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Abstract
In this paper, we show the existence of mild solutions to a nonlocal problem of
impulsive integrodifferential equations via a measure of noncompactness in a Banach
space. Our work is based on a new fixed point theorem and it generalizes some
existing results on the topic in the sense that we do not require the semigroup and
nonlinearity involved in the problem to be compact.
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1 Introduction
In this paper, we discuss the existence of solutions for the following nonlocal problem of
integrodifferential equations:

du(t)
dt

= Au(t) + f
(
t,u(t),Gu(t)

)
, t ∈ [,K], t �= ti,

u() = u + g(u), (.)

�u(ti) = Ii
(
u(ti)

)
, i = , , , . . . ,p,

where A generates a C-semigroup T(t), t ≥ , in a Banach space X, f : [,K]×X ×X →
X, Gu(t) =

∫ t
 H(t, s)u(s)ds, H ∈ C[D,R+], D = {(t, s) ∈ R :  ≤ s ≤ t ≤ K},  < t < t <

t < · · · < tp < K with tp+ = K , g : X → X, u ∈ X, and �u(ti) = u(t+i ) – u(t–i ) with u(t+i ),
u(t–i ) representing the right and left limit of u at ti, respectively. Here PC([,K];X) = {u :
[,K] → X is continuous at t �= ti, left continuous at t = ti, and the right-hand limit u(t+i )
exists for i = , , . . . ,p}. Notice that the set PC([,K];X) equipped with the norm ‖u‖ =
sup{‖u(t)‖ : t ∈ [,K]} is a Banach space.
Integrodifferential equations arise in the mathematical modeling of several natural phe-

nomena and various investigations led to the exploration of their different aspects. The
theory of semigroups of bounded linear operators is closely related to the solution of dif-
ferential and integrodifferential equations in Banach spaces. In recent years, this theory
has been applied to a large class of nonlinear differential equations in Banach spaces. Based
on the method of semigroups, the existence and uniqueness of mild, strong and classical
solutions of semilinear evolution equations were discussed by Pazy []. For further details,
see [–] and the references cited therein.
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The theory of impulsive differential equations is an important branch of differential
equations and has an extensive physical background. Impulsive differential equations help
modeling many physical systems whose states are subject to abrupt changes at certain
moments. Examples include population biology, the diffusion of chemicals, the spread of
heat, the radiation of electromagnetic waves, etc. [–]. Dynamical systems with impul-
sive effects have been an object of intensive investigations [–]. The study of semilin-
ear nonlocal initial problem was initiated by Byszewski [, ] and the importance of the
problem lies in the fact that it is more general and yields better effect than the classical
initial conditions. Therefore, it has been extensively studied under various conditions on
the operator A and the nonlinearity f by several authors [–].
Byszewski and Lakshmikantham [] showed the existence and uniqueness ofmild solu-

tions and classical solutionswhen f and g in (.) satisfy Lipschitz type conditions.Ntouyas
and Tsamotas [, ] studied the case of compact-valued f and T . Zhu et al. [] dis-
cussed the existence of mild solutions for abstract semilinear evolution equations in Ba-
nach spaces. In [], the author discussed the existence and uniqueness of mild and clas-
sical solutions for the impulsive semilinear differential evolution equation. In [], Agar-
wal et al. studied the existence and dimension of the set of mild solutions to semilinear
fractional differential inclusions. Lizama and Pozo [] investigated the existence of mild
solutions for semilinear integrodifferential equation with nonlocal initial conditions by
using Hausdorff measure of noncompactness via a fixed-point. In a recent paper [], the
authors studied the existence of mild solutions to an impulsive differential equation with
nonlocal conditions by applying Darbo-Sadovskii’s fixed point theorem. For some more
recent results and details, see [–].
Motivated by [], in this paper we aim to establish some existence results for mild solu-

tions of (.) without demanding the compactness condition on T and f . In this scenario,
our work extends and improves some results obtained in [, ]. In Section , we recall
some definitions and facts about C semigroup T and the measure of noncompactness,
while Section  deals with the existence of mild solutions for (.).

2 Preliminary result
Let L([,K];X) denote the space of X-valued Bochner functions on [,K] with the norm
defined by ‖u‖ =

∫ K
 ‖u(s)‖ds. A C-semigroup T(t) is said to be compact if T(t) is com-

pact for any t > . If the semigroup T(t) is compact, then t → T(t)u are equicontinuous
at all t >  with respect to u in all bounded subset of X, that is, the semigroup T(t) is
equicontinuous.
In this paper, α denotes the Hausdorff measure of noncompactness on both X and

PC([,K];X). The following lemma describes some properties of the Hausdorff measure
of noncompactness.

Lemma . [] Let βY and βZ denote Hausdorff measures of noncompactness on the real
Banach spaces Y and Z, respectively, and B,C ⊆Y be bounded. Then
. B is pre-compact if and only if βX(B) = ;
. βY(B) = βY(B) = βY(convB), where B and convB mean the closure and convex hull

of B, respectively;
. βY(B) ≤ βY(C), where B⊆ C;
. βY(B +C) ≤ βY(B) + βY(C), where B +C = {x + y : x ∈ B, y ∈ C};
. βY(B∪C) ≤ max{βY(B),βY(C)};
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. βY(λB)≤ |λ|βY(B) for any λ ∈R;
. If the map Q :D(Q)⊆Y → Z is Lipschitz continuous with constant k, then

βZ(QB)≤ kβY(B) for any bounded subset B ⊆D(Q);
. βY(B) = inf{dY(B,C);C ⊆Y is precompact} = inf{dY(B,C);C ⊆Y is finite valued},

where dY(B,C)means the nonsymmetric (or symmetric) Hausdorff distance
between B and C in Y;

. If {Wn}+∞
n= is a decreasing sequence of bounded closed nonempty subsets of Y and

limn→∞ βY(Wn) = , then
⋂+∞

n= Wn is nonempty and compact in Y.

ThemapQ :W ⊆Y→Y is said to be a βY-contraction if there exists a constant  < k < 
such that βY(Q(B)) ≤ kβY(B) for any bounded closed subset B ⊆ W , where Y is a Banach
space.
In the sequel, we need the following known results.

Lemma . [] If W ⊆ PC([,K];X) is bounded, then α(W (t))≤ α(W ) for all t ∈ [,K],
where W (t) = {u(t) : u ∈ W } ⊆ X. Furthermore, if W is equicontinuous on [,K], then
α(W (t)) is continuous on [,K], and α(W ) = sup{α(W (t)) : t ∈ [,K]}.

Lemma . [] If {un}∞n= ⊂ L(,K ;X) is uniformly integrable, then α({un(t)}∞n=) is mea-
surable and

α

({∫ t


un(s)ds

}∞

n=

)
≤ 

∫ t


α
{
un(s)

}∞
n= ds.

Lemma . [] If the semigroup T(t) is equicontinuous and there exists η ∈ L(,K ;R+),
then the set

{
t →

∫ t


T(t – s)u(s)ds;u ∈ L

(
,K ;R+),∥∥u(s)∥∥ ≤ η(s), for a.e s ∈ [,K]

}

is equicontinuous on [,K].

Lemma . [] If W is bounded, then for each ε > , there is a sequence {un}∞n= ⊆W such
that α(W )≤ α({un}∞n=) + ε.

Lemma . [] Suppose that  < ε < , h >  and let

S = εn +C
nε

n–h +C
nε

n– h

!
+ · · · + hn

n!
, n ∈N .

Then S = o(/ns) (n → +∞), where s >  is an arbitrary real number and C
n,C

n , . . . are
binomial coefficients [].

Lemma . ([] Fixed point theorem) Let Q be a closed and convex subset of a real Ba-
nach space X, let A : Q → Q be a continuous operator and A(Q) be bounded. For each
bounded subset B ⊂Q, set

A(B) = A(B), An(B) = A
(
c̄o

(
An–(B)

))
, n = , , . . . .

If there exist a constant  ≤ k ≤  and a positive integer n such that for each bounded
subset B ⊂Q, α(An (B))≤ kα(B), then A has a fixed point in Q.
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Definition . A function u : [,K] → X is called a mild solution of system (.) if u ∈
PC([,K] : X) and satisfies the following equation:

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T(t)[u – g(u)] +
∫ t
 T(t – s)f (s,u(s),Gu(s))ds, t ∈ [, t];

T(t – t)(u(t– ) + I(u(t– ))) +
∫ t
t
T(t – s)f (s,u(s),Gu(s))ds, t ∈ (t, t];

...

T(t – tp)(u(t–p ) + Ip(u(t–p ))) +
∫ t
tp T(t – s)f (s,u(s),Gu(s))ds, t ∈ (tp,K].

3 Existence result
In this section, we show the existence of solutions for problem (.) by applying Lemma..
For some real constants r and w, we define

W =
{
u ∈ PC

(
[,K];X

)
,
∥∥u(t)∥∥ ≤ r,

∥∥Gu(t)∥∥ ≤ w,∀t ∈ [,K]
}
. (.)

For the forthcoming analysis, we need the following assumptions:

(A) The c semigroup T(t) generated by A is equicontinuous and N = sup{‖T(t)‖; t ∈
[,K]};

(A) g : X → X is such that there exist positive constants c and d such that ‖g(u)‖ ≤ c‖u‖+
d, for all u ∈ PC([,K];X);

(A) f : [,K] × X × X → X is of Caratheódory type, that is, f (·,u,Gu) is measurable for
all u ∈ X , and f (t, ·, ·) is continuous for a.e. t ∈ [,K];

(A) there exist a function m ∈ L(,K ;R+) and a nondecreasing continuous function � :
R+ → R+ such that ‖f (t,u, (Gu))‖ ≤ m(t)�(‖u‖,‖Gu‖) for all u ∈ X a.e. t ∈ [,K];

(A) there exist L,L ∈ L(,K ;R+) such that for any bounded sets D,D ⊂ X ,

α
(
f (t,D,D)

) ≤ L(t)α(D) + L(t)α(D)

for a.e. t ∈ [,K];
(A) The functions Ik : X → X , k = , , . . . ,p, are completely continuous and uniformly

bounded, and max≤k≤p,u∈W ‖Ik(u)‖ = 	;
(A) there exists a positive constant γ such that

N
[‖u‖ + (cr + d) +	

]
+N�(r,w)

∫ K


m(s)ds≤ γ ,

where N , c, d, �, 	 are given by assumptions (A), (A), (A), (A).

In passing, we remark that
(i) If A is the generator of an analytic semigroup T(t) or a differentiable semigroup

T(t), then T(t) is an equicontinuous c-semigroup [].
(ii) If ‖f (t,u,u) – f (t, v, v)‖ ≤ L‖u – v‖ + L‖u – v‖, t ∈ [,K], u,u, v, v ∈ X ,

then α(f (t,D,D)) ≤ L(t)α(D) + L(t)α(D) for any bounded sets D,D ⊂ X and
a.e. t ∈ [,K].

Theorem . Assume that conditions (A)-(A) hold. Then there exists at least one mild
solution for problem (.).
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Proof Let us define an operator Q : PC([,K];X) → PC([,K];X) by

Qu(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(t)[u – g(u)] +
∫ t
 T(t – s)f (s,u(s),Gu(s))ds, t ∈ [, t];

T(t – t)(u(t– ) + I(u(t– )))

+
∫ t
t
T(t – s)f (s,u(s),Gu(s))ds, t ∈ (t, t];

...

T(t – tp)(u(t–p ) + Ip(u(t–p )))

+
∫ t
tp T(t – s)f (s,u(s),Gu(s))ds, t ∈ (tp,K]

(.)

for allu ∈ PC([,K];X) and show that the operatorQ satisfies the hypothesis of Lemma..
The proof consists of several steps.
(i) Q is continuous. Let (un)be a sequence in PC([,K];X) such that un → u in

PC([,K];X). Then, in view of (A), it follows that f (s,un(s),Gun(s)) → f (s,u(s),Gu(s))
as n→ ∞. Now, for small ε >  and n→ ∞, we have

∥∥Qun(t) –Qu(t)
∥∥ ≤ N

∫ t



∥∥f (s,un(s),Gun(s))∥∥ –
∥∥f (s,u(s),Gu(s))∥∥ds

≤ εN , ∀t ∈ [, t], (.)
∥∥Qun(t) –Qu(t)

∥∥ ≤ N
[∥∥un(t–i )

– u
(
t–i

)∥∥
+

∥∥Ii(un(t–i ))
– Ii

(
u
(
t–i

))∥∥]
+ εN , ∀t ∈ (ti, ti+], (.)

for i = , , . . . ,p. By assumption (A) together with (.)-(.), we obtain

lim
n→∞‖Qun –Qu‖PC = .

Thus,W ⊆ PC([,K];X) is bounded and convex (W is defined by (.)).
For any u ∈W , t ∈ [, t], we have

∥∥(Qu)(t)
∥∥ ≤ ∥∥T(t)[u – g(u)

]∥∥ +
∫ t



∥∥T(t – s)f
(
s,u(s),Gu(s)

)∥∥ds

≤ N
[‖u‖ + (

c‖u‖ + d
)]
+N�(r,w)

∫ t


m(s)ds

≤ N
[‖u‖ + (cr + d)

]
+N�(r,w)

∫ t


m(s)ds. (.)

Similarly, for any u ∈W and i = , , . . . ,p, we get

∥∥(Qu)(t)
∥∥ ≤ N

[‖u‖ + (cr + d) +	
]
+N�(r,w)

∫ K


m(s)ds, t ∈ (ti, ti+]. (.)

Using (.)-(.) and (A)-(A), we obtain

∥∥(Qu)(t)
∥∥ ≤ N

[‖u‖ + (cr + d) +	
]
+N�(r,w)

∫ K


m(s)ds≤ γ , t ∈ [,K],

which implies that Q :W → W is a bounded operator.
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(ii) Q(W ) is equicontinuous, where W is defined by (.). For all s, s ∈ [, t] and for
each Q ∈W (u), we have by Lemma . that

∥∥(Qu)(s) – (Qu)(s)
∥∥

≤ ∥∥T(s) – T(s)
∥∥∥∥u – g(u)

∥∥ +
∥∥∥∥
∫ s


T(s – s)f

(
s,u(s),Gu(s)

)
ds

–
∫ s


T(s – s)f

(
s,u(s),Gu(s)

)
ds

∥∥∥∥
≤ ∥∥T(s) – T(s)

∥∥∥∥u – g(u)
∥∥ +

∫ s



∥∥T(s – s) – T(s – s)
∥∥m(s)�(r,w)ds

+
∫ s

s

∥∥T(s – s)
∥∥m(s)�(r,w)ds

≤ ∥∥T(s) – T(s)
∥∥[‖u‖ + (cr + d)

]

+
∫ s



∥∥T(s – s) – T(s – s)
∥∥m(s)�(r,w)ds

+
∫ s

s

∥∥T(s – s)
∥∥m(s)�(r,w)ds. (.)

Similarly, for all s, s ∈ (ti, ti+], with s < s, i = , , . . . ,p, we get

∥∥(Qu)(s) – (Qu)(s)
∥∥

≤ ∥∥T(s) – T(s)
∥∥[‖u‖ + (cr + d) +	

]

+
∫ s



∥∥T(s – s) – T(s – s)
∥∥m(s)�(r,w)ds

+
∫ s

s

∥∥T(s – s)
∥∥m(s)�(r,w)ds. (.)

Thus, from inequalities (.) and (.), we obtain

lim
s→s

∥∥(Qu)(s) – (Qu)(s)
∥∥ = .

So, Q(W ) is equicontinuous.
Let B = co(Q(W )). For any B ⊂ B and ε > , we know from Lemma . that there is a

sequence {un}∞n= ⊂ B such that

α
(
QB(t)

)
= α

(
QB(t)

)

≤ α
(∫ t


T(t – s)f

(
s,

{
un(s)

}∞
n=,

(
G

{
un(s)

}∞
n=

)))
ds + ε

≤ 
∫ t


α
(
T(t – s)f

(
s,

{
un(s)

}∞
n=,

(
G

{
un(s)

}∞
n=

)))
ds + ε

≤ N
∫ t



(
L(s)α

{
un(s)

}∞
n= + kL(s)α

{
un(s)

}∞
n=

)
ds + ε

≤ N
(

α
{
un(s)

}∞
n=

∫ t


L(s)ds + kα

{
un(s)

}∞
n=

∫ t


L(s)ds

)
+ ε

http://www.advancesindifferenceequations.com/content/2013/1/205
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≤ N
(

αPC(B)
∫ t


L(s)ds + kαPC(B)

∫ t


L(s)ds

)
+ ε

≤ NαPC(B)
∫ t



(
L(s) + kL(s)

)
ds + ε, t ∈ [, t],

where we have used Lemma .. Similarly, we have

α
(
QB(t)

) ≤ NαPC(B)
∫ t



(
L(s) + kL(s)

)
ds +	αPC + ε, t ∈ (ti, ti+], i = , , . . . ,p.

Using the fact that there is a continuous function φ : [,K] → R+ with max{|φ(t)| : t ∈
[,K]} =M satisfying the relation

∫ K
 |L(s) + kL(s) – φ(s)|ds < δ for any δ >  (δ < 

N ), the
above inequality takes the form

α
(
QB(t)

)
l ≤ N

(∫ t



∣∣L(s) + kL(s) – φ(s)
∣∣ds +

∫ t



∣∣φ(s)∣∣ds
)

αPC(B) +	αPC + ε

≤ (a + bt)αPC(B) +	αPC + ε,

where a = Nδ, b = NM and 	 = N
∑p

i= βi. Again, by Lemma ., for any ε > , there
is a sequence {vn}∞n= ⊂ co(QB) such that

α
(
QB(t)

)
= α

(
Q

(
co

(
QB(t)

)))

≤ α
(∫ t


T(t – s)f

(
s,

{
vn(s)

}∞
n=,

(
G

{
vn(s)

}∞
n=

)))
ds + ε

≤ 
∫ t


α
(
T(t – s)f

(
s,

{
vn(s)

}∞
n=,

(
G

{
vn(s)

}∞
n=

)))
ds + ε

≤ N
∫ t



(
L(s)α

{
vn(s)

}∞
n= + kL(s)α

{
vn(s)

}∞
n=

)
ds + ε

≤ N
∫ t



(
L(s) + kL(s)

)(
QB(s)

)
ds + ε

≤ N
∫ t



{∣∣L(s) + kL(s) – φ(s)
∣∣ + ∣∣φ(s)∣∣}[(a + bs) +	

]
αPC(B)ds + ε.

Similarly, for t ∈ (ti, ti+], i = , , . . . ,p, we can obtain

α
(
QB(t)

) ≤ N
∫ t



{∣∣L(s) + kL(s) – φ(s)
∣∣ + ∣∣φ(s)∣∣}[(a + bs) +	

]
αPC(B)ds

+	αPC(B) + ε

≤ N
∫ t



∣∣L(s) + kL(s) – φ(s)
∣∣ds[(a + bt) +	

]
αPC(B)

+ N
∫ t



[
M

[
(a + bs) +	

]
ds

]
αPC(B) +	αPC(B) + ε

≤
(
a + abt +

(bt)

!

)
αPC(B) +

[
(a + bt)	

]
αPC(B) +	αPC(B) + ε.
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Hence, by mathematical induction, for any positive integer n and t ∈ [,K], we obtain

αPC
(
QnB(t)

) ≤
(
an +C

na
n–(bt) +C

na
n– (bt)

!
+ · · · + (bt)n

n!

)
αPC(B)

+
(
an– +C

n–a
n–(bt) +C

n–a
n– (bt)

!
+ · · · + (bt)n–

(n – )!

)
	n–αPC(B)

+	nαPC(B).

By Lemma ., we have

α
(
QnB

) ≤
(
an +C

na
n–b +C

na
n– (b)

!
+ · · · + (b)n

n!

)
αPC(B)

+
(
an– +C

n–a
n–(b) +C

n–a
n– (b)

!
+ · · · + (b)n–

(n – )!

)
	n–αPC(B)

+	nαPC(B).

From Lemma ., there exists a positive integer n such that

an +C
na

n–b +C
na

n– (b)


!
+ · · · + (b)n

n!
= R < ,

an– +C
n–a

n–(b) +C
n–a

n– (b)


!
+ · · · + (b)n–

(n – )!
= T < ,

	n– = l and 	n = q.

Then

αPC
(
QnB

) ≤ RαPC(B) + TlαPC + qαPC

≤ (R + Tl + q)αPC .

Thus, it follows by Lemma . thatQ has at least one fixed point in B, that is, the nonlocal
integrodifferential equation (.) has at least one mild solution in B. This completes the
proof. �

Remark . In [], the author discussed the nonlocal initial value problem by taking f
to be compact in (.). From the above theorem, we notice that the key condition in []
is no more required. So, Theorem . generalizes the related results in []. Furthermore,
we extend the problem addressed in [] to the impulse case with the nonlinearity of a
more general form f (t,u(t),Gu(t)).

Theorem. If assumptions (A)-(A) are satisfied, then there is at least onemild solution
for (.) provided that

∫ K


m(s)ds < lim

T→∞
T –N[‖u‖ + (cT + d) +	]

N�(T ,w)
.

Proof We do not provide the proof of this theorem as it is similar to that of Theorem ..
�
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For our final result, we introduce the following condition:

(A′
) Let g : PC([,K];X) → X be continuous and compact. Then there exists a positive

constantM >  such that ‖g(u)‖ ≤ M for every u ∈ PC([,K];X).

Theorem . Suppose that conditions (A)-(A′
) and (A)-(A) hold. Then there exists at

least one mild solution for (.) if there exists a constant r such that

N
[‖u‖ +M +	

]
+N�(r,w)

∫ K


m(s)ds≤ γ .

Proof We omit the proof as it is similar to that of Theorem .. This completes the proof.
�

Example Consider a nonlocal problem of integrodifferential equations given by

∂u(t,w)
∂t

=
∂u(t,w)

∂w u(t,w)

+ sin u(t,w) +
∫ K



u(s,w)√
( + t)( + s)

ds, t ∈ [,K],

u() = u +
∫ K



√
 + s log

(
 +

∣∣u(s,w)∣∣)ds,

�u(t) =
∫ K



( + | cos u(s)|)
i√t + s + 

ds, i≥ ,

(.)

with  < t < t < · · · < tp < K ,  < s < s < · · · < sq < K . Let us take X = L([,K],R) and
define the operator A by A(t)y = y′′ with the domain D(A) = {y ∈ X: y, y′ are absolutely
continuous, y′′ ∈ X, y() = , y(K) = }. The assumptions of Theorem . clearly hold for a
large positive constant γ . Hence the conclusion of Theorem . applies to problem (.).
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