t – δ(t)))′
)
(n–1) + g(t, x(t), x(t – τ (t)), x′(t)) = e(t),

where p ≥ 2, ϕp(x) = |x|p–2x for x �= 0 and ϕp(0) = 0; g :R4 →R is a continuous
periodic function with g(t + T , ·, ·, ·) ≡ g(t, ·, ·, ·), and g(t,a,a, 0) – e(t) �≡ 0 for all a ∈R.
e :R →R is a continuous periodic function with e(t + T ) ≡ e(t) and

∫ T
0 e(t)dt = 0, c is a

constant and |c| �= 1, δ ∈ C1(R,R) and δ is a T -periodic function, T is a positive
constant; n is a positive integer. By applications of coincidence degree theory and
some analysis skills, sufficient conditions for the existence of periodic solutions are
established.
MSC: 34K13; 34K40; 34C25

Keywords: periodic solution; high-order; generalized neutral differential equation

1 Introduction
In recent years, there has been a good amount of work on periodic solutions for neutral
differential equations (see [–] and the references cited therein). For example, in [], Cao
and He investigated a class of high-order neutral differential equations

(
x(p)(t) + bpx(p)(t – hp)

)
+

p–∑
i=

(
aix(i) + bix(i)(t – hi)

)
= f (t). (.)

By using the Fourier series method and inequality technique, they obtained the existence
of a periodic solution for (.). In [], applying Mawhin’s continuation theorem, Wang
and Lu studied the existence of a periodic solution for a high-order neutral functional
differential equation with distributed delay as follows:

(
x(t) – cx(t – σ )

)(n) + f
(
x(t)

)
x′(t) + g

(∫ 

–r
x(t + s)dα(s)

)
= p(t), (.)

here |c| �= . Recently, in [] and [], Ren et al. observed the high-order p-Laplacian neutral
differential equation

(
ϕp

(
x(t) – cx(t – σ )

)(l))(n–l) = F
(
t,x(t),x′(t), . . . ,x(l–)(t)

)
(.)
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and presented sufficient conditions for the existence of periodic solutions for (.) in the
critical case (i.e., |c| = ) and in the general case (i.e., |c| �= ), respectively.
In this paper, we consider the following high-order p-Laplacian generalized neutral dif-

ferential equation

(
ϕp

(
x(t) – cx

(
t – δ(t)

))′)(n–) + g
(
t,x(t),x

(
t – τ (t)

)
,x′(t)

)
= e(t), (.)

where p ≥ , ϕp(x) = |x|p–x for x �=  and ϕp() = ; g : R → R is a continuous periodic
function with g(t +T , ·, ·, ·)≡ g(t, ·, ·, ·), and g(t,a,a, ) – e(t) �≡  for all a ∈R. e :R →R is
a continuous periodic function with e(t + T) ≡ e(t) and

∫ T
 e(t)dt = , c is a constant and

|c| �= , δ ∈ C(R,R) and δ is a T-periodic function, T is a positive constant; n is a positive
integer.
In (.), the neutral operator A = x(t)– cx(t– δ(t)) is a natural generalization of the oper-

ator A = x(t) – cx(t – δ), which typically possesses a more complicated nonlinearity than
A. For example, A is homogeneous in the following sense (Ax)′(t) = (Ax′)(t), whereas A
in general is inhomogeneous. As a consequence, many of the new results for differential
equations with the neutral operator A will not be a direct extension of known theorems
for neutral differential equations.
The paper is organized as follows. In Section , we first give qualitative properties of the

neutral operator A which will be helpful for further studies of differential equations with
this neutral operator; in Section , by applying Mawhin’s continuation theory and some
new inequalities, we obtain sufficient conditions for the existence of periodic solutions for
(.), an example is also given to illustrate our results.

2 Lemmas
Let CT = {φ ∈ C(R,R) : φ(t + T) ≡ φ(t)} with the norm |φ|∞ = maxt∈[,T] |φ(t)|. Define
difference operators A and B as follows:

A : CT → CT , (Ax)(t) = x(t) – cx
(
t – δ(t)

)
; B : CT → CT ,

(Bx)(t) = c
(
t – δ(t)

)
.

Lemma . (see []) If |c| �= , then the operator A has a continuous inverse A– on CT ,
satisfying

()
(
A–f

)
(t) =

⎧⎨
⎩f (t) +

∑∞
j= cjf (s –

∑j–
i= δ(Di)) for |c| < ,∀f ∈ CT ,

– f (t+δ(t))
c –

∑∞
j=


cj+ f (s + δ(t) +

∑j–
i= δ(Di)) for |c| > ,∀f ∈ CT .

()
∣∣(A–f

)
(t)

∣∣ ≤ ‖f ‖
| – |c|| , ∀f ∈ CT .

()
∫ T



∣∣(A–f
)
(t)

∣∣dt ≤ 
| – |c||

∫ T



∣∣f (t)∣∣dt, ∀f ∈ CT .

Let X and Y be real Banach spaces and let L : D(L) ⊂ X → Y be a Fredholm operator
with index zero, here D(L) denotes the domain of L. This means that ImL is closed in
Y and dimKerL = dim(Y / ImL) < +∞. Consider supplementary subspaces X, Y of X, Y
respectively such that X = KerL ⊕ X, Y = ImL ⊕ Y. Let P : X → KerL and Q : Y → Y
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Cheng and Ren Advances in Difference Equations 2013, 2013:202 Page 3 of 11
http://www.advancesindifferenceequations.com/content/2013/1/202

denote the natural projections. Clearly, KerL ∩ (D(L) ∩ X) = {} and so the restriction
LP := L|D(L)∩X is invertible. Let K denote the inverse of LP .
Let � be an open bounded subset of X with D(L) ∩ � �= ∅. A map N : � → Y is said to

be L-compact in � if QN(�) is bounded and the operator K(I –Q)N :� → X is compact.

Lemma . (Gaines andMawhin []) Suppose that X and Y are two Banach spaces, and
L :D(L) ⊂ X → Y is a Fredholm operator with index zero. Let � ⊂ X be an open bounded
set and N : � → Y be L-compact on �. Assume that the following conditions hold:
() Lx �= λNx, ∀x ∈ ∂� ∩D(L), λ ∈ (, );
() Nx /∈ ImL, ∀x ∈ ∂� ∩KerL;
() deg{JQN ,� ∩KerL, } �= , where J : ImQ →KerL is an isomorphism.

Then the equation Lx =Nx has a solution in � ∩D(L).

Lemma . (see []) If x ∈ Cn(R,R) and x(t + T) ≡ x(t), then

∫ T



∣∣x′(t)
∣∣p dt ≤

(
T
πp

)p(n–) ∫ T



∣∣x(n)(t)∣∣p dt, (.)

where πp = 
∫ (p–)/p


ds
(– sp

p– )
/p =

π (p–)/p
p sin(π/p) , and p is a fixed real number with p > .

Remark . When p = , π = 
∫ (–)/


ds
(– s

– )/
= π (–)/

 sin(π/) = π , then (.) is transformed

into
∫ T
 |x′(t)| dt ≤ (T

π
)(n–)

∫ T
 |x(n)(t)| dt.

In order to apply Mawhin’s continuation degree theorem, we rewrite (.) in the form

⎧⎨
⎩(Ax)′(t) = ϕq(x(t))

x(n–) (t) = –g(t,x(t),x(t – τ (t)),x′
(t)) + e(t),

(.)

where 
p +


q = . Clearly, if x(t) = (x(t),x(t))� is a T-periodic solution to (.), then x(t)

must be a T-periodic solution to (.). Thus, the problem of finding a T-periodic solution
for (.) reduces to finding one for (.).
Now, set X = {x = (x(t),x(t)) ∈ C(R,R) : x(t + T) ≡ x(t)} with the norm |x|∞ =

max{|x|∞, |x|∞}; Y = {x = (x(t),x(t)) ∈ C(R,R) : x(t + T) ≡ x(t)} with the norm ‖x‖ =
max{|x|∞, |x′|∞}. Clearly, X and Y are both Banach spaces. Meanwhile, define

L :D(L) =
{
x ∈ Cn(

R,R) : x(t + T) = x(t), t ∈R
} ⊂ X → Y

by

(Lx)(t) =

(
(Ax)′(t)
x(n–) (t)

)

and N : X → Y by

(Nx)(t) =

(
ϕq(x(t))

–g(t,x(t),x(t – τ (t)),x′
(t)) + e(t)

)
. (.)

http://www.advancesindifferenceequations.com/content/2013/1/202
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Then (.) can be converted into the abstract equation Lx =Nx. From the definition of L,
one can easily see that

KerL ∼= R
, ImL =

{
y ∈ Y :

∫ T



(
y(s)
y(s)

)
ds =

(



)}
.

So, L is a Fredholm operator with index zero. Let P : X → KerL and Q : Y → ImQ ⊂ R


be defined by

Px =

(
(Ax)()
x()

)
; Qy =


T

∫ T



(
y(s)
y(s)

)
ds,

then ImP =KerL, KerQ = ImL. Setting LP = L|D(L)∩KerP and L–P : ImL →D(L) denotes the
inverse of LP , then

[
L–P y

]
(t) =

(
(A–Gy)(t)
(Gy)(t)

)
,

[Gy](t) =
∫ t


y(s)ds,

[Gy](t) =
n–∑
j=


j!
x(j) ()t

j +


(n – )!

∫ t


(t – s)n–y(s)ds,

(.)

where x(j) () (j = , , . . . ,n – ) are defined by the following

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

   · · ·  
b   · · ·  
b b  · · ·  
· · ·
bn– bn– bn– · · ·  
bn– bn– bn– · · · b 

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(n–)×(n–)

,

X� =
(
x(n–)(), . . . ,x′′(),x′()

)
,

C� = (C,C, . . . ,Cn–),

Cj = –

j!T

∫ T


(T – s)jy(s)ds,

bk =
Tk

(k + )!
, k = , , . . . ,n – .

From (.) and (.), it is clear thatQN andK(I–Q)N are continuous,QN(�) is bounded
and then K(I – Q)N(�) is compact for any open bounded � ⊂ X which means N is L-
compact on �̄.

3 Existence of periodic solutions for (1.4)
For the sake of convenience, we list the following assumptions which will be used repeat-
edly in the sequel:

http://www.advancesindifferenceequations.com/content/2013/1/202
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(H) There exists a constant D >  such that

vg(t, v, v, v) >  ∀(t, v, v, v) ∈ [,T]×R
 with |v| >D;

(H) There exists a constant D >  such that

vg(t, v, v, v) <  ∀(t, v, v, v) ∈ [,T]×R
 with |v| >D;

(H) There exist non-negative constants α, α, α,m such that

∣∣g(t, v, v, v)∣∣ ≤ α|v|p–+α|v|p–+α|v|p–+m ∀(t, v, v, v) ∈ [,T]×R
;

(H) There exist non-negative constants γ, γ, γ such that

∣∣g(t,u,u,u) – g(t, v, v, v)
∣∣ ≤ γ|u – v| + γ|u – v| + γ|u – v|

for all (t,u,u,u), (t, v, v, v) ∈ [,T]×R
.

Theorem . Assume that (H) and (H) hold, then (.) has at least one non-constant
T-periodic solution if | – |c|| – |c|δ >  and [(α+α)Tp++p–αT]

p+(|–|c||–|c|δ)p– · (T
π
)(n–) < , here δ =

maxt∈[,T] |δ′(t)|.

Proof Consider the equation

Lx = λNx, λ ∈ (, ).

Set � = {x : Lx = λNx,λ ∈ (, )}. If x(t) = (x(t),x(t))� ∈ �, then

⎧⎨
⎩(Ax)′(t) = λϕq(x(t))

x(n–) (t) = –λg(t,x(t),x(t – τ (t)),x′
(t)) + λe(t).

(.)

Substituting x(t) = λ–pϕp[(Ax)′(t)] into the second equation of (.), we get

(
ϕp(Ax)′(t)

)(n–) + λpg
(
t,x(t),x

(
t – τ (t)

)
,x′

(t)
)
= λpe(t). (.)

Integrating both sides of (.) from  to T , we have

∫ T


g
(
t,x(t),x

(
t – τ (t)

)
,x′

(t)
)
dt = . (.)

From (.), there exists a point ξ ∈ [,T] such that

g
(
ξ ,x(ξ ),x

(
ξ – τ (ξ )

)
,x′

(ξ )
)
= .

In view of (H), we obtain

∣∣x(ξ )∣∣ ≤ D.

http://www.advancesindifferenceequations.com/content/2013/1/202
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Then we have

∣∣x(t)∣∣ =
∣∣∣∣x(ξ ) +

∫ t

ξ

x′
(s)ds

∣∣∣∣ ≤ D +
∫ t

ξ

∣∣x′
(s)

∣∣ds, t ∈ [ξ , ξ + T],

and

∣∣x(t)∣∣ = ∣∣x(t – T)
∣∣

=
∣∣∣∣x(ξ ) –

∫ ξ

t–T
x′
(s)ds

∣∣∣∣ ≤ D +
∫ ξ

t–T

∣∣x′
(s)

∣∣ds, t ∈ [ξ , ξ + T].

Combining the above two inequalities, we obtain

|x|∞ = max
t∈[,T]

∣∣x(t)∣∣ = max
t∈[ξ ,ξ+T]

∣∣x(t)∣∣
≤ max

t∈[ξ ,ξ+T]

{
D +




(∫ t

ξ

∣∣x′
(s)

∣∣ds + ∫ ξ

t–T

∣∣x′
(s)

∣∣ds)}

≤ D +



∫ T



∣∣x′
(s)

∣∣ds. (.)

Since (Ax)(t) = x(t) – cx(t – δ(t)), we have

(Ax)′(t) =
(
x(t) – cx

(
t – δ(t)

))′

= x′
(t) – cx′


(
t – δ(t)

)
+ cx′


(
t – δ(t)

)
δ′(t)

=
(
Ax′


)
(t) + cx′


(
t – δ(t)

)
δ′(t),

and

(
Ax′


)
(t) = (Ax)′(t) – cx′


(
t – δ(t)

)
δ′(t).

By applying Lemma ., we have

∣∣x′

∣∣∞ = max

t∈[,T]
∣∣A–Ax′

(t)
∣∣

≤ maxt∈[,T] |(Ax)′(t) – cx′
(t – δ(t))δ′(t)|

| – |c||

≤ ϕq(|x|∞) + |c|δ|x′
|∞

| – |c|| ,

where δ =maxt∈[,T] |δ′(t)|. Since | – |c|| – |c|δ > , then

∣∣x′

∣∣∞ ≤ ϕq(|x|∞)

| – |c|| – |c|δ . (.)

On the other hand, from x(n–) () = x(n–) (T), there exists a point t ∈ [,T] such that
x(n–) (t) = , which together with the integration of the second equation of (.) on inter-

http://www.advancesindifferenceequations.com/content/2013/1/202
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val [,T] yields


∣∣x(n–) (t)

∣∣ ≤ 
(
x(n–) (t) +




∫ T



∣∣x(n–) (t)
∣∣dt)

= λ

∫ T



∣∣–g(t,x(t),x(t – τ (t)
)
,x′

(t)
)
+ e(t)

∣∣dt
≤ α

∫ T



∣∣x(t)∣∣p– dt + α

∫ T



∣∣x(t – τ (t)
)∣∣p– dt

+ α

∫ T



∣∣x′
(t)

∣∣p– dt + (
m + |e|∞

)
T

≤ (α + α)T
(
D +




∫ T



∣∣x′
(t)

∣∣dt)p–

+ α

∫ T



∣∣x′
(t)

∣∣p– dt + (
m + |e|∞

)
T

=
(α + α)T

p–

(
D∫ T

 |x′
(t)|dt

+ 
)p–(∫ T



∣∣x′
(t)

∣∣dt)p–

+ α

∫ T



∣∣x′
(t)

∣∣p– dt + (
m + |e|∞

)
T . (.)

For a given constant δ > , which is only dependent on k > , we have

( + x)k ≤  + ( + k)x for x ∈ [, δ].

From (.) and (.), we have


∣∣x(n–) (t)

∣∣ ≤ (α + α)T
p–

(
D∫ T

 |x′
(t)|dt

+ 
)p–(∫ T



∣∣x′
(t)

∣∣dt)p–

+ α

∫ T



∣∣x′
(t)

∣∣p– dt + (
m + |e|∞

)
T

≤ (α + α)T
p–

(
 +

Dp∫ T
 |x′

(t)|dt
)(∫ T



∣∣x′
(t)

∣∣dt)p–

+ α

∫ T



∣∣x′
(t)

∣∣p– dt + (
m + |e|∞

)
T

≤ (α + α)T
p–

· Tp–∣∣x′

∣∣p–∞ +

(α + α)TDp
p–

Tp–∣∣x′

∣∣p–∞

+ α
∣∣x′


∣∣p–∞ T +

(
m + |e|∞

)
T

≤
(
(α + α)Tp

p–
+ αT

)
(ϕq|x|∞)p–

(| – |c|| – |c|δ)p–

+
(α + α)Tp–Dp

p–
(ϕq|x|∞)p–

(| – |c|| – |c|δ)p–
+

(
m + |e|∞

)
T

=
(
(α + α)Tp

p–
+ αT

) |x|∞
(| – |c|| – |c|δ)p–

http://www.advancesindifferenceequations.com/content/2013/1/202
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+
(α + α)Tp–Dp

p–
|x|–q∞

(| – |c|| – |c|δ)p–
+

(
m + |e|∞

)
T . (.)

Since
∫ T
 ϕq(x(t))dt =

∫ T
 (Ax)′(t)dt = , there exists a point t ∈ [,T] such that

x(t) = . From (.) and Remark ., we can easily get

|x|∞ ≤ 


∫ T



∣∣x′
(t)

∣∣dt ≤
√
T


(∫ T



∣∣x′
(t)

∣∣ dt) 


≤
√
T


(
T
π

)(n–)(∫ T



∣∣x(n–) (t)
∣∣ dt) 



≤ T


(
T
π

)(n–)∣∣x(n–)
∣∣∞. (.)

Combination of (.) and (.) implies

|x|∞ ≤ T


(
T
π

)(n–)∣∣x(n–)
∣∣∞

≤ T


(
T
π

)(n–)[(
(α + α)Tp

p–
+ αT

) |x|∞
(| – |c|| – |c|δ)p–

+
(α + α)Tp–Dp

p–
|x|–q∞

(| – |c|| – |c|δ)p–
]

+
T


(
T
π

)(n–)(
m + |e|∞

)
T .

Since p ≥  and [(α+α)Tp++p–αT]
p+(|–|c||–|c|δ)p– · (T

π
)(n–) < , there exists a positive constant M (in-

dependent of λ) such that

|x|∞ ≤ M. (.)

From (.) and (.), we obtain that

∣∣x′

∣∣∞ ≤ ϕq(|x|∞)

| – |c|| – |c|δ ≤ Mq–


| – |c|| – |c|δ :=M.

Hence

|x|∞ ≤ D +



∫ T



∣∣x′
(t)

∣∣dt ≤ D +
TM


:=M.

From (.), we know

∣∣x(n–)
∣∣∞ ≤ 


max

∣∣∣∣
∫ T


x(n–) (t)dt

∣∣∣∣
≤ 



∫ T



∣∣g(t,x(t),x(t – τ (t)
)
,x′

(t)
)
+ e(t)

∣∣dt

http://www.advancesindifferenceequations.com/content/2013/1/202
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≤ 

[
(α + α)T |x|p–∞ + αT

∣∣x′

∣∣p–∞ +

(
m + |e|∞

)
T

]
≤ 


[
(α + α)TM

p–
 + αTM

p–
 +

(
m + |e|∞

)
T

]
:=Mn–.

From (.), we can get

∣∣x′

∣∣∞ ≤ T



(
T
π

)(n–)∣∣x(n–)
∣∣∞ ≤ T



(
T
π

)(n–)

Mn– :=M.

Let M = max{M,M,M,M} + , � = {x = (x,x)� : ‖x‖ <M} and � = {x : x ∈ ∂� ∩
KerL}, then ∀x ∈ ∂� ∩KerL

QNx =

T

∫ T



(
ϕq(x(t))

–g(t,x(t),x(t – τ (t)),x′
(t)) + e(t)

)
dt.

If QNx = , then x(t) = , x =M or –M. But if x(t) =M, we know

 =
∫ T


g(t,M,M, )dt.

From assumption (H), we haveM ≤ D, which yields a contradiction. Similarly, in the case
x = –M, we also have QNx �= , that is, ∀x ∈ ∂� ∩ KerL, x /∈ ImL. So, conditions () and
() of Lemma . are both satisfied. Define the isomorphism J : ImQ→KerL as follows:

J(x,x)� = (x, –x)�.

Let H(μ,x) = –μx + ( –μ)JQNx, (μ,x) ∈ [, ]× �, then ∀(μ,x) ∈ (, )× (∂� ∩KerL),

H(μ,x) =

(
–μx(t) – –μ

T
∫ T
 [g(t,x(t),x(t – τ (t)),x′

(t)) – e(t)]dt
–μx(t) – ( –μ)ϕq(x(t))

)
.

We have
∫ T
 e(t)dt =  and then

H(μ,x) =

(
–μx(t) – –μ

T
∫ T
 [g(t,x(t),x(t – τ (t)),x′

(t))]dt
–μx(t) – ( –μ)ϕq(x(t))

)
,

∀(μ,x) ∈ (, )× (∂� ∩KerL).

From (H), it is obvious that x�H(μ,x) < , ∀(μ,x) ∈ (, )× (∂� ∩KerL). Hence,

deg{JQN ,� ∩KerL, } = deg
{
H(,x),� ∩KerL, 

}
= deg

{
H(,x),� ∩KerL, 

}
= deg{I,� ∩KerL, } �= .

So, condition () of Lemma . is satisfied. By applying Lemma ., we conclude that equa-
tion Lx = Nx has a solution x = (x,x)� on �̄ ∩ D(L), i.e., (.) has a T-periodic solution
x(t).

http://www.advancesindifferenceequations.com/content/2013/1/202
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Finally, observe that y*(t) is not a constant. For if y* ≡ a (constant), then from (.) we
have g(t,a,a, ) – e(t) ≡ , which contradicts the assumption that g(t,a,a, ) – e(t) �≡ .
The proof is complete. �

Similarly, we can get the following result.

Theorem . Assume that (H) and (H) hold, then (.) has at least one non-constant
T-periodic solution if | – |c|| – |c|δ >  and [(α+α)Tp++p–αT]

p+(|–|c||–|c|δ)p– · (T
π
)(n–) < .

We illustrate our results with an example.

Example . Consider the following neutral functional differential equation

(
ϕp

(
x(t) – x

(
t –




sint
))′)()

+

π

x(t)

+

π

sinx(t – cost) +

π

sint cosx′(t) = sint. (.)

Here p = . It is clear that T = π
 , c = , δ(t) = 

 sint, τ (t) = cost, e(t) = sint, δ =
maxt∈[,T] | 

 cost| = 
 , then we can get | – |c|| – |c|δ =  > , g(t, v, v, v) = 

π v

 +


π

sin v + 
π cos v sint, and g(t,a,a, ) – e(t) = 

π a
 + 

π
sina – π–

π sint �≡ . Choose
D = π such that (H) holds. Now we consider the assumption (H), it is easy to see

∣∣g(t, z, z, z)∣∣ ≤ 
π

|z| + ,

which means that (H) holds with α = 
π , α = , α = ,m = . Obviously,

[(α + α)Tp+ + p–αT]
p+(| – |c|| – |c|δ)p– ·

(
T
π

)(n–)

=

π (

π
 )

 +  + 
+(| – |c| – |c|δ)– ·

(



)(–)

=
π

×  × 
< .

By Theorem ., (.) has at least one nonconstant π
 -periodic solution.
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