On the Ulam stability of mixed type QA mappings in IFN-spaces

Abdulrahman S AI-Fhaid and Syed Abdul Mohiuddine*

"Correspondence: mohiuddine@gmail.com Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia

Abstract

We give Ulam-type stability results concerning the quadratic-additive functional equation in intuitionistic fuzzy normed spaces.

Keywords: t-norm; t-conorm; quadratic-additive functional equation; intuitionistic fuzzy normed space; Hyers-Ulam stability

1 Introduction

In 1940, Ulam [1] proposed the following stability problem: 'When is it true that a function which satisfies some functional equation approximately must be close to one satisfying the equation exactly?. Hyers [2] gave the first affirmative partial answer to the question of Ulam for Banach spaces. Aoki [3] presented a generalization of Hyers results by considering additive mappings, and later on Rassias [4] did for linear mappings by considering an unbounded Cauchy difference. The paper of Rassias has significantly influenced the development of what we now call the Hyers-Ulam-Rassias stability of functional equations. Various extensions, generalizations and applications of the stability problems have been given by several authors so far; see, for example, [5-24] and references therein.
The notion of intuitionistic fuzzy set introduced by Atanassov [25] has been used extensively in many areas of mathematics and sciences. Using the idea of intuitionistic fuzzy set, Saadati and Park [26] presented the notion of intuitionistic fuzzy normed space which is a generalization of the concept of a fuzzy metric space due to Bag and Samanta [27]. The authors of [28-34] defined and studied some summability problems in the setting of an intuitionistic fuzzy normed space.
In the recent past, several Hyers-Ulam stability results concerning the various functional equations were determined in [35-46], respectively, in the fuzzy and intuitionistic fuzzy normed spaces. Quite recently, Alotaibi and Mohiuddine [47] established the stability of a cubic functional equation in random 2-normed spaces, while the notion of random 2normed spaces was introduced by Goleț [48] and further studied in [49-51].

The Hyers-Ulam stability problems of quadratic-additive functional equation

$$
f(x+y+z)+f(x)+f(y)+f(z)=f(x+y)+f(y+z)+f(x+z)
$$

under the approximately even (or odd) condition were established by Jung [52] and the solution of the above functional equation where the range is a field of characteristic 0 was determined by Kannappan [53]. In this paper we determine the stability results concerning
the above functional equation in the setting of intuitionistic fuzzy normed spaces. This work indeed presents a relationship between two various disciplines: the theory of fuzzy spaces and the theory of functional equations.

2 Definitions and preliminaries

We shall assume throughout this paper that the symbol \mathbb{N} denotes the set of all natural numbers.

A binary operation $*:[0,1] \times[0,1] \rightarrow[0,1]$ is said to be a continuous t-norm if it satisfies the following conditions:
(a) $*$ is associative and commutative, (b) $*$ is continuous, (c) $a * 1=a$ for all $a \in[0,1]$, (d) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$ for each $a, b, c, d \in[0,1]$.

A binary operation $\diamond:[0,1] \times[0,1] \rightarrow[0,1]$ is said to be a continuous t-conorm if it satisfies the following conditions:
$\left(\mathrm{a}^{\prime}\right) \diamond$ is associative and commutative, $\left(\mathrm{b}^{\prime}\right) \diamond$ is continuous, $\left(\mathrm{c}^{\prime}\right) a \diamond 0=a$ for all $a \in[0,1]$, $\left(\mathrm{d}^{\prime}\right) a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d$ for each $a, b, c, d \in[0,1]$.
The five-tuple $(X, \mu, \nu, *, \diamond)$ is said to be intuitionistic fuzzy normed spaces (for short, IFN-spaces) [26] if X is a vector space, $*$ is a continuous t-norm, \diamond is a continuous t conorm, and μ, v are fuzzy sets on $X \times(0, \infty)$ satisfying the following conditions. For every $x, y \in X$ and $s, t>0$,
(i) $\mu(x, t)+v(x, t) \leq 1$,
(ii) $\mu(x, t)>0$,
(iii) $\mu(x, t)=1$ if and only if $x=0$,
(iv) $\mu(\alpha x, t)=\mu\left(x, \frac{t}{|\alpha|}\right)$ for each $\alpha \neq 0$,
(v) $\mu(x, t) * \mu(y, s) \leq \mu(x+y, t+s)$,
(vi) $\mu(x, \cdot):(0, \infty) \rightarrow[0,1]$ is continuous,
(vii) $\lim _{t \rightarrow \infty} \mu(x, t)=1$ and $\lim _{t \rightarrow 0} \mu(x, t)=0$,
(viii) $v(x, t)<1$,
(ix) $v(x, t)=0$ if and only if $x=0$,
(x) $\nu(\alpha x, t)=v\left(x, \frac{t}{|\alpha|}\right)$ for each $\alpha \neq 0$,
(xi) $v(x, t) \diamond v(y, s) \geq v(x+y, t+s)$,
(xii) $v(x, \cdot):(0, \infty) \rightarrow[0,1]$ is continuous,
(xiii) $\lim _{t \rightarrow \infty} \nu(x, t)=0$ and $\lim _{t \rightarrow 0} v(x, t)=1$.

In this case (μ, v) is called an intuitionistic fuzzy norm. For simplicity in notation, we denote the intuitionistic fuzzy normed spaces by (X, μ, ν) instead of $(X, \mu, \nu, *, \diamond)$. For example, let $(X,\|\cdot\|)$ be a normed space, and let $a * b=a b$ and $a \diamond b=\min \{a+b, 1\}$ for all $a, b \in[0,1]$. For all $x \in X$ and every $t>0$, consider

$$
\mu(x, t):=\frac{t}{t+\|x\|} \quad \text { and } \quad v(x, t):=\frac{\|x\|}{t+\|x\|} .
$$

Then (X, μ, v) is an intuitionistic fuzzy normed space.
The notions of convergence and Cauchy sequence in the setting of IFN-spaces were introduced by Saadati and Park [26] and further studied by Mursaleen and Mohiuddine [30].

Let (X, μ, ν) be an intuitionistic fuzzy normed space. Then the sequence $x=\left(x_{k}\right)$ is said to be:
(i) Convergent to $L \in X$ with respect to the intuitionistic fuzzy norm (μ, v) if, for every $\epsilon>0$ and $t>0$, there exists $k_{0} \in \mathbb{N}$ such that $\mu\left(x_{k}-L, t\right)>1-\epsilon$ and $\nu\left(x_{k}-L, t\right)<\epsilon$ for all $k \geq k_{0}$. In this case, we write $(\mu, \nu)-\lim x_{k}=L$ or $x_{k} \xrightarrow{(\mu, \nu)} L$ as $k \rightarrow \infty$.
(ii) Cauchy sequence with respect to the intuitionistic fuzzy norm (μ, ν) if, for every $\epsilon>0$ and $t>0$, there exists $k_{0} \in \mathbb{N}$ such that $\mu\left(x_{k}-x_{\ell}, t\right)>1-\epsilon$ and $v\left(x_{k}-x_{\ell}, t\right)<\epsilon$ for all $k, \ell \geq k_{0}$. An IFN-space (X, μ, ν) is said to be complete if every Cauchy sequence in (X, μ, ν) is convergent in the IFN-space. In this case, (X, μ, v) is called an intuitionistic fuzzy Banach space.

3 Stability of a quadratic-additive functional equation in the IFN-space

We shall assume the following abbreviation throughout this paper:

$$
D f(x, y, z)=f(x+y+z)-f(x+y)-f(y+z)-f(x+z)+f(x)+f(y)+f(z) .
$$

Theorem 3.1 Let X be a linear space and (X, μ, ν) be an IFN-space. Suppose that f is an intuitionistic fuzzy q-almost quadratic-additive mappingfrom (X, μ, ν) to an intuitionistic fuzzy Banach space ($Y, \mu^{\prime}, \nu^{\prime}$) such that

$$
\left.\begin{array}{ll}
\mu^{\prime}(D f(x, y, z), s+t+u) \geq \mu\left(x, s^{q}\right) * \mu\left(y, t^{q}\right) * \mu\left(z, u^{q}\right) & \text { and } \tag{3.1}\\
v^{\prime}(D f(x, y, z), s+t+u) \leq v\left(x, s^{q}\right) \diamond v\left(y, t^{q}\right) \diamond v\left(z, u^{q}\right)
\end{array}\right\}
$$

for all $x, y, z \in X$ and $s, t, u>0$, where q is a positive real number with $q \neq \frac{1}{2}, 1$. Then there exists a unique quadratic-additive mapping $T: X \rightarrow Y$ such that

$$
\mu^{\prime}(T(x)-f(x), t) \geq \begin{cases}\sup _{t^{\prime}<t} \mu\left(x,\left(\frac{2-2^{p}}{3}\right)^{q} t^{\prime q}\right) & \text { if } q>1, \tag{3.2}\\ \sup _{t^{\prime}<t} \mu\left(x,\left(\frac{\left(4-2^{p}\right)\left(2-2^{p}\right)}{6}\right)^{q} t^{\prime q}\right) & \text { if } \frac{1}{2}<q<1, \\ \sup _{t^{\prime}<t} \mu\left(x,\left(\frac{2^{p}-4}{3}\right)^{q} t^{\prime q}\right) & \text { if } 0<q<\frac{1}{2}\end{cases}
$$

and

$$
\nu^{\prime}(T(x)-f(x), t) \leq \begin{cases}\sup _{t^{\prime}<t} v\left(x,\left(\frac{2-2^{p}}{3}\right)^{q} t^{\prime q}\right) & \text { if } q>1, \\ \sup _{t^{\prime}<t} v\left(x,\left(\frac{\left(4-2^{p}\right)\left(2-2^{p}\right)}{6}\right)^{q} t^{\prime q}\right) & \text { if } \frac{1}{2}<q<1, \\ \sup _{t^{\prime}<t} v\left(x,\left(\frac{2^{p}-4}{3}\right)^{q} t^{\prime q}\right) & \text { if } 0<q<\frac{1}{2},\end{cases}
$$

for all $x \in X$ and all $t>0$ with $t^{\prime} \in(0, t)$, where $p=1 / q$.

Proof Putting $x=0=y=z$ in (3.1), it follows that

$$
\mu^{\prime}(f(0), t) \geq \mu\left(0,(t / 3)^{q}\right) * \mu\left(0,(t / 3)^{q}\right) * \mu\left(0,(t / 3)^{q}\right)=1
$$

and

$$
v^{\prime}(f(0), t) \leq v\left(0,(t / 3)^{q}\right) \diamond v\left(0,(t / 3)^{q}\right) \diamond v\left(0,(t / 3)^{q}\right)=0
$$

for all $t>0$. Using the definition of IFN-space, we have $f(0)=0$. Now we are ready to prove our theorem for three cases. We consider the cases as $q>1, \frac{1}{2}<q<1$ and $0<q<\frac{1}{2}$.

Case 1 . Let $q>1$. Consider a mapping $J_{n} f: X \rightarrow Y$ to be such that

$$
J_{n} f(x)=\frac{1}{2}\left(4^{-n}\left(f\left(2^{n} x\right)+f\left(-2^{n} x\right)\right)+2^{-n}\left(f\left(2^{n} x\right)-f\left(-2^{n} x\right)\right)\right)
$$

for all $x \in X$. Notice that $J_{0} f(x)=f(x)$ and

$$
\begin{align*}
J_{j} f(x)-J_{j+1} f(x)= & \frac{D f\left(2^{j} x, 2^{j} x,-2^{j} x\right)}{2 \cdot 4^{j+1}}+\frac{D f\left(-2^{j} x,-2^{j} x, 2^{j} x\right)}{2 \cdot 4^{j+1}} \\
& +\frac{D f\left(2^{j} x, 2^{j} x,-2^{j} x\right)}{2^{j+2}}-\frac{D f\left(-2^{j} x,-2^{j} x, 2^{j} x\right)}{2^{j+2}} \tag{3.3}
\end{align*}
$$

for all $x \in X$ and $j \geq 0$. Using the definition of IFN-space and (3.1), this equation implies that if $n+m>m \geq 0$, then

$$
\begin{align*}
& \mu^{\prime}\left(J_{m} f(x)-J_{n+m} f(x), \sum_{j=m}^{n+m-1} \frac{3}{2}\left(\frac{2^{p}}{2}\right)^{j} t^{p}\right) \\
& \quad=\mu^{\prime}\left(\sum_{j=m}^{n+m-1}\left(J_{j} f(x)-J_{j+1} f(x)\right), \sum_{j=m}^{n+m-1} \frac{3 \cdot 2^{j p}}{2^{j+1}} t^{p}\right) \\
& \quad \geq \prod_{j=m}^{n+m-1} \mu^{\prime}\left(J_{j}\left(f(x)-J_{j+1} f(x)\right), \frac{3 \cdot 2^{j p}}{2^{j+1}}\right) \\
& \geq \prod_{j=m}^{n+m-1}\left\{\mu^{\prime}\left(\frac{\left(2^{j+1}+1\right) D f\left(2^{j} x, 2^{j} x,-2^{j} x\right)}{2 \cdot 4^{j+1}}, \frac{3\left(2^{j+1}+1\right) 2^{j p} t^{p}}{2 \cdot 4^{j+1}}\right)\right. \\
& \left.\quad * \mu^{\prime}\left(\frac{1-\left(2^{j+1}\right) D f\left(-2^{j} x,-2^{j} x, 2^{j} x\right)}{2 \cdot 4^{j+1}}, \frac{3\left(2^{j+1}-1\right) 2^{j p} t^{p}}{2 \cdot 4^{j+1}}\right)\right\} \\
& \geq \prod_{j=m}^{n+m-1} \mu\left(2^{j} x, 2^{j} t\right)=\mu(x, t) \tag{3.4}
\end{align*}
$$

and

$$
\begin{align*}
& v^{\prime}\left(J_{m} f(x)-J_{n+m} f(x), \sum_{j=m}^{n+m-1} \frac{3}{2}\left(\frac{2^{p}}{2}\right)^{j} t^{p}\right) \\
&=v^{\prime}\left(\sum_{j=m}^{n+m-1}\left(J_{j} f(x)-J_{j+1} f(x)\right), \sum_{j=m}^{n+m-1} \frac{3 \cdot 2^{j p}}{2^{j+1}} t^{p}\right) \\
& \leq \coprod_{j=m}^{n+m-1} v^{\prime}\left(J_{j}\left(f(x)-J_{j+1} f(x)\right), \frac{3 \cdot 2^{j p}}{2^{j+1}}\right) \\
& \leq \coprod_{j=m}^{n+m-1}\left\{v^{\prime}\left(\frac{\left(2^{j+1}+1\right) D f\left(2^{j} x, 2^{j} x,-2^{j} x\right)}{2 \cdot 4^{j+1}}, \frac{3\left(2^{j+1}+1\right) 2^{j p} t^{p}}{2 \cdot 4^{j+1}}\right)\right. \\
&\left.\quad \diamond v^{\prime}\left(\frac{1-\left(2^{j+1}\right) D f\left(-2^{j} x,-2^{j} x, 2^{j} x\right)}{2 \cdot 4^{j+1}}, \frac{3\left(2^{j+1}-1\right) 2^{j p} t^{p}}{2 \cdot 4^{j+1}}\right)\right\} \\
& \leq \coprod_{j=m}^{n+m-1} v\left(2^{j} x, 2^{j} t\right)=v(x, t) \tag{3.5}
\end{align*}
$$

for all $x \in X$ and $t>0$, where $\prod_{j=1}^{n} a_{j}=a_{1} * a_{2} * \cdots * a_{n}, \coprod_{j=1}^{n} a_{j}=a_{1} \diamond a_{2} \diamond \cdots \diamond a_{n}$. Let $\epsilon>0$ and $\delta>0$ be given. Since $\lim _{t \rightarrow \infty} \mu(x, t)=1$ and $\lim _{t \rightarrow \infty} \nu(x, t)=0$, there exists $t_{0}>0$ such that $\mu\left(x, t_{0}\right) \geq 1-\epsilon$ and $\nu\left(x, t_{0}\right) \leq \epsilon$ for all $x \in X$. We observe that for some $\tilde{t}>t_{0}$, the series $\sum_{j=0}^{\infty} \frac{3 \cdot j^{p} p}{j^{j+1}} \tilde{t}^{p}$ converges for $p=\frac{1}{q}<1$, there exists some $n_{0} \geq 0$ such that $\sum_{j=m}^{n+m-1} \frac{3 \cdot 2^{j p}}{j^{j+1}} \tilde{t}^{p}<\delta$ for each $m \geq n_{0}$ and $n>0$. Using (3.4) and (3.5), we have

$$
\begin{aligned}
\mu^{\prime}\left(J_{m} f(x)-J_{n+m} f(x), \delta\right) & \geq \mu^{\prime}\left(J_{m} f(x)-J_{n+m} f(x), \sum_{j=m}^{n+m-1} \frac{3 \cdot 2^{j p}}{2^{j+1}} \tilde{t}^{p}\right) \\
& \geq \mu(x, \tilde{t}) \geq \mu\left(x, t_{0}\right) \geq 1-\epsilon
\end{aligned}
$$

and

$$
v^{\prime}\left(J_{m} f(x)-J_{n+m} f(x), \delta\right) \leq v^{\prime}\left(J_{m} f(x)-J_{n+m} f(x), \sum_{j=m}^{n+m-1} \frac{3 \cdot 2^{j p}}{2^{j+1}} \tilde{t}^{p}\right) \leq v(x, \tilde{t}) \leq v\left(x, t_{0}\right) \leq \epsilon
$$

for all $x \in X$ and $\delta>0$. Hence $\left\{J_{n} f(x)\right\}$ is a Cauchy sequence in the fuzzy Banach space $\left(Y, \mu^{\prime}, \nu^{\prime}\right)$. Thus, we define a mapping $T: X \rightarrow Y$ such that $T(x):=\left(\mu^{\prime}, \nu^{\prime}\right)-\lim _{n \rightarrow \infty} J_{n} f(x)$ for all $x \in X$. Moreover, if we put $m=0$ in (3.4) and (3.5), we get

$$
\left.\begin{array}{ll}
\mu^{\prime}\left(f(x)-J_{n} f(x), t\right) \geq \mu\left(x, \frac{t^{q}}{\left(\sum_{j=1}^{n-1} \frac{3 \cdot j p}{j+1}\right)^{q}}\right) & \text { and } \tag{3.6}\\
\nu^{\prime}\left(f(x)-J_{n} f(x), t\right) \leq \nu\left(x, \frac{t^{q}}{\left(\sum_{j=0}^{n-1} \frac{3 \cdot j^{j p}}{j^{j+1}}\right)^{q}}\right)
\end{array}\right\}
$$

for all $x \in X$ and $t>0$. Now we have to show that T is quadratic additive. Let $x, y, z \in X$. Then

$$
\begin{align*}
\mu^{\prime}(D T(x, y, z), t) \geq & \mu^{\prime}\left(\left(T-J_{n} f\right)(x+y+z), \frac{t}{28}\right) * \mu^{\prime}\left(\left(T-J_{n} f\right)(x), \frac{t}{28}\right) \\
& * \mu^{\prime}\left(\left(T-J_{n} f\right)(y), \frac{t}{28}\right) * \mu^{\prime}\left(\left(T-J_{n} f\right)(z), \frac{t}{28}\right) \\
& * \mu^{\prime}\left(\left(J_{n} f-T\right)(x+y), \frac{t}{28}\right) * \mu^{\prime}\left(\left(J_{n} f-T\right)(x+z), \frac{t}{28}\right) \\
& * \mu^{\prime}\left(\left(J_{n} f-T\right)(y+z), \frac{t}{28}\right) * \mu^{\prime}\left(D J_{n} f(x, y, z), \frac{3 t}{4}\right) \tag{3.7}
\end{align*}
$$

and

$$
\begin{align*}
v^{\prime}(D T(x, y, z), t) \leq & v^{\prime}\left(\left(T-J_{n} f\right)(x+y+z), \frac{t}{28}\right) \diamond v^{\prime}\left(\left(T-J_{n} f\right)(x), \frac{t}{28}\right) \\
& \diamond \nu^{\prime}\left(\left(T-J_{n} f\right)(y), \frac{t}{28}\right) \diamond v^{\prime}\left(\left(T-J_{n} f\right)(z), \frac{t}{28}\right) \\
& \diamond v^{\prime}\left(\left(J_{n} f-T\right)(x+y), \frac{t}{28}\right) \diamond v^{\prime}\left(\left(J_{n} f-T\right)(x+z), \frac{t}{28}\right) \\
& \diamond v^{\prime}\left(\left(J_{n} f-T\right)(y+z), \frac{t}{28}\right) \diamond v^{\prime}\left(D J_{n} f(x, y, z), \frac{3 t}{4}\right) \tag{3.8}
\end{align*}
$$

for all $t>0$ and $n \in \mathbb{N}$. Taking the limit as $n \rightarrow \infty$ in the inequalities (3.7) and (3.8), we can see that first seven terms on the right-hand side of (3.7) and (3.8) tend to 1 and 0 , respectively, by using the definition of T. It is left to find the value of the last term on the right-hand side of (3.7) and (3.8). By using the definition of $J_{n} f(x)$, write

$$
\begin{align*}
& \mu^{\prime}\left(D J_{n} f(x, y, z), \frac{3 t}{4}\right) \\
& \quad \geq \mu^{\prime}\left(\frac{D f\left(2^{n} x, 2^{n} y, 2^{n} z\right)}{2 \cdot 4^{n}}, \frac{3 t}{16}\right) * \mu^{\prime}\left(\frac{D f\left(-2^{n} x,-2^{n} y,-2^{n} z\right)}{2 \cdot 4^{n}}, \frac{3 t}{16}\right) \\
& \quad * \mu^{\prime}\left(\frac{D f\left(2^{n} x, 2^{n} y, 2^{n} z\right)}{2 \cdot 2^{n}}, \frac{3 t}{16}\right) * \mu^{\prime}\left(\frac{D f\left(-2^{n} x,-2^{n} y,-2^{n} z\right)}{2 \cdot 2^{n}}, \frac{3 t}{16}\right) \tag{3.9}
\end{align*}
$$

and, similarly,

$$
\begin{align*}
& \nu^{\prime}\left(D J_{n} f(x, y, z), \frac{3 t}{4}\right) \\
& \quad \leq v^{\prime}\left(\frac{D f\left(2^{n} x, 2^{n} y, 2^{n} z\right)}{2 \cdot 4^{n}}, \frac{3 t}{16}\right) \diamond v^{\prime}\left(\frac{D f\left(-2^{n} x,-2^{n} y,-2^{n} z\right)}{2 \cdot 4^{n}}, \frac{3 t}{16}\right) \\
& \quad \diamond v^{\prime}\left(\frac{D f\left(2^{n} x, 2^{n} y, 2^{n} z\right)}{2 \cdot 2^{n}}, \frac{3 t}{16}\right) \diamond v^{\prime}\left(\frac{D f\left(-2^{n} x,-2^{n} y,-2^{n} z\right)}{2 \cdot 2^{n}}, \frac{3 t}{16}\right) \tag{3.10}
\end{align*}
$$

for all $x, y, z \in X, t>0$ and $n \in \mathbb{N}$. Also, from (3.1), we have

$$
\begin{align*}
& \mu^{\prime}\left(\frac{D f\left(\pm 2^{n} x, \pm 2^{n} y, \pm 2^{n} z\right)}{2 \cdot 4^{n}}, \frac{3 t}{16}\right) \\
& \quad=\mu^{\prime}\left(D f\left(\pm 2^{n} x, \pm 2^{n} y, \pm 2^{n} z\right), \frac{3 \cdot 4^{n} t}{8}\right) \\
& \quad \geq \mu\left(2^{n} x,\left(\frac{4^{n} t}{8}\right)^{q}\right) * \mu\left(2^{n} y,\left(\frac{4^{n} t}{8}\right)^{q}\right) * \mu\left(2^{n} z,\left(\frac{4^{n} t}{8}\right)^{q}\right) \\
& \quad \geq \mu\left(x, 2^{(2 q-1) n-3 q} t^{q}\right) * \mu\left(y, 2^{(2 q-1) n-3 q} t^{q}\right) * \mu\left(z, 2^{(2 q-1) n-3 q} t^{q}\right) \tag{3.11}
\end{align*}
$$

and

$$
\begin{align*}
& \mu^{\prime}\left(\frac{D f\left(\pm 2^{n} x, \pm 2^{n} y, \pm 2^{n} z\right)}{2 \cdot 2^{n}}, \frac{3 t}{16}\right) \\
& \quad \geq \mu\left(x, 2^{(2 q-1) n-3 q} t^{q}\right) * \mu\left(y, 2^{(2 q-1) n-3 q} t^{q}\right) * \mu\left(z, 2^{(2 q-1) n-3 q} t^{q}\right) \tag{3.12}
\end{align*}
$$

for all $x, y, z \in X, t>0$ and $n \in \mathbb{N}$. Since $q>1$, therefore (3.9) tends to 1 as $n \rightarrow \infty$ with the help of (3.11) and (3.12). Similarly, by proceeding along the same lines as in (3.11) and (3.12), we can show that (3.10) tends to 0 as $n \rightarrow \infty$. Thus, inequalities (3.7) and (3.8) become

$$
\mu^{\prime}(D T(x, y, z), t)=1 \quad \text { and } \quad v^{\prime}(D T(x, y, z), t)=0
$$

for all $x, y, z \in X$ and $t>0$. Accordingly, $D T(x, y, z)=0$ for all $x, y, z \in X$. Now we approximate the difference between f and T in a fuzzy sense. Choose $\epsilon \in(0,1)$ and $0<t^{\prime}<t$. Since
T is the intuitionistic fuzzy limit of $\left\{J_{n} f(x)\right\}$ such that

$$
\mu^{\prime}\left(T(x)-J_{n} f(x), t-t^{\prime}\right) \geq 1-\epsilon \quad \text { and } \quad v^{\prime}\left(T(x)-J_{n} f(x), t-t^{\prime}\right) \leq \epsilon
$$

for all $x \in X, t>0$ and $n \in \mathbb{N}$. From (3.6), we have

$$
\begin{aligned}
\mu^{\prime}(T(x)-f(x), t) & \geq \mu^{\prime}\left(T(x)-J_{n} f(x), t-t^{\prime}\right) * \mu^{\prime}\left(J_{n} f(x)-f(x), t^{\prime}\right) \\
& \geq(1-\epsilon) * \mu\left(x, \frac{t^{\prime q}}{\left(\sum_{j=0}^{n-1} \frac{3 \cdot 2^{j p}}{2^{j+1}}\right)^{q}}\right) \geq(1-\epsilon) * \mu\left(x,\left(\frac{\left(2-2^{p}\right) t^{\prime}}{3}\right)^{q}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
v^{\prime}(T(x)-f(x), t) & \leq v^{\prime}\left(T(x)-J_{n} f(x), t-t^{\prime}\right) \diamond v^{\prime}\left(J_{n} f(x)-f(x), t^{\prime}\right) \\
& \leq(1-\epsilon) \diamond v\left(x,\left(\frac{\left(2-2^{p}\right) t^{\prime}}{3}\right)^{q}\right) .
\end{aligned}
$$

Since $\epsilon \in(0,1)$ is arbitrary, we get the inequality (3.2) in this case.
To prove the uniqueness of T, assume that T^{\prime} is another quadratic-additive mapping from X into Y, which satisfies the required inequality, i.e., (3.2). Then, by (3.3), for all $x \in X$ and $n \in \mathbb{N}$,

$$
\left.\begin{array}{l}
T(x)-J_{n} T(x)=\sum_{j=0}^{n-1}\left(J_{j} T(x)-J_{j+1} T(x)\right)=0 \\
T^{\prime}(x)-J_{n} T^{\prime}(x)=\sum_{j=0}^{n-1}\left(J_{j} T^{\prime}(x)-J_{j+1} T^{\prime}(x)\right)=0 . \tag{3.13}
\end{array}\right\}
$$

Therefore

$$
\begin{aligned}
\mu^{\prime}\left(T(x)-T^{\prime}(x), t\right)= & \mu^{\prime}\left(J_{n} T(x)-J_{n} T^{\prime}(x), t\right) \\
\geq & \mu^{\prime}\left(J_{n} T(x)-J_{n} f(x), \frac{t}{2}\right) * \mu^{\prime}\left(J_{n} f(x)-J_{n} T^{\prime}(x), \frac{t}{2}\right) \\
\geq & \mu^{\prime}\left(\frac{(T-f)\left(2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right) * \mu^{\prime}\left(\frac{\left(f-T^{\prime}\right)\left(2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right) \\
& * \mu^{\prime}\left(\frac{(T-f)\left(-2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right) * \mu^{\prime}\left(\frac{\left(f-T^{\prime}\right)\left(-2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right) \\
& * \mu^{\prime}\left(\frac{(T-f)\left(2^{n} x\right)}{2 \cdot 2^{n}}, \frac{t}{8}\right) * \mu^{\prime}\left(\frac{\left(f-T^{\prime}\right)\left(2^{n} x\right)}{2 \cdot 2^{n}}, \frac{t}{8}\right) \\
& * \mu^{\prime}\left(\frac{(T-f)\left(-2^{n} x\right)}{2 \cdot 2^{n}}, \frac{t}{8}\right) * \mu^{\prime}\left(\frac{\left(f-T^{\prime}\right)\left(-2^{n} x\right)}{2 \cdot 2^{n}}, \frac{t}{8}\right) \\
\geq & \sup _{t^{\prime}<t} \mu\left(x, 2^{(q-1) n-2 q}\left(\frac{2-2^{p}}{3}\right)^{q} t^{\prime q}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
v^{\prime}\left(T(x)-T^{\prime}(x), t\right) & =v^{\prime}\left(J_{n} T(x)-J_{n} T^{\prime}(x), t\right) \\
& \leq v^{\prime}\left(J_{n} T(x)-J_{n} f(x), \frac{t}{2}\right) \diamond v^{\prime}\left(J_{n} f(x)-J_{n} T^{\prime}(x), \frac{t}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & v^{\prime}\left(\frac{(T-f)\left(2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right) \diamond v^{\prime}\left(\frac{\left(f-T^{\prime}\right)\left(2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right) \\
& \diamond v^{\prime}\left(\frac{(T-f)\left(-2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right) \diamond v^{\prime}\left(\frac{\left(f-T^{\prime}\right)\left(-2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right) \\
& \diamond v^{\prime}\left(\frac{(T-f)\left(2^{n} x\right)}{2 \cdot 2^{n}}, \frac{t}{8}\right) \diamond v^{\prime}\left(\frac{\left(f-T^{\prime}\right)\left(2^{n} x\right)}{2 \cdot 2^{n}}, \frac{t}{8}\right) \\
& \diamond v^{\prime}\left(\frac{(T-f)\left(-2^{n} x\right)}{2 \cdot 2^{n}}, \frac{t}{8}\right) \diamond v^{\prime}\left(\frac{\left(f-T^{\prime}\right)\left(-2^{n} x\right)}{2 \cdot 2^{n}}, \frac{t}{8}\right) \\
\leq & \sup _{t^{\prime}<t} v\left(x, 2^{(q-1) n-2 q}\left(\frac{2-2^{p}}{3}\right)^{q} t^{\prime q}\right)
\end{aligned}
$$

for all $x \in X, t>0$ and $n \in \mathbb{N}$. Since $q=1 / p>1$ and taking limit as $n \rightarrow \infty$ in the last two inequalities, we get $\mu^{\prime}\left(T(x)-T^{\prime}(x), t\right)=1$ and $\nu^{\prime}\left(T(x)-T^{\prime}(x), t\right)=0$ for all $x \in X$ and $t>0$. Hence $T(x)=T^{\prime}(x)$ for all $x \in X$.

Case 2. Let $\frac{1}{2}<q<1$. Consider a mapping $J_{n} f: X \rightarrow Y$ to be such that

$$
J_{n} f(x)=\frac{1}{2}\left(4^{-n}\left(f\left(2^{n} x\right)+f\left(-2^{n} x\right)\right)+2^{n}\left(f\left(\frac{x}{2^{n}}\right)-f\left(-\frac{x}{2^{n}}\right)\right)\right)
$$

for all $x \in X$. Then $J_{0} f(x)=f(x)$ and

$$
\begin{aligned}
J_{j} f(x)-J_{j+1} f(x)= & \frac{D f\left(-2^{j} x,-2^{j} x, 2^{j} x\right)}{2 \cdot 4^{j+1}}+\frac{D f\left(2^{j} x, 2^{j} x,-2^{j} x\right)}{2 \cdot 4^{j+1}} \\
& -2^{j-1}\left(D f\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, \frac{-x}{2^{j+1}}\right)-D f\left(\frac{-x}{2^{j+1}}, \frac{-x}{2^{j+1}}, \frac{x}{2^{j+1}}\right)\right)
\end{aligned}
$$

for all $x \in X$ and $j \geq 0$. Thus, for each $n+m>m \geq 0$, we have

$$
\begin{aligned}
& \mu^{\prime}(\left.J_{m} f(x)-J_{n+m} f(x), \sum_{j=m}^{n+m-1}\left(\frac{3}{4}\left(\frac{2^{p}}{4}\right)^{j}+\frac{3}{2^{p}}\left(\frac{2}{2^{p}}\right)^{j}\right) t^{p}\right) \\
& \geq \prod_{j=m}^{n+m-1}\left\{\mu^{\prime}\left(\frac{D f\left(2^{j} x, 2^{j} x,-2^{j} x\right)}{2 \cdot 4^{j+1}}, \frac{3 \cdot 2^{j p} t^{p}}{2 \cdot 4^{j+1}}\right) * \mu^{\prime}\left(\frac{D f\left(-2^{j} x,-2^{j} x, 2^{j} x\right)}{2 \cdot 4^{j+1}}, \frac{3 \cdot 2^{j p} t^{p}}{2 \cdot 4^{(j+1)}}\right)\right. \\
& * \mu^{\prime}\left(-2^{j-1} D f\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, \frac{-x}{2^{j+1}}\right), \frac{3 \cdot 2^{j-1} t^{p}}{2^{j+1)^{p}}}\right) \\
&\left.* \mu^{\prime}\left(2^{j-1} D f\left(\frac{-x}{2^{j+1}}, \frac{-x}{2^{j+1}}, \frac{x}{2^{j+1}}\right), \frac{3 \cdot 2^{j-1} t^{p}}{2^{(j+1)^{p}}}\right)\right\} \\
& \geq \prod_{j=m}^{n+m-1}\left\{\mu\left(2^{j} x, 2^{j} t\right) * \mu\left(\frac{x}{2^{j+1}}, \frac{t}{2^{j+1}}\right)\right\}=\mu(x, t) \quad \text { and } \\
& v^{\prime}\left(J_{m} f(x)-J_{n+m} f(x), \sum_{j=m}^{n+m-1}\left(\frac{3}{4}\left(\frac{2^{p}}{4}\right)^{j}+\frac{3}{2^{p}}\left(\frac{2}{2^{p}}\right)^{j}\right) t^{p}\right) \\
& \leq \coprod_{j=m}^{n+m-1}\left\{v^{\prime}\left(\frac{D f\left(2^{j} x, 2^{j} x,-2^{j} x\right)}{2 \cdot 4^{j+1}}, \frac{3 \cdot 2^{j p} t^{p}}{2 \cdot 4^{j+1}}\right) \diamond v^{\prime}\left(\frac{D f\left(-2^{j} x,-2^{j} x, 2^{j} x\right)}{2 \cdot 4^{j+1}}, \frac{3 \cdot 2^{j p} t^{p}}{2 \cdot 4^{(j+1)}}\right)\right. \\
& \diamond v^{\prime}\left(-2^{j-1} D f\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, \frac{-x}{2^{j+1}}\right), \frac{3^{2} \cdot 2^{j-1} t^{p}}{2^{(j+1)^{p}}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\diamond v^{\prime}\left(2^{j-1} D f\left(\frac{-x}{2^{j+1}}, \frac{-x}{2^{j+1}}, \frac{x}{2^{j+1}}\right), \frac{3 \cdot 2^{j-1} t^{p}}{2^{(j+1)^{p}}}\right)\right\} \\
\leq & \coprod_{j=m}^{n+m-1}\left\{v\left(2^{j} x, 2^{j} t\right) \diamond v\left(\frac{x}{2^{j+1}}, \frac{t}{2^{j+1}}\right)\right\}=v(x, t),
\end{aligned}
$$

where Π and \amalg are the same as in Case 1. Proceeding along a similar argument as in Case 1 , we see that $\left\{J_{n} f(x)\right\}$ is a Cauchy sequence in $\left(Y, \mu^{\prime}, \nu^{\prime}\right)$. Thus, we define $T(x):=$ $\left(\mu^{\prime}, v^{\prime}\right)-\lim _{n \rightarrow \infty} J_{n} f(x)$ for all $x \in X$. Putting $m=0$ in the last two inequalities, we get

$$
\left.\begin{array}{ll}
\mu^{\prime}\left(f(x)-J_{n} f(x), t\right) \geq \mu\left(x, \frac{t^{p}}{\left(\sum_{j=0}^{n-1}\left(\frac{3}{4}\left(\frac{2^{p}}{4}\right)^{j}+\frac{3}{2^{p}}\left(\frac{2}{2^{p}} j^{j}\right)\right)^{q}\right.}\right) & \text { and } \tag{3.14}\\
\nu^{\prime}\left(f(x)-J_{n} f(x), t\right) \leq \nu\left(x, \frac{t^{p}}{\left(\sum_{j=0}^{n-1}\left(\frac{3}{4}\left(\frac{2 p}{4}\right)^{j}+\frac{3}{2^{p}}\left(\frac{2}{2 p}\right)^{j}\right)^{q}\right.}\right) & \}, ~\} ~, ~
\end{array}\right\}
$$

for all $x \in X$ and $t>0$. To prove that t is a quadratic-additive function, it is enough to show that the last term on the right-hand side of (3.7) and (3.8) tends to 1 and 0 , respectively, as $n \rightarrow \infty$. Using the definition of $J_{n} f(x)$ and (3.1), we obtain

$$
\begin{align*}
& \mu^{\prime}\left(D J_{n} f(x, y, z), \frac{3 t}{4}\right) \\
& \quad \geq \mu^{\prime}\left(\frac{D f\left(2^{n} x, 2^{n} y, 2^{n} z\right)}{2 \cdot 4^{n}}, \frac{3 t}{16}\right) * \mu^{\prime}\left(\frac{D f\left(-2^{n} x,-2^{n} y,-2^{n} z\right)}{2 \cdot 4^{n}}, \frac{3 t}{16}\right) \\
& \quad * \mu^{\prime}\left(2^{n-1} D f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right), \frac{3 t}{16}\right) * \mu^{\prime}\left(2^{n-1} D f\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}, \frac{-z}{2^{n}}\right), \frac{3 t}{16}\right) \\
& \geq \mu\left(x, 2^{(2 q-1) n-3 q} t^{q}\right) * \mu\left(y, 2^{(2 q-1) n-3 q} t^{q}\right) * \mu\left(z, 2^{(2 q-1) n-3 q} t^{q}\right) \\
& \quad * \mu\left(x, 2^{(1-q) n-3 q} t^{q}\right) * \mu\left(y, 2^{(1-q) n-3 q} t^{q}\right) * \mu\left(z, 2^{(1-q) n-3 q} t^{q}\right) \tag{3.15}
\end{align*}
$$

and

$$
\begin{align*}
& v^{\prime}\left(D J_{n} f(x, y, z), \frac{3 t}{4}\right) \\
& \quad \leq v^{\prime}\left(\frac{D f\left(2^{n} x, 2^{n} y, 2^{n} z\right)}{2 \cdot 4^{n}}, \frac{3 t}{16}\right) \diamond v^{\prime}\left(\frac{D f\left(-2^{n} x,-2^{n} y,-2^{n} z\right)}{2 \cdot 4^{n}}, \frac{3 t}{16}\right) \\
& \quad \diamond v^{\prime}\left(2^{n-1} D f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right), \frac{3 t}{16}\right) \diamond v^{\prime}\left(2^{n-1} D f\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}, \frac{-z}{2^{n}}\right), \frac{3 t}{16}\right) \\
& \leq v\left(x, 2^{(2 q-1) n-3 q} t^{q}\right) \diamond v\left(y, 2^{(2 q-1) n-3 q} t^{q}\right) \diamond v\left(z, 2^{(2 q-1) n-3 q} t^{q}\right) \\
& \quad \diamond v\left(x, 2^{(1-q) n-3 q} t^{q}\right) \diamond v\left(y, 2^{(1-q) n-3 q} t^{q}\right) \diamond v\left(z, 2^{(1-q) n-3 q} t^{q}\right) \tag{3.16}
\end{align*}
$$

for each $x, y, z \in X, t>0$ and $n \in \mathbb{N}$. Since $1 / 2<q<1$ and taking the limit as $n \rightarrow \infty$, we see that (3.15) and (3.16) tend to 1 and 0 , respectively. As in Case 1 , we have $D T(x, y, z)=0$ for all $x, y, z \in X$. Using the same argument as in Case 1, we see that (3.2) follows from (3.14). To prove the uniqueness of T, assume that T^{\prime} is another quadratic-additive mapping from X into Y satisfying (3.2). Using (3.2) and (3.13), we have

$$
\begin{aligned}
\mu^{\prime}\left(T(x)-T^{\prime}(x), t\right) & =\mu^{\prime}\left(J_{n} T(x)-J_{n} T^{\prime}(x), t\right) \\
& \geq \mu^{\prime}\left(J_{n} T(x)-J_{n} f(x), \frac{t}{2}\right) * \mu^{\prime}\left(J_{n} f(x)-J_{n} T^{\prime}(x), \frac{t}{2}\right)
\end{aligned}
$$

$$
\begin{align*}
\geq & \mu^{\prime}\left(\frac{(T-f)\left(2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right) * \mu^{\prime}\left(\frac{\left(f-T^{\prime}\right)\left(2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right) \\
& * \mu^{\prime}\left(\frac{(T-f)\left(-2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right) * \mu^{\prime}\left(\frac{\left(f-T^{\prime}\right)\left(-2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right) \\
& * \mu^{\prime}\left(2^{n-1}\left((T-f)\left(\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right) * \mu^{\prime}\left(2^{n-1}\left(\left(f-T^{\prime}\right)\left(\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right) \\
& * \mu^{\prime}\left(2^{n-1}\left((T-f)\left(\frac{-x}{2^{n}}\right)\right), \frac{t}{8}\right) * \mu^{\prime}\left(2^{n-1}\left(\left(f-T^{\prime}\right)\left(\frac{-x}{2^{n}}\right)\right), \frac{t}{8}\right) \\
\geq & \sup _{t^{\prime}<t} \mu\left(x, 2^{(2 q-1) n-2 q}\left(\frac{\left(4-2^{p}\right)\left(2^{p}-2\right)}{6}\right)^{q} t^{t^{\prime}}\right) \\
& * \sup _{t^{\prime}<t} \mu\left(x, 2^{2(1-q) n-2 q}\left(\frac{\left(4-2^{p}\right)\left(2^{p}-2\right)}{6}\right)^{q} t^{\prime q}\right) \tag{3.17}
\end{align*}
$$

and

$$
\begin{align*}
\nu^{\prime}\left(T(x)-T^{\prime}(x), t\right) \leq & v^{\prime}\left(J_{n} T(x)-J_{n} f(x), \frac{t}{2}\right) \diamond v^{\prime}\left(J_{n} f(x)-J_{n} T^{\prime}(x), \frac{t}{2}\right) \\
\leq & v^{\prime}\left(\frac{(T-f)\left(2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right) \diamond \nu^{\prime}\left(\frac{\left(f-T^{\prime}\right)\left(2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right) \\
& \diamond \nu^{\prime}\left(\frac{(T-f)\left(-2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right) \diamond v^{\prime}\left(\frac{\left(f-T^{\prime}\right)\left(-2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right) \\
& \diamond v^{\prime}\left(2^{n-1}\left((T-f)\left(\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right) \diamond v^{\prime}\left(2^{n-1}\left(\left(f-T^{\prime}\right)\left(\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right) \\
& \diamond v^{\prime}\left(2^{n-1}\left((T-f)\left(\frac{-x}{2^{n}}\right)\right), \frac{t}{8}\right) \diamond v^{\prime}\left(2^{n-1}\left(\left(f-T^{\prime}\right)\left(\frac{-x}{2^{n}}\right)\right), \frac{t}{8}\right) \\
\leq & \sup _{t^{\prime}<t} \mu\left(x, 2^{(2 q-1) n-2 q}\left(\frac{\left(4-2^{p}\right)\left(2^{p}-2\right)}{6}\right)^{q} t^{\prime q}\right) \\
& \diamond \sup _{t^{\prime}<t} \mu\left(x, 2^{2(1-q) n-2 q}\left(\frac{\left(4-2^{p}\right)\left(2^{p}-2\right)}{6}\right)^{q} t^{\prime q}\right) \tag{3.18}
\end{align*}
$$

for all $x \in X, t>0$ and $n \in \mathbb{N}$. Letting $n \rightarrow \infty$ in (3.17) and (3.18), and using the fact that $\lim _{n \rightarrow \infty} 2^{(2 q-1) n-2 q}=\lim _{n \rightarrow \infty} 2^{(1-q) n-2 q}=\infty$ together with the definition of IFN-space, we get $\mu^{\prime}\left(T(x)-T^{\prime}(x), t\right)=1$ and $\nu^{\prime}\left(T(x)-T^{\prime}(x), t\right)=0$ for all $x \in X$ and $t>0$. Hence $T(x)=$ $T^{\prime}(x)$ for all $x \in X$.
Case 3. Let $0<q<\frac{1}{2}$. Define a mapping $J_{n} f: X \rightarrow Y$ by

$$
J_{n} f(x)=\frac{1}{2}\left(4^{n}\left(f\left(2^{-n} x\right)+f\left(-2^{-n} x\right)\right)+2^{n}\left(f\left(\frac{x}{2^{n}}\right)-f\left(-\frac{x}{2^{n}}\right)\right)\right)
$$

for all $x \in X$. In this case, $J_{0} f(x)=f(x)$ and

$$
\begin{aligned}
J_{j} f(x)-J_{j+1} f(x)= & -\frac{4^{j}}{2}\left(D f\left(\frac{-x}{2^{j+1}}, \frac{-x}{2^{j+1}}, \frac{x}{2^{j+1}}\right)+D f\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, \frac{-x}{2^{j+1}}\right)\right) \\
& -2^{j-1}\left(D f\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, \frac{-x}{2^{j+1}}\right)-D f\left(\frac{-x}{2^{j+1}}, \frac{-x}{2^{j+1}}, \frac{x}{2^{j+1}}\right)\right)
\end{aligned}
$$

for all $x \in X$ and $j \geq 0$. Thus, for each $n+m>m \geq 0$, we have

$$
\begin{aligned}
& \mu^{\prime}(\left(J_{m} f(x)-J_{n+m} f(x) \sum_{j=m}^{n+m-1} \frac{3}{2^{p}}\left(\frac{4}{2^{p}}\right)^{j} t^{p}\right) \\
& \geq \prod_{j=m}^{n+m-1}\left\{\mu^{\prime}\left(-\frac{\left(4^{j}+2^{j}\right) D f\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, \frac{-x}{2^{j+1}}\right)}{2}, \frac{3\left(4^{j}+2^{j}\right) t^{p}}{2 \cdot 2^{(j+1)^{p}}}\right)\right. \\
&\left.* \mu^{\prime}\left(-\frac{\left(4^{j}-2^{j}\right) D f\left(\frac{-x}{2^{j+1}}, \frac{-x}{2^{j+1}}, \frac{x}{2^{j+1}}\right)}{2}, \frac{3\left(4^{j}-2^{j}\right) t^{p}}{2 \cdot 2^{(j+1)^{p}}}\right)\right\} \\
& \geq \prod_{j=m}^{n+m-1} \mu\left(\frac{x}{2^{j+1}}, \frac{t}{2^{j+1}}\right)=\mu(x, t) \text { and } \\
& v^{\prime}\left(J_{m} f(x)-J_{n+m} f(x) \sum_{j=m}^{n+m-1} \frac{3}{2^{p}}\left(\frac{4}{2^{p}}\right)^{j} t^{p}\right) \\
& \leq \coprod_{j=m}^{n+m-1}\left\{v^{\prime}\left(-\frac{\left(4^{j}+2^{j}\right) D f\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, \frac{-x}{2^{j+1}}\right)}{2}, \frac{3\left(4^{j}+2^{j}\right) t^{p}}{2 \cdot 2^{(j+1)^{p}}}\right)\right. \\
&\left.\quad \diamond v^{\prime}\left(-\frac{\left(4^{j}-2^{j}\right) D f\left(\frac{-x}{j^{j+1}}, \frac{-x}{2^{j+1}}, \frac{x}{j^{j+1}}\right)}{2}, \frac{3\left(4^{j}-2^{j}\right) t^{p}}{2 \cdot 2^{(j+1)^{p}}}\right)\right\} \\
& \leq \coprod_{j=m}^{n+m-1} v\left(\frac{x}{2^{j+1}}, \frac{t}{2^{j+1}}\right)=v(x, t)
\end{aligned}
$$

for all $x \in X$ and $t>0$. Proceeding along a similar argument as in the previous cases, we see that $\left\{J_{n} f(x)\right\}$ is a Cauchy sequence in $\left(Y, \mu^{\prime}, \nu^{\prime}\right)$. Thus, we define $T(x):=\left(\mu^{\prime}, \nu^{\prime}\right)-$ $\lim _{n \rightarrow \infty} J_{n} f(x)$ for all $x \in X$. Putting $m=0$ in the last two inequalities, we get

$$
\left.\begin{array}{ll}
\mu^{\prime}\left(f(x)-J_{n} f(x), t\right) \geq \mu\left(x, \frac{t^{q}}{\left(\sum_{j=0}^{n-1} \frac{3}{2^{p}}\left(\frac{4}{2^{p}}\right)^{q}\right)^{q}}\right) \quad \text { and } \tag{3.19}\\
\nu^{\prime}\left(f(x)-J_{n} f(x), t\right) \leq v\left(x, \frac{t^{q}}{\left(\sum_{j=0}^{n-1} \frac{3}{2^{p}}\left(\frac{4}{2^{p}}\right)^{j}\right)^{q}}\right)
\end{array}\right\}
$$

for all $x \in X$ and $t>0$. Write

$$
\begin{align*}
& \mu^{\prime}\left(D J_{n} f(x, y, z), \frac{3 t}{4}\right) \\
& \geq \mu^{\prime}\left(\frac{4^{n}}{2} D f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right), \frac{3 t}{16}\right) \\
& * \mu^{\prime}\left(\frac{4^{n}}{2} D f\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}, \frac{-z}{2^{n}}\right), \frac{3 t}{16}\right) \\
& * \mu^{\prime}\left(2^{n-1} D f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right), \frac{3 t}{16}\right) \\
& \quad * \mu^{\prime}\left(2^{n-1} D f\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}, \frac{-z}{2^{n}}\right), \frac{3 t}{16}\right) \\
& \geq \mu\left(x, 2^{(1-2 q) n-3 q} t^{q}\right) * \mu\left(y, 2^{(1-2 q) n-3 q} t^{q}\right) * \mu\left(z, 2^{(1-2 q) n-3 q} t^{q}\right) \\
& * \mu\left(x, 2^{(1-q) n-3 q} t^{q}\right) * \mu\left(y, 2^{(1-q) n-3 q} t^{q}\right) * \mu\left(z, 2^{(1-q) n-3 q} t^{q}\right) \tag{3.20}
\end{align*}
$$

and

$$
\begin{align*}
& \nu^{\prime}\left(D J_{n} f(x, y, z), \frac{3 t}{4}\right) \\
& \quad \leq \nu^{\prime}\left(\frac{4^{n}}{2} D f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right), \frac{3 t}{16}\right) \diamond v^{\prime}\left(\frac{4^{n}}{2} D f\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}, \frac{-z}{2^{n}}\right), \frac{3 t}{16}\right) \\
& \quad \diamond v^{\prime}\left(2^{n-1} D f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right), \frac{3 t}{16}\right) \diamond v^{\prime}\left(2^{n-1} D f\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}, \frac{-z}{2^{n}}\right), \frac{3 t}{16}\right) \\
& \leq v\left(x, 2^{(1-2 q) n-3 q} t^{q}\right) \diamond v\left(y, 2^{(1-2 q) n-3 q} t^{q}\right) \diamond v\left(z, 2^{(1-2 q) n-3 q} t^{q}\right) \\
& \quad \diamond v\left(x, 2^{(1-q) n-3 q} t^{q}\right) \diamond v\left(y, 2^{(1-q) n-3 q} t^{q}\right) \diamond v\left(z, 2^{(1-q) n-3 q} t^{q}\right) \tag{3.21}
\end{align*}
$$

for all $x, y, z \in X, t>0$ and $n \in \mathbb{N}$. Since $1 / 2<q<1$ and taking the limit as $n \rightarrow \infty$, we see that (3.20) and (3.21) tend to 1 and 0 , respectively. As in the previous cases, we have that $D T(x, y, z)=0$ for all $x, y, z \in X$. By the same argument as in previous cases, we can see that (3.2) follows from (3.19). To prove the uniqueness of T, assume that T^{\prime} is another quadratic-additive mapping from X into Y satisfying (3.2). From (3.2) and (3.13), for all $x \in X$ and $t>0$, write

$$
\begin{aligned}
\mu^{\prime}\left(T(x)-T^{\prime}(x), t\right)= & \nu^{\prime}\left(J_{n} T(x)-J_{n} T^{\prime}(x), t\right) \\
\geq & \mu^{\prime}\left(J_{n} T(x)-J_{n} f(x), \frac{t}{2}\right) * \mu^{\prime}\left(J_{n} f(x)-J_{n} T^{\prime}(x), \frac{t}{2}\right) \\
\geq & \mu^{\prime}\left(\frac{4^{n}}{2}\left((T-f)\left(\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right) * \mu\left(\frac{4^{n}}{2}\left(\left(f-T^{\prime}\right)\left(\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right) \\
& * \mu^{\prime}\left(\frac{4^{n}}{2}\left((T-f)\left(-\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right) * \mu^{\prime}\left(\frac{4^{n}}{2}\left(\left(f-T^{\prime}\right)\left(-\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right) \\
& * \mu^{\prime}\left(2^{n-1}\left((T-f)\left(\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right) * \mu^{\prime}\left(2^{n-1}\left(\left(f-T^{\prime}\right)\left(\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right) \\
& * \mu^{\prime}\left(2^{n-1}\left((T-f)\left(\frac{-x}{2^{n}}\right)\right), \frac{t}{8}\right) * \mu^{\prime}\left(2^{n-1}\left(\left(f-T^{\prime}\right)\left(\frac{-x}{2^{n}}\right)\right), \frac{t}{8}\right) \\
\geq & \sup _{t^{\prime}<t} \mu\left(x, 2^{(1-2 q) n-2 q}\left(\frac{2^{p}-4}{3}\right)^{q} t^{q}\right)
\end{aligned}
$$

and, similarly,

$$
\begin{aligned}
\nu^{\prime}\left(T(x)-T^{\prime}(x), t\right) \leq & \nu^{\prime}\left(\frac{4^{n}}{2}\left((T-f)\left(\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right) \diamond v\left(\frac{4^{n}}{2}\left(\left(f-T^{\prime}\right)\left(\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right) \\
& \diamond v^{\prime}\left(\frac{4^{n}}{2}\left((T-f)\left(-\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right) \diamond v^{\prime}\left(\frac{4^{n}}{2}\left(\left(f-T^{\prime}\right)\left(-\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right) \\
& \diamond v^{\prime}\left(2^{n-1}\left((T-f)\left(\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right) \diamond v^{\prime}\left(2^{n-1}\left(\left(f-T^{\prime}\right)\left(\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right) \\
& \diamond v^{\prime}\left(2^{n-1}\left((T-f)\left(\frac{-x}{2^{n}}\right)\right), \frac{t}{8}\right) \diamond v^{\prime}\left(2^{n-1}\left(\left(f-T^{\prime}\right)\left(\frac{-x}{2^{n}}\right)\right), \frac{t}{8}\right) \\
\leq & \sup _{t^{\prime}<t} v\left(x, 2^{(1-2 q) n-2 q}\left(\frac{2^{p}-4}{3}\right)^{q} t^{q}\right)
\end{aligned}
$$

for $n \in \mathbb{N}$. Letting $n \rightarrow \infty$ in (3.17) and (3.18), and using the fact that $\lim _{n \rightarrow \infty} 2^{(2 q-1) n-2 q}=$ $\lim _{n \rightarrow \infty} 2^{(1-q) n-2 q}=\infty$ together with the definition of IFN-space, we get $\mu^{\prime}(T(x)-$ $\left.T^{\prime}(x), t\right)=1$ and $\nu^{\prime}\left(T(x)-T^{\prime}(x), t\right)=0$ for all $x \in X$ and $t>0$. Hence $T(x)=T^{\prime}(x)$ for all $x \in X$.

Remark 3.2 Let (X, μ, ν) be an IFN-space and (X, μ, ν) be an intuitionistic fuzzy Banach space $\left(Y, \mu^{\prime}, \nu^{\prime}\right)$. Let $f: X \rightarrow Y$ be a mapping satisfying (3.1) with a real number $q<0$ and for all $t>0$. If we choose a real number α with $0<3 \alpha<t$, then

$$
\begin{aligned}
& \mu^{\prime}(D f(x, y, z), t) \geq \mu^{\prime}(D f(x, y, z), 3 \alpha) \geq \mu\left(x, \alpha^{q}\right) * \mu\left(y, \alpha^{q}\right) * \mu\left(z, \alpha^{q}\right) \quad \text { and } \\
& v^{\prime}(D f(x, y, z), t) \leq v^{\prime}(D f(x, y, z), 3 \alpha) \leq v\left(x, \alpha^{q}\right) \diamond v\left(y, \alpha^{q}\right) \diamond v\left(z, \alpha^{q}\right)
\end{aligned}
$$

for all $x, y, z \in X, t>0$ and $q<0$. Since $q<0$, we have $\lim _{\alpha \rightarrow 0^{+}} \alpha^{q}=\infty$. This implies that

$$
\begin{aligned}
& \lim _{\alpha \rightarrow 0^{+}} \mu\left(x, \alpha^{q}\right)=1=\lim _{\alpha \rightarrow 0^{+}} \mu\left(y, \alpha^{q}\right)=\lim _{\alpha \rightarrow 0^{+}} \mu\left(z, \alpha^{q}\right) \quad \text { and } \\
& \lim _{\alpha \rightarrow 0^{+}} v\left(x, \alpha^{q}\right)=0=\lim _{\alpha \rightarrow 0^{+}} v\left(y, \alpha^{q}\right)=\lim _{\alpha \rightarrow 0^{+}} v\left(z, \alpha^{q}\right) .
\end{aligned}
$$

Thus, we have $\mu^{\prime}(D f(x, y, z), t)=1$ and $\nu^{\prime}(D f(x, y, z), t)=0$ for all $x, y, z \in X$ and $t>0$. Hence $D f(x, y, z)=0$ for all $x, y, z \in X$. In other words, if f is an intuitionistic fuzzy q-almost quadratic-additive mapping for the case $q<0$, then f is itself a quadratic-additive mapping.

Corollary 3.3 Suppose thatf is an even mapping satisfying the conditions of Theorem 3.1. Then there exists a unique quadratic mapping $T: X \rightarrow Y$ such that

$$
\left.\begin{array}{l}
\mu^{\prime}(T(x)-f(x), t) \geq \sup _{t^{\prime}<t} \mu\left(x,\left(\frac{\left|4-2^{p}\right| t^{\prime}}{3}\right)^{q}\right) \quad \text { and } \tag{3.22}\\
\nu^{\prime}(T(x)-f(x), t) \leq \sup _{t^{\prime}<t} \nu\left(x,\left(\frac{\left(4-2^{p} \mid t^{\prime}\right.}{3}\right)^{q}\right)
\end{array}\right\}
$$

for all $x \in X$ and $t>0$, where $p=1 / q$.
Proof Since f is an even mapping, we get

$$
J_{n} f(x)= \begin{cases}\frac{f\left(2^{n} x\right)+f\left(-2^{n} x\right)}{2 \cdot 4^{n}} & \text { if } q>\frac{1}{2}, \\ \frac{1}{2}\left(4^{4}\left(f\left(2^{-n} x\right)+f\left(-2^{-n} x\right)\right)\right) & \text { if } 0<q<\frac{1}{2},\end{cases}
$$

for all $x \in X$, where $J_{n} f$ is defined as in Theorem 3.1. In this case, $J_{0} f(x)=f(x)$. For all $x \in X$ and $j \in \mathbb{N} \cup\{0\}$, we have

$$
J_{j} f(x)-J_{j+1} f(x)= \begin{cases}\frac{D f\left(2^{j} x, 2^{j} x,-2 j^{j} x\right)}{24^{j+1}}+\frac{D f\left(-2 j_{x,-2 j_{x}} j^{j} x\right)}{2 \cdot 4^{j+1}} & \text { if } q>\frac{1}{2}, \\ -\frac{4^{j}}{2}\left(D f\left(\frac{-x}{2^{j+1}}, \frac{-x}{j^{+1+1}}, \frac{x}{2^{j+1}}\right)+D f\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, \frac{-x}{2^{j+1}}\right)\right) & \text { if } 0<q<\frac{1}{2} .\end{cases}
$$

Proceeding along the same lines as in Theorem 3.1, we obtain that T is a quadraticadditive function satisfying (3.22). Notice that $T(x):=\left(\mu^{\prime}, \nu^{\prime}\right)-\lim _{n \rightarrow \infty} J_{n} f(x), T$ is even and $D T(x, y, z)=0$ for all $x, y, z \in X$. Hence, we get

$$
T(x+y)+T(x-y)-2 T(x)-2 T(y)=-D T(x, y,-x)=0
$$

for all $x, y \in X$. It follows that T is a quadratic mapping.

Corollary 3.4 Suppose thatf is an even mapping satisfying the conditions of Theorem 3.1. Then there exists a unique additive mapping $T: X \rightarrow Y$ such that

$$
\left.\begin{array}{l}
\mu^{\prime}(T(x)-f(x), t) \geq \sup _{t^{\prime}<t} \mu\left(x,\left(\frac{\left|2-2^{p}\right| t^{\prime}}{3}\right)^{q}\right) \quad \text { and } \\
\nu^{\prime}(T(x)-f(x), t) \leq \sup _{t^{\prime}<t} \nu\left(x,\left(\frac{\left|2-2^{p}\right| t^{\prime}}{3}\right)^{q}\right)
\end{array}\right\}
$$

for all $x \in X$ and $t>0$, where $p=1 / q$.

Proof Since f is an odd mapping, we get

$$
J_{n} f(x)= \begin{cases}\frac{f\left(2^{n} x\right)+f\left(-2^{n} x\right)}{2^{n+1}} & \text { if } q>1 \\ 2^{n-1}\left(f\left(2^{-n} x\right)+f\left(-2^{-n} x\right)\right) & \text { if } 0<q<1\end{cases}
$$

for all $x \in X$, where $J_{n} f$ is defined as in Theorem 3.1. Here $J_{0} f(x)=f(x)$. For all $x \in X$ and $j \in \mathbb{N} \cup\{0\}$, we have

$$
J_{j} f(x)-J_{j+1} f(x)= \begin{cases}\frac{D f\left(2^{j} x, j^{2} x,-2^{j} x\right)}{2^{j+2}}-\frac{D f\left(-2^{j} x,-2 j^{j} x, 2^{j} x\right)}{j^{j+2}} & \text { if } q>1, \\ -2^{j-1}\left(D f\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, \frac{-x}{2^{j+1}}\right)-D f\left(\frac{-x}{2^{j+1}}, \frac{-x}{2^{j+1}}, \frac{x}{2^{j+1}}\right)\right) & \text { if } 0<q<1 .\end{cases}
$$

Proceeding along the same lines as in Theorem 3.1, we obtain that T is a quadratic-additive function satisfying (3.23). Here $T(x):=\left(\mu^{\prime}, v^{\prime}\right)-\lim _{n \rightarrow \infty} J_{n} f(x), T$ is odd and $D T(x, y, z)=0$ for all $x, y, z \in X$. Hence, we obtain

$$
T(x+y)-T(x)-T(y)=D f\left(\frac{x-y}{2}, \frac{x+y}{2}, \frac{-x+y}{2}\right)=0
$$

for all $x, y \in X$. It follows that T is an additive mapping.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors contributed equally and significantly in writing this paper. Both the authors read and approved the final manuscript.

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no. (405/130/1433). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Received: 13 March 2013 Accepted: 15 June 2013 Published: 8 July 2013

References

1. Ulam, SM: A Collection of the Mathematical Problems. Interscience, New York (1960)
2. Hyers, DH: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222-224 (1941)
3. Aoki, T: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64-66 (1950)
4. Rassias, TM: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297-300 (1978)
5. Rassias, TM: On the stability of functional equations and a problem of Ulam. Acta Appl. Math. 62, 123-130 (2000)
6. Agarwal, RP, Xu, B, Zhang, W: Stability of functional equations in single variable. J. Math. Anal. Appl. 288, 852-869 (2003)
7. Gajda, Z: On stability of additive mappings. Int. J. Math. Math. Sci. 14, 431-434 (1991)
8. Gǎvruta, P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431-436 (1994)
9. Hyers, DH, Isac, G, Rassias, TM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998)
10. Isac, G, Rassias, TM: On the Hyers-Ulam stability of ψ-additive mappings. J. Approx. Theory 72, 131-137 (1993)
11. Najati, A, Park, C: On the stability of an n-dimensional functional equation originating from quadratic forms. Taiwan. J. Math. 12, 1609-1624 (2008)
12. Lu, G, Park, C: Additive functional inequalities in Banach spaces. J. Inequal. Appl. 2012, 294 (2012)
13. Rassias, JM, Kim, H-M: Generalized Hyers-Ulam stability for general additive functional equations in quasi- β-normed spaces. J. Math. Anal. Appl. 356, 302-309 (2009)
14. Rassias, JM: Solution of a problem of Ulam. J. Approx. Theory 57, 268-273 (1989)
15. Rassias, JM: On the Ulam stability of mixed type mappings on restricted domains. J. Math. Anal. Appl. 276, 747-762 (2002)
16. Dadipour, F, Moslehian, MS, Rassias, JM, Takahasi, S-E: Characterization of a generalized triangle inequality in normed spaces. Nonlinear Anal. 75, 735-741 (2012)
17. Eskandani, GZ, Rassias, JM, Gavruta, P: Generalized Hyers-Ulam stability for a general cubic functional equation in quasi- β-normed spaces. Asian-Eur. J. Math. 4, 413-425 (2011)
18. Faziev, V, Sahoo, PK: On the stability of Jensen's functional equation on groups. Proc. Indian Acad. Sci. Math. Sci. 117, 31-48 (2007)
19. Gordji, ME, Khodaei, H, Rassias, JM: Fixed point methods for the stability of general quadratic functional equation. Fixed Point Theory 12, 71-82 (2011)
20. Jun, KW, Kim, HM: The generalized Hyers-Ulam-Rassias stability of a cubic functional equation. J. Math. Anal. Appl. 274, 867-878 (2002)
21. Jung, SM: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)
22. Ravi, K, Arunkumar, M, Rassias, JM: Ulam stability for the orthogonally general Euler-Lagrange type functional equation. Int. J. Math. Stat. 3(A08), 36-46 (2008)
23. Saadati, R, Park, C: Non-Archimedean \mathcal{L}-fuzzy normed spaces and stability of functional equations. Comput. Math. Appl. 60, 2488-2496 (2010)
24. Xu, TZ, Rassias, MJ, Xu, WX, Rassias, JM: A fixed point approach to the intuitionistic fuzzy stability of quintic and sextic functional equations. Iranian J. Fuzzy Sys. 9, 21-40 (2012)
25. Atanassov, K: Intuitionistic fuzzy sets, VIII ITKR's Session, Sofia, June 1983 (Deposed in Central Science-Technical Library of Bulg. Academy of Science, 1697/84) (in Bulgarian)
26. Saadati, R, Park, JH: On the intuitionistic fuzzy topological spaces. Chaos Solitons Fractals 27, 331-344 (2006)
27. Bag, T, Samanta, SK: Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math. 11(3), 687-705 (2003)
28. Mohiuddine, SA, Danish Lohani, QM: On generalized statistical convergence in intuitionistic fuzzy normed space. Chaos Solitons Fractals 42, 1731-1737 (2009)
29. Mursaleen, M, Karakaya, V, Mohiuddine, SA: Schauder basis, separability, and approximation property in intuitionistic fuzzy normed space. Abstr. Appl. Anal. 2010, Art. ID 131868 (2010)
30. Mursaleen, M, Mohiuddine, SA: Statistical convergence of double sequences in intuitionistic fuzzy normed spaces. Chaos Solitons Fractals 41, 2414-2421 (2009)
31. Mursaleen, M, Mohiuddine, SA: On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. J. Comput. Appl. Math. 233(2), 142-149 (2009)
32. Mursaleen, M, Mohiuddine, SA: Nonlinear operators between intuitionistic fuzzy normed spaces and Fréchet differentiation. Chaos Solitons Fractals 42, 1010-1015 (2009)
33. Mursaleen, M, Mohiuddine, SA, Edely, OHH: On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces. Comput. Math. Appl. 59, 603-611 (2010)
34. Yilmaz, Y: On some basic properties of differentiation in intuitionistic fuzzy normed spaces. Math. Comput. Model. 52, 448-458 (2010)
35. Jin, SS, Lee, Y-H: Fuzzy stability of a mixed type functional equation. J. Inequal. Appl. 2011, 70 (2011)
36. Mohiuddine, SA, Alotaibi, A: Fuzzy stability of a cubic functional equation via fixed point technique. Adv. Differ. Equ. 2012, 48 (2012)
37. Mohiuddine, SA, Alotaibi, A, Obaid, M : Stability of various functional equations in non-Archimedean intuitionistic fuzzy normed spaces. Discrete Dyn. Nat. Soc. 2012, Article ID 234727 (2012)
38. Mohiuddine, SA, Alghamdi, MA: Stability of functional equation obtained through a fixed-point alternative in intuitionistic fuzzy normed spaces. Adv. Differ. Equ. 2012, 141 (2012)
39. Mohiuddine, SA, Şevli, H: Stability of pexiderized quadratic functional equation in intuitionistic fuzzy normed space. J. Comput. Appl. Math. 235, 2137-2146 (2011)
40. Mohiuddine, SA, Cancan, M, Şevli, H: Intuitionistic fuzzy stability of a Jensen functional equation via fixed point technique. Math. Comput. Model. 54, 2403-2409 (2011)
41. Mohiuddine, SA: Stability of Jensen functional equation in intuitionistic fuzzy normed space. Chaos Solitons Fractals 42, 2989-2996 (2009)
42. Mursaleen, M, Mohiuddine, SA: On stability of a cubic functional equation in intuitionistic fuzzy normed spaces. Chaos Solitons Fractals 42, 2997-3005 (2009)
43. Wang, Z, Rassias, TM: Intuitionistic fuzzy stability of functional equations associated with inner product spaces. Abstr. Appl. Anal. 2011, Article ID 456182 (2011)
44. Xu, TZ, Rassias, JM, Xu, WX: Intuitionistic fuzzy stability of a general mixed additive-cubic equation. J. Math. Phys. 51, 063519 (2010)
45. Xu, TZ, Rassias, $\mathrm{JM}, \mathrm{Xu}, \mathrm{WX}$: Stability of a general mixed additive-cubic functional equation in non-Archimedean fuzzy normed spaces. J. Math. Phys. 51, 093508 (2010)
46. Xu, TZ, Rassias, JM: Stability of general multi-Euler-Lagrange quadratic functional equations in non-Archimedean fuzzy normed spaces. Adv. Differ. Equ. 2012, 119 (2012)
47. Alotaibi, A, Mohiuddine, SA: On the stability of a cubic functional equation in random 2-normed spaces. Adv. Differ. Equ. 2012, 39 (2012)
48. Goleț, I: On probabilistic 2-normed spaces. Novi Sad J. Math. 35(1), 95-102 (2005)
49. Mohiuddine, SA, Aiyub, M: Lacunary statistical convergence in random 2-normed spaces. Appl. Math. Inform. Sci. 6(3), 581-585 (2012)
50. Mursaleen, M: On statistical convergence in random 2-normed spaces. Acta Sci. Math. 76, 101-109 (2010)
51. Mohiuddine, SA, Alotaibi, A, Alsulami, SM: Ideal convergence of double sequences in random 2-normed spaces. Adv. Differ. Equ. 2012, 149 (2012)
52. Jung, S-M: On the Hyers-Ulam stability of the functional equations that have the quadratic property. J. Math. Anal Appl. 222, 126-137 (1998)
53. Kannappan, P: Quadratic functional equation and inner product spaces. Results Math. 27, 368-372 (1995)
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: doi:10.1186/1687-1847-2013-203
 Cite this article as: Al-Fhaid and Mohiuddine: On the Ulam stability of mixed type QA mappings in IFN-spaces.
 Advances in Difference Equations 2013 2013:203.

