
Al-Fhaid and Mohiuddine Advances in Difference Equations 2013, 2013:203
http://www.advancesindifferenceequations.com/content/2013/1/203

RESEARCH Open Access

On the Ulam stability of mixed type QA
mappings in IFN-spaces
Abdulrahman S Al-Fhaid and Syed Abdul Mohiuddine*

*Correspondence:
mohiuddine@gmail.com
Department of Mathematics,
Faculty of Science, King Abdulaziz
University, P.O. Box 80203, Jeddah,
21589, Saudi Arabia

Abstract
We give Ulam-type stability results concerning the quadratic-additive functional
equation in intuitionistic fuzzy normed spaces.

Keywords: t-norm; t-conorm; quadratic-additive functional equation; intuitionistic
fuzzy normed space; Hyers-Ulam stability

1 Introduction
In , Ulam [] proposed the following stability problem: ‘When is it true that a function
which satisfies some functional equation approximately must be close to one satisfying
the equation exactly?’. Hyers [] gave the first affirmative partial answer to the question of
Ulam for Banach spaces. Aoki [] presented a generalization of Hyers results by consider-
ing additive mappings, and later on Rassias [] did for linear mappings by considering an
unbounded Cauchy difference. The paper of Rassias has significantly influenced the de-
velopment of what we now call the Hyers-Ulam-Rassias stability of functional equations.
Various extensions, generalizations and applications of the stability problems have been
given by several authors so far; see, for example, [–] and references therein.
The notion of intuitionistic fuzzy set introduced by Atanassov [] has been used exten-

sively inmany areas ofmathematics and sciences. Using the idea of intuitionistic fuzzy set,
Saadati and Park [] presented the notion of intuitionistic fuzzy normed space which is
a generalization of the concept of a fuzzy metric space due to Bag and Samanta []. The
authors of [–] defined and studied some summability problems in the setting of an
intuitionistic fuzzy normed space.
In the recent past, severalHyers-Ulam stability results concerning the various functional

equations were determined in [–], respectively, in the fuzzy and intuitionistic fuzzy
normed spaces. Quite recently, Alotaibi and Mohiuddine [] established the stability of
a cubic functional equation in random -normed spaces, while the notion of random -
normed spaces was introduced by Goleţ [] and further studied in [–].
The Hyers-Ulam stability problems of quadratic-additive functional equation

f (x + y + z) + f (x) + f (y) + f (z) = f (x + y) + f (y + z) + f (x + z)

under the approximately even (or odd) condition were established by Jung [] and the
solution of the above functional equation where the range is a field of characteristic  was
determined byKannappan []. In this paperwe determine the stability results concerning
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the above functional equation in the setting of intuitionistic fuzzy normed spaces. This
work indeed presents a relationship between two various disciplines: the theory of fuzzy
spaces and the theory of functional equations.

2 Definitions and preliminaries
We shall assume throughout this paper that the symbol N denotes the set of all natural
numbers.
A binary operation ∗ : [, ]× [, ] → [, ] is said to be a continuous t-norm if it satisfies

the following conditions:
(a) ∗ is associative and commutative, (b) ∗ is continuous, (c) a ∗  = a for all a ∈ [, ],

(d) a ∗ b ≤ c ∗ d whenever a≤ c and b ≤ d for each a,b, c,d ∈ [, ].
A binary operation ♦ : [, ] × [, ] → [, ] is said to be a continuous t-conorm if it

satisfies the following conditions:
(a′)♦ is associative and commutative, (b′)♦ is continuous, (c′) a♦ = a for all a ∈ [, ],

(d′) a♦b ≤ c♦d whenever a≤ c and b ≤ d for each a,b, c,d ∈ [, ].
The five-tuple (X,μ,ν,∗,♦) is said to be intuitionistic fuzzy normed spaces (for short,

IFN-spaces) [] if X is a vector space, ∗ is a continuous t-norm, ♦ is a continuous t-
conorm, and μ, ν are fuzzy sets on X × (,∞) satisfying the following conditions. For
every x, y ∈ X and s, t > ,

(i) μ(x, t) + ν(x, t)≤ ,
(ii) μ(x, t) > ,
(iii) μ(x, t) =  if and only if x = ,
(iv) μ(αx, t) = μ(x, t

|α| ) for each α 	= ,
(v) μ(x, t) ∗ μ(y, s) ≤ μ(x + y, t + s),
(vi) μ(x, ·) : (,∞) → [, ] is continuous,
(vii) limt→∞ μ(x, t) =  and limt→ μ(x, t) = ,
(viii) ν(x, t) < ,
(ix) ν(x, t) =  if and only if x = ,
(x) ν(αx, t) = ν(x, t

|α| ) for each α 	= ,
(xi) ν(x, t)♦ν(y, s)≥ ν(x + y, t + s),
(xii) ν(x, ·) : (,∞)→ [, ] is continuous,
(xiii) limt→∞ ν(x, t) =  and limt→ ν(x, t) = .
In this case (μ,ν) is called an intuitionistic fuzzy norm. For simplicity in notation, we

denote the intuitionistic fuzzy normed spaces by (X,μ,ν) instead of (X,μ,ν,∗,♦). For ex-
ample, let (X,‖ · ‖) be a normed space, and let a ∗ b = ab and a♦b = min{a + b, } for all
a,b ∈ [, ]. For all x ∈ X and every t > , consider

μ(x, t) :=
t

t + ‖x‖ and ν(x, t) :=
‖x‖

t + ‖x‖ .

Then (X,μ,ν) is an intuitionistic fuzzy normed space.
The notions of convergence and Cauchy sequence in the setting of IFN-spaces were in-

troduced by Saadati and Park [] and further studied byMursaleen andMohiuddine [].
Let (X,μ,ν) be an intuitionistic fuzzy normed space. Then the sequence x = (xk) is said

to be:
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(i) Convergent to L ∈ X with respect to the intuitionistic fuzzy norm (μ,ν) if, for every
ε >  and t > , there exists k ∈N such that μ(xk – L, t) >  – ε and ν(xk – L, t) < ε

for all k ≥ k. In this case, we write (μ,ν)- limxk = L or xk
(μ,ν)−→ L as k → ∞.

(ii) Cauchy sequence with respect to the intuitionistic fuzzy norm (μ,ν) if, for every
ε >  and t > , there exists k ∈N such that μ(xk – x�, t) >  – ε and ν(xk – x�, t) < ε

for all k,� ≥ k. An IFN-space (X,μ,ν) is said to be complete if every Cauchy
sequence in (X,μ,ν) is convergent in the IFN-space. In this case, (X,μ,ν) is called
an intuitionistic fuzzy Banach space.

3 Stability of a quadratic-additive functional equation in the IFN-space
We shall assume the following abbreviation throughout this paper:

Df (x, y, z) = f (x + y + z) – f (x + y) – f (y + z) – f (x + z) + f (x) + f (y) + f (z).

Theorem . Let X be a linear space and (X,μ,ν) be an IFN-space. Suppose that f is an
intuitionistic fuzzy q-almost quadratic-additive mapping from (X,μ,ν) to an intuitionistic
fuzzy Banach space (Y ,μ′,ν ′) such that

μ′(Df (x, y, z), s + t + u) ≥ μ(x, sq) ∗ μ(y, tq) ∗ μ(z,uq) and
ν ′(Df (x, y, z), s + t + u) ≤ ν(x, sq)♦ν(y, tq)♦ν(z,uq)

}
(.)

for all x, y, z ∈ X and s, t,u > , where q is a positive real number with q 	= 
 , . Then there

exists a unique quadratic-additive mapping T : X → Y such that

μ′(T(x) – f (x), t)≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
supt′<t μ(x, ( –

p

 )qt′q) if q > ,

supt′<t μ(x, (
(–p)(–p)

 )qt′q) if 
 < q < ,

supt′<t μ(x, ( 
p–
 )qt′q) if  < q < 



and

ν ′(T(x) – f (x), t)≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
supt′<t ν(x, ( –

p

 )qt′q) if q > ,

supt′<t ν(x, (
(–p)(–p)

 )qt′q) if 
 < q < ,

supt′<t ν(x, ( 
p–
 )qt′q) if  < q < 

 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(.)

for all x ∈ X and all t >  with t′ ∈ (, t), where p = /q.

Proof Putting x =  = y = z in (.), it follows that

μ′(f (), t) ≥ μ
(
, (t/)q

) ∗ μ
(
, (t/)q

) ∗ μ
(
, (t/)q

)
= 

and

ν ′(f (), t) ≤ ν
(
, (t/)q

)♦ν
(
, (t/)q

)♦ν
(
, (t/)q

)
= 

for all t > . Using the definition of IFN-space, we have f () = . Nowwe are ready to prove
our theorem for three cases. We consider the cases as q > , 

 < q <  and  < q < 
 .
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Case . Let q > . Consider a mapping Jnf : X → Y to be such that

Jnf (x) =


(
–n

(
f
(
nx

)
+ f

(
–nx

))
+ –n

(
f
(
nx

)
– f

(
–nx

)))
for all x ∈ X. Notice that Jf (x) = f (x) and

Jjf (x) – Jj+f (x) =
Df (jx, jx, –jx)

 · j+ +
Df (–jx, –jx, jx)

 · j+

+
Df (jx, jx, –jx)

j+
–
Df (–jx, –jx, jx)

j+
(.)

for all x ∈ X and j ≥ . Using the definition of IFN-space and (.), this equation implies
that if n +m >m ≥ , then

μ′
(
Jmf (x) – Jn+mf (x),

n+m–∑
j=m




(
p



)j

tp
)

= μ′
(n+m–∑

j=m

(
Jjf (x) – Jj+f (x)

)
,
n+m–∑
j=m

 · jp
j+

tp
)

≥
n+m–∏
j=m

μ′
(
Jj
(
f (x) – Jj+f (x)

)
,
 · jp
j+

)

≥
n+m–∏
j=m

{
μ′

(
(j+ + )Df (jx, jx, –jx)

 · j+ ,
(j+ + )jptp

 · j+
)

∗ μ′
(
 – (j+)Df (–jx, –jx, jx)

 · j+ ,
(j+ – )jptp

 · j+
)}

≥
n+m–∏
j=m

μ
(
jx, jt

)
= μ(x, t) (.)

and

ν ′
(
Jmf (x) – Jn+mf (x),

n+m–∑
j=m




(
p



)j

tp
)

= ν ′
(n+m–∑

j=m

(
Jjf (x) – Jj+f (x)

)
,
n+m–∑
j=m

 · jp
j+

tp
)

≤
n+m–∐
j=m

ν ′
(
Jj
(
f (x) – Jj+f (x)

)
,
 · jp
j+

)

≤
n+m–∐
j=m

{
ν ′

(
(j+ + )Df (jx, jx, –jx)

 · j+ ,
(j+ + )jptp

 · j+
)

♦ν ′
(
 – (j+)Df (–jx, –jx, jx)

 · j+ ,
(j+ – )jptp

 · j+
)}

≤
n+m–∐
j=m

ν
(
jx, jt

)
= ν(x, t) (.)
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for all x ∈ X and t > ,where
∏n

j= aj = a∗a∗· · ·∗an,∐n
j= aj = a ♦a ♦ · · · ♦an. Let ε > 

and δ >  be given. Since limt→∞ μ(x, t) =  and limt→∞ ν(x, t) = , there exists t >  such
that μ(x, t)≥ – ε and ν(x, t) ≤ ε for all x ∈ X. We observe that for some t̃ > t, the series∑∞

j=
·jp
j+ t̃

p converges for p = 
q < , there exists some n ≥  such that

∑n+m–
j=m

·jp
j+ t̃

p < δ

for eachm ≥ n and n > . Using (.) and (.), we have

μ′(Jmf (x) – Jn+mf (x), δ
) ≥ μ′

(
Jmf (x) – Jn+mf (x),

n+m–∑
j=m

 · jp
j+

t̃p
)

≥ μ(x, t̃) ≥ μ(x, t) ≥  – ε

and

ν ′(Jmf (x) – Jn+mf (x), δ
) ≤ ν ′

(
Jmf (x) – Jn+mf (x),

n+m–∑
j=m

 · jp
j+

t̃p
)

≤ ν(x, t̃) ≤ ν(x, t) ≤ ε

for all x ∈ X and δ > . Hence {Jnf (x)} is a Cauchy sequence in the fuzzy Banach space
(Y ,μ′,ν ′). Thus, we define a mapping T : X → Y such that T(x) := (μ′,ν ′) – limn→∞ Jnf (x)
for all x ∈ X. Moreover, if we putm =  in (.) and (.), we get

μ′(f (x) – Jnf (x), t)≥ μ(x, tq

(
∑n–

j=
·jp
j+

)q
) and

ν ′(f (x) – Jnf (x), t)≤ ν(x, tq

(
∑n–

j=
·jp
j+

)q
)

⎫⎪⎬
⎪⎭ (.)

for all x ∈ X and t > . Now we have to show that T is quadratic additive. Let x, y, z ∈ X.
Then

μ′(DT(x, y, z), t) ≥ μ′
(
(T – Jnf )(x + y + z),

t


)
∗ μ′

(
(T – Jnf )(x),

t


)

∗ μ′
(
(T – Jnf )(y),

t


)
∗ μ′

(
(T – Jnf )(z),

t


)

∗ μ′
(
(Jnf – T)(x + y),

t


)
∗ μ′

(
(Jnf – T)(x + z),

t


)

∗ μ′
(
(Jnf – T)(y + z),

t


)
∗ μ′

(
DJnf (x, y, z),

t


)
(.)

and

ν ′(DT(x, y, z), t) ≤ ν ′
(
(T – Jnf )(x + y + z),

t


)
♦ν ′

(
(T – Jnf )(x),

t


)

♦ν ′
(
(T – Jnf )(y),

t


)
♦ν ′

(
(T – Jnf )(z),

t


)

♦ν ′
(
(Jnf – T)(x + y),

t


)
♦ν ′

(
(Jnf – T)(x + z),

t


)

♦ν ′
(
(Jnf – T)(y + z),

t


)
♦ν ′

(
DJnf (x, y, z),

t


)
(.)
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for all t >  and n ∈ N. Taking the limit as n → ∞ in the inequalities (.) and (.), we
can see that first seven terms on the right-hand side of (.) and (.) tend to  and ,
respectively, by using the definition of T . It is left to find the value of the last term on the
right-hand side of (.) and (.). By using the definition of Jnf (x), write

μ′
(
DJnf (x, y, z),

t


)

≥ μ′
(
Df (nx, ny, nz)

 · n ,
t


)
∗ μ′

(
Df (–nx, –ny, –nz)

 · n ,
t


)

∗ μ′
(
Df (nx, ny, nz)

 · n ,
t


)
∗ μ′

(
Df (–nx, –ny, –nz)

 · n ,
t


)
(.)

and, similarly,

ν ′
(
DJnf (x, y, z),

t


)

≤ ν ′
(
Df (nx, ny, nz)

 · n ,
t


)
♦ν ′

(
Df (–nx, –ny, –nz)

 · n ,
t


)

♦ν ′
(
Df (nx, ny, nz)

 · n ,
t


)
♦ν ′

(
Df (–nx, –ny, –nz)

 · n ,
t


)
(.)

for all x, y, z ∈ X, t >  and n ∈N. Also, from (.), we have

μ′
(
Df (±nx,±ny,±nz)

 · n ,
t


)

= μ′
(
Df

(±nx,±ny,±nz
)
,
 · nt



)

≥ μ

(
nx,

(
nt


)q)
∗ μ

(
ny,

(
nt


)q)
∗ μ

(
nz,

(
nt


)q)

≥ μ
(
x, (q–)n–qtq

) ∗ μ
(
y, (q–)n–qtq

) ∗ μ
(
z, (q–)n–qtq

)
(.)

and

μ′
(
Df (±nx,±ny,±nz)

 · n ,
t


)

≥ μ
(
x, (q–)n–qtq

) ∗ μ
(
y, (q–)n–qtq

) ∗ μ
(
z, (q–)n–qtq

)
(.)

for all x, y, z ∈ X, t >  and n ∈ N. Since q > , therefore (.) tends to  as n → ∞ with
the help of (.) and (.). Similarly, by proceeding along the same lines as in (.) and
(.), we can show that (.) tends to  as n → ∞. Thus, inequalities (.) and (.)
become

μ′(DT(x, y, z), t) =  and ν ′(DT(x, y, z), t) = 

for all x, y, z ∈ X and t > . Accordingly, DT(x, y, z) =  for all x, y, z ∈ X. Now we approxi-
mate the difference between f and T in a fuzzy sense. Choose ε ∈ (, ) and  < t′ < t. Since

http://www.advancesindifferenceequations.com/content/2013/1/203
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T is the intuitionistic fuzzy limit of {Jnf (x)} such that

μ′(T(x) – Jnf (x), t – t′
) ≥  – ε and ν ′(T(x) – Jnf (x), t – t′

) ≤ ε

for all x ∈ X, t >  and n ∈N. From (.), we have

μ′(T(x) – f (x), t
) ≥ μ′(T(x) – Jnf (x), t – t′

) ∗ μ′(Jnf (x) – f (x), t′
)

≥ ( – ε) ∗ μ

(
x,

t′q

(
∑n–

j=
·jp
j+ )

q

)
≥ ( – ε) ∗ μ

(
x,

(
( – p)t′



)q)

and

ν ′(T(x) – f (x), t
) ≤ ν ′(T(x) – Jnf (x), t – t′

)♦ν ′(Jnf (x) – f (x), t′
)

≤ ( – ε)♦ν

(
x,

(
( – p)t′



)q)
.

Since ε ∈ (, ) is arbitrary, we get the inequality (.) in this case.
To prove the uniqueness of T , assume that T ′ is another quadratic-additive mapping

from X into Y , which satisfies the required inequality, i.e., (.). Then, by (.), for all
x ∈ X and n ∈N,

T(x) – JnT(x) =
∑n–

j= (JjT(x) – Jj+T(x)) = ,
T ′(x) – JnT ′(x) =

∑n–
j= (JjT ′(x) – Jj+T ′(x)) = .

}
(.)

Therefore

μ′(T(x) – T ′(x), t
)
= μ′(JnT(x) – JnT ′(x), t

)
≥ μ′

(
JnT(x) – Jnf (x),

t


)
∗ μ′

(
Jnf (x) – JnT ′(x),

t


)

≥ μ′
(
(T – f )(nx)

 · n ,
t


)
∗ μ′

(
(f – T ′)(nx)

 · n ,
t


)

∗ μ′
(
(T – f )(–nx)

 · n ,
t


)
∗ μ′

(
(f – T ′)(–nx)

 · n ,
t


)

∗ μ′
(
(T – f )(nx)

 · n ,
t


)
∗ μ′

(
(f – T ′)(nx)

 · n ,
t


)

∗ μ′
(
(T – f )(–nx)

 · n ,
t


)
∗ μ′

(
(f – T ′)(–nx)

 · n ,
t


)

≥ sup
t′<t

μ

(
x, (q–)n–q

(
 – p



)q

t′q
)

and

ν ′(T(x) – T ′(x), t
)
= ν ′(JnT(x) – JnT ′(x), t

)
≤ ν ′

(
JnT(x) – Jnf (x),

t


)
♦ν ′

(
Jnf (x) – JnT ′(x),

t


)

http://www.advancesindifferenceequations.com/content/2013/1/203
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≤ ν ′
(
(T – f )(nx)

 · n ,
t


)
♦ν ′

(
(f – T ′)(nx)

 · n ,
t


)

♦ν ′
(
(T – f )(–nx)

 · n ,
t


)
♦ν ′

(
(f – T ′)(–nx)

 · n ,
t


)

♦ν ′
(
(T – f )(nx)

 · n ,
t


)
♦ν ′

(
(f – T ′)(nx)

 · n ,
t


)

♦ν ′
(
(T – f )(–nx)

 · n ,
t


)
♦ν ′

(
(f – T ′)(–nx)

 · n ,
t


)

≤ sup
t′<t

ν

(
x, (q–)n–q

(
 – p



)q

t′q
)

for all x ∈ X, t >  and n ∈ N. Since q = /p >  and taking limit as n → ∞ in the last two
inequalities, we get μ′(T(x) –T ′(x), t) =  and ν ′(T(x) –T ′(x), t) =  for all x ∈ X and t > .
Hence T(x) = T ′(x) for all x ∈ X.
Case . Let 

 < q < . Consider a mapping Jnf : X → Y to be such that

Jnf (x) =



(
–n

(
f
(
nx

)
+ f

(
–nx

))
+ n

(
f
(

x
n

)
– f

(
–
x
n

)))

for all x ∈ X. Then Jf (x) = f (x) and

Jjf (x) – Jj+f (x) =
Df (–jx, –jx, jx)

 · j+ +
Df (jx, jx, –jx)

 · j+

– j–
(
Df

(
x
j+

,
x
j+

,
–x
j+

)
–Df

(
–x
j+

,
–x
j+

,
x
j+

))

for all x ∈ X and j ≥ . Thus, for each n +m >m≥ , we have

μ′
(
Jmf (x) – Jn+mf (x),

n+m–∑
j=m

(



(
p



)j

+

p

(

p

)j)
tp

)

≥
n+m–∏
j=m

{
μ′

(
Df (jx, jx, –jx)

 · j+ ,
 · jptp
 · j+

)
∗ μ′

(
Df (–jx, –jx, jx)

 · j+ ,
 · jptp
 · (j+)

)

∗ μ′
(
–j–Df

(
x
j+

,
x
j+

,
–x
j+

)
,
 · j–tp
(j+)p

)

∗ μ′
(
j–Df

(
–x
j+

,
–x
j+

,
x
j+

)
,
 · j–tp
(j+)p

)}

≥
n+m–∏
j=m

{
μ

(
jx, jt

) ∗ μ

(
x
j+

,
t

j+

)}
= μ(x, t) and

ν ′
(
Jmf (x) – Jn+mf (x),

n+m–∑
j=m

(



(
p



)j

+

p

(

p

)j)
tp

)

≤
n+m–∐
j=m

{
ν ′

(
Df (jx, jx, –jx)

 · j+ ,
 · jptp
 · j+

)
♦ν ′

(
Df (–jx, –jx, jx)

 · j+ ,
 · jptp
 · (j+)

)

♦ν ′
(
–j–Df

(
x
j+

,
x
j+

,
–x
j+

)
,
 · j–tp
(j+)p

)
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♦ν ′
(
j–Df

(
–x
j+

,
–x
j+

,
x
j+

)
,
 · j–tp
(j+)p

)}

≤
n+m–∐
j=m

{
ν
(
jx, jt

)♦ν

(
x
j+

,
t

j+

)}
= ν(x, t),

where
∏

and
∐

are the same as in Case . Proceeding along a similar argument as in
Case , we see that {Jnf (x)} is a Cauchy sequence in (Y ,μ′,ν ′). Thus, we define T(x) :=
(μ′,ν ′)- limn→∞ Jnf (x) for all x ∈ X. Puttingm =  in the last two inequalities, we get

μ′(f (x) – Jnf (x), t)≥ μ(x, tp

(
∑n–

j= (

 (

p
 )j+ 

p (

p )

j))q
) and

ν ′(f (x) – Jnf (x), t)≤ ν(x, tp

(
∑n–

j= (

 (

p
 )j+ 

p (

p )

j))q
)

⎫⎬
⎭ (.)

for all x ∈ X and t > . To prove that t is a quadratic-additive function, it is enough to show
that the last term on the right-hand side of (.) and (.) tends to  and , respectively, as
n→ ∞. Using the definition of Jnf (x) and (.), we obtain

μ′
(
DJnf (x, y, z),

t


)

≥ μ′
(
Df (nx, ny, nz)

 · n ,
t


)
∗ μ′

(
Df (–nx, –ny, –nz)

 · n ,
t


)

∗ μ′
(
n–Df

(
x
n

,
y
n

,
z
n

)
,
t


)
∗ μ′

(
n–Df

(
–x
n

,
–y
n

,
–z
n

)
,
t


)

≥ μ
(
x, (q–)n–qtq

) ∗ μ
(
y, (q–)n–qtq

) ∗ μ
(
z, (q–)n–qtq

)
∗ μ

(
x, (–q)n–qtq

) ∗ μ
(
y, (–q)n–qtq

) ∗ μ
(
z, (–q)n–qtq

)
(.)

and

ν ′
(
DJnf (x, y, z),

t


)

≤ ν ′
(
Df (nx, ny, nz)

 · n ,
t


)
♦ν ′

(
Df (–nx, –ny, –nz)

 · n ,
t


)

♦ν ′
(
n–Df

(
x
n

,
y
n

,
z
n

)
,
t


)
♦ν ′

(
n–Df

(
–x
n

,
–y
n

,
–z
n

)
,
t


)

≤ ν
(
x, (q–)n–qtq

)♦ν
(
y, (q–)n–qtq

)♦ν
(
z, (q–)n–qtq

)
♦ν

(
x, (–q)n–qtq

)♦ν
(
y, (–q)n–qtq

)♦ν
(
z, (–q)n–qtq

)
(.)

for each x, y, z ∈ X, t >  and n ∈N. Since / < q <  and taking the limit as n→ ∞, we see
that (.) and (.) tend to  and , respectively. As in Case , we have DT(x, y, z) =  for
all x, y, z ∈ X. Using the same argument as in Case , we see that (.) follows from (.).
To prove the uniqueness of T , assume that T ′ is another quadratic-additive mapping from
X into Y satisfying (.). Using (.) and (.), we have

μ′(T(x) – T ′(x), t
)
= μ′(JnT(x) – JnT ′(x), t

)
≥ μ′

(
JnT(x) – Jnf (x),

t


)
∗ μ′

(
Jnf (x) – JnT ′(x),

t


)
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≥ μ′
(
(T – f )(nx)

 · n ,
t


)
∗ μ′

(
(f – T ′)(nx)

 · n ,
t


)

∗ μ′
(
(T – f )(–nx)

 · n ,
t


)
∗ μ′

(
(f – T ′)(–nx)

 · n ,
t


)

∗ μ′
(
n–

(
(T – f )

(
x
n

))
,
t


)
∗ μ′

(
n–

((
f – T ′)( x

n

))
,
t


)

∗ μ′
(
n–

(
(T – f )

(
–x
n

))
,
t


)
∗ μ′

(
n–

((
f – T ′)(–x

n

))
,
t


)

≥ sup
t′<t

μ

(
x, (q–)n–q

(
( – p)(p – )



)q

t′q
)

∗ sup
t′<t

μ

(
x, (–q)n–q

(
( – p)(p – )



)q

t′q
)

(.)

and

ν ′(T(x) – T ′(x), t
) ≤ ν ′

(
JnT(x) – Jnf (x),

t


)
♦ν ′

(
Jnf (x) – JnT ′(x),

t


)

≤ ν ′
(
(T – f )(nx)

 · n ,
t


)
♦ν ′

(
(f – T ′)(nx)

 · n ,
t


)

♦ν ′
(
(T – f )(–nx)

 · n ,
t


)
♦ν ′

(
(f – T ′)(–nx)

 · n ,
t


)

♦ν ′
(
n–

(
(T – f )

(
x
n

))
,
t


)
♦ν ′

(
n–

((
f – T ′)( x

n

))
,
t


)

♦ν ′
(
n–

(
(T – f )

(
–x
n

))
,
t


)
♦ν ′

(
n–

((
f – T ′)(–x

n

))
,
t


)

≤ sup
t′<t

μ

(
x, (q–)n–q

(
( – p)(p – )



)q

t′q
)

♦ sup
t′<t

μ

(
x, (–q)n–q

(
( – p)(p – )



)q

t′q
)

(.)

for all x ∈ X, t >  and n ∈ N. Letting n → ∞ in (.) and (.), and using the fact that
limn→∞ (q–)n–q = limn→∞ (–q)n–q = ∞ together with the definition of IFN-space, we
get μ′(T(x) – T ′(x), t) =  and ν ′(T(x) – T ′(x), t) =  for all x ∈ X and t > . Hence T(x) =
T ′(x) for all x ∈ X.
Case . Let  < q < 

 . Define a mapping Jnf : X → Y by

Jnf (x) =



(
n

(
f
(
–nx

)
+ f

(
––nx

))
+ n

(
f
(

x
n

)
– f

(
–
x
n

)))

for all x ∈ X. In this case, Jf (x) = f (x) and

Jjf (x) – Jj+f (x) = –
j



(
Df

(
–x
j+

,
–x
j+

,
x
j+

)
+Df

(
x
j+

,
x
j+

,
–x
j+

))

– j–
(
Df

(
x
j+

,
x
j+

,
–x
j+

)
–Df

(
–x
j+

,
–x
j+

,
x
j+

))
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for all x ∈ X and j ≥ . Thus, for each n +m >m≥ , we have

μ′
(
Jmf (x) – Jn+mf (x)

n+m–∑
j=m


p

(

p

)j

tp
)

≥
n+m–∏
j=m

{
μ′

(
–
(j + j)Df ( x

j+ ,
x

j+ ,
–x
j+ )


,
(j + j)tp

 · (j+)p
)

∗ μ′
(
–
(j – j)Df ( –x

j+ ,
–x
j+ ,

x
j+ )


,
(j – j)tp

 · (j+)p
)}

≥
n+m–∏
j=m

μ

(
x
j+

,
t

j+

)
= μ(x, t) and

ν ′
(
Jmf (x) – Jn+mf (x)

n+m–∑
j=m


p

(

p

)j

tp
)

≤
n+m–∐
j=m

{
ν ′

(
–
(j + j)Df ( x

j+ ,
x

j+ ,
–x
j+ )


,
(j + j)tp

 · (j+)p
)

♦ν ′
(
–
(j – j)Df ( –x

j+ ,
–x
j+ ,

x
j+ )


,
(j – j)tp

 · (j+)p
)}

≤
n+m–∐
j=m

ν

(
x
j+

,
t

j+

)
= ν(x, t)

for all x ∈ X and t > . Proceeding along a similar argument as in the previous cases,
we see that {Jnf (x)} is a Cauchy sequence in (Y ,μ′,ν ′). Thus, we define T(x) := (μ′,ν ′) –
limn→∞ Jnf (x) for all x ∈ X. Puttingm =  in the last two inequalities, we get

μ′(f (x) – Jnf (x), t)≥ μ(x, tq
(
∑n–

j=

p (


p )

j)q
) and

ν ′(f (x) – Jnf (x), t)≤ ν(x, tq
(
∑n–

j=

p (


p )

j)q
)

⎫⎪⎬
⎪⎭ (.)

for all x ∈ X and t > . Write

μ′
(
DJnf (x, y, z),

t


)

≥ μ′
(
n


Df

(
x
n

,
y
n

,
z
n

)
,
t


)

∗ μ′
(
n


Df

(
–x
n

,
–y
n

,
–z
n

)
,
t


)

∗ μ′
(
n–Df

(
x
n

,
y
n

,
z
n

)
,
t


)

∗ μ′
(
n–Df

(
–x
n

,
–y
n

,
–z
n

)
,
t


)

≥ μ
(
x, (–q)n–qtq

) ∗ μ
(
y, (–q)n–qtq

) ∗ μ
(
z, (–q)n–qtq

)
∗ μ

(
x, (–q)n–qtq

) ∗ μ
(
y, (–q)n–qtq

) ∗ μ
(
z, (–q)n–qtq

)
(.)
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and

ν ′
(
DJnf (x, y, z),

t


)

≤ ν ′
(
n


Df

(
x
n

,
y
n

,
z
n

)
,
t


)
♦ν ′

(
n


Df

(
–x
n

,
–y
n

,
–z
n

)
,
t


)

♦ν ′
(
n–Df

(
x
n

,
y
n

,
z
n

)
,
t


)
♦ν ′

(
n–Df

(
–x
n

,
–y
n

,
–z
n

)
,
t


)

≤ ν
(
x, (–q)n–qtq

)♦ν
(
y, (–q)n–qtq

)♦ν
(
z, (–q)n–qtq

)
♦ν

(
x, (–q)n–qtq

)♦ν
(
y, (–q)n–qtq

)♦ν
(
z, (–q)n–qtq

)
(.)

for all x, y, z ∈ X, t >  and n ∈ N. Since / < q <  and taking the limit as n → ∞, we
see that (.) and (.) tend to  and , respectively. As in the previous cases, we have
that DT(x, y, z) =  for all x, y, z ∈ X. By the same argument as in previous cases, we can
see that (.) follows from (.). To prove the uniqueness of T , assume that T ′ is another
quadratic-additive mapping from X into Y satisfying (.). From (.) and (.), for all
x ∈ X and t > , write

μ′(T(x) – T ′(x), t
)
= ν ′(JnT(x) – JnT ′(x), t

)
≥ μ′

(
JnT(x) – Jnf (x),

t


)
∗ μ′

(
Jnf (x) – JnT ′(x),

t


)

≥ μ′
(
n



(
(T – f )

(
x
n

))
,
t


)
∗ μ

(
n



((
f – T ′)( x

n

))
,
t


)

∗ μ′
(
n



(
(T – f )

(
–
x
n

))
,
t


)
∗ μ′

(
n



((
f – T ′)(– x

n

))
,
t


)

∗ μ′
(
n–

(
(T – f )

(
x
n

))
,
t


)
∗ μ′

(
n–

((
f – T ′)( x

n

))
,
t


)

∗ μ′
(
n–

(
(T – f )

(
–x
n

))
,
t


)
∗ μ′

(
n–

((
f – T ′)(–x

n

))
,
t


)

≥ sup
t′<t

μ

(
x, (–q)n–q

(
p – 


)q

tq
)

and, similarly,

ν ′(T(x) – T ′(x), t
) ≤ ν ′

(
n



(
(T – f )

(
x
n

))
,
t


)
♦ν

(
n



((
f – T ′)( x

n

))
,
t


)

♦ν ′
(
n



(
(T – f )

(
–
x
n

))
,
t


)
♦ν ′

(
n



((
f – T ′)(– x

n

))
,
t


)

♦ν ′
(
n–

(
(T – f )

(
x
n

))
,
t


)
♦ν ′

(
n–

((
f – T ′)( x

n

))
,
t


)

♦ν ′
(
n–

(
(T – f )

(
–x
n

))
,
t


)
♦ν ′

(
n–

((
f – T ′)(–x

n

))
,
t


)

≤ sup
t′<t

ν

(
x, (–q)n–q

(
p – 


)q

tq
)
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for n ∈ N. Letting n → ∞ in (.) and (.), and using the fact that limn→∞ (q–)n–q =
limn→∞ (–q)n–q = ∞ together with the definition of IFN-space, we get μ′(T(x) –
T ′(x), t) =  and ν ′(T(x) – T ′(x), t) =  for all x ∈ X and t > . Hence T(x) = T ′(x) for all
x ∈ X. �

Remark . Let (X,μ,ν) be an IFN-space and (X,μ,ν) be an intuitionistic fuzzy Banach
space (Y ,μ′,ν ′). Let f : X → Y be a mapping satisfying (.) with a real number q <  and
for all t > . If we choose a real number α with  < α < t, then

μ′(Df (x, y, z), t) ≥ μ′(Df (x, y, z), α) ≥ μ
(
x,αq) ∗ μ

(
y,αq) ∗ μ

(
z,αq) and

ν ′(Df (x, y, z), t) ≤ ν ′(Df (x, y, z), α) ≤ ν
(
x,αq)♦ν

(
y,αq)♦ν

(
z,αq)

for all x, y, z ∈ X, t >  and q < . Since q < , we have limα→+ αq = ∞. This implies that

lim
α→+

μ
(
x,αq) =  = lim

α→+
μ

(
y,αq) = lim

α→+
μ

(
z,αq) and

lim
α→+

ν
(
x,αq) =  = lim

α→+
ν
(
y,αq) = lim

α→+
ν
(
z,αq).

Thus, we haveμ′(Df (x, y, z), t) =  and ν ′(Df (x, y, z), t) =  for all x, y, z ∈ X and t > . Hence
Df (x, y, z) =  for all x, y, z ∈ X. In other words, if f is an intuitionistic fuzzy q-almost
quadratic-additive mapping for the case q < , then f is itself a quadratic-additive map-
ping.

Corollary . Suppose that f is an even mapping satisfying the conditions of Theorem ..
Then there exists a unique quadratic mapping T : X → Y such that

μ′(T(x) – f (x), t)≥ supt′<t μ(x, (
|–p|t′

 )q) and

ν ′(T(x) – f (x), t)≤ supt′<t ν(x, (
|–p|t′

 )q)

}
(.)

for all x ∈ X and t > , where p = /q.

Proof Since f is an even mapping, we get

Jnf (x) =

⎧⎨
⎩

f (nx)+f (–nx)
·n if q > 

 ,

 (

n(f (–nx) + f (––nx))) if  < q < 
 ,

for all x ∈ X, where Jnf is defined as in Theorem .. In this case, Jf (x) = f (x). For all x ∈ X
and j ∈N∪ {}, we have

Jjf (x) – Jj+f (x) =

⎧⎨
⎩

Df (jx,jx,–jx)
·j+ + Df (–jx,–jx,jx)

·j+ if q > 
 ,

–j
 (Df (

–x
j+ ,

–x
j+ ,

x
j+ ) +Df ( x

j+ ,
x

j+ ,
–x
j+ )) if  < q < 

 .

Proceeding along the same lines as in Theorem ., we obtain that T is a quadratic-
additive function satisfying (.). Notice that T(x) := (μ′,ν ′) – limn→∞ Jnf (x), T is even
and DT(x, y, z) =  for all x, y, z ∈ X. Hence, we get

T(x + y) + T(x – y) – T(x) – T(y) = –DT(x, y, –x) = 

for all x, y ∈ X. It follows that T is a quadratic mapping. �
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Corollary . Suppose that f is an even mapping satisfying the conditions of Theorem ..
Then there exists a unique additive mapping T : X → Y such that

μ′(T(x) – f (x), t)≥ supt′<t μ(x, (
|–p|t′

 )q) and

ν ′(T(x) – f (x), t)≤ supt′<t ν(x, (
|–p|t′

 )q)

}
(.)

for all x ∈ X and t > , where p = /q.

Proof Since f is an odd mapping, we get

Jnf (x) =

⎧⎨
⎩

f (nx)+f (–nx)
n+ if q > ,

n–(f (–nx) + f (––nx)) if  < q < ,

for all x ∈ X, where Jnf is defined as in Theorem .. Here Jf (x) = f (x). For all x ∈ X and
j ∈ N∪ {}, we have

Jjf (x) – Jj+f (x) =

⎧⎨
⎩

Df (jx,jx,–jx)
j+ – Df (–jx,–jx,jx)

j+ if q > ,

–j–(Df ( x
j+ ,

x
j+ ,

–x
j+ ) –Df ( –x

j+ ,
–x
j+ ,

x
j+ )) if  < q < .

Proceeding along the same lines as in Theorem., we obtain thatT is a quadratic-additive
function satisfying (.). Here T(x) := (μ′,ν ′)– limn→∞ Jnf (x), T is odd andDT(x, y, z) = 
for all x, y, z ∈ X. Hence, we obtain

T(x + y) – T(x) – T(y) =Df
(
x – y


,
x + y


,
–x + y



)
= 

for all x, y ∈ X. It follows that T is an additive mapping. �
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