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Abstract
In this article, we use the Krasnosel’skii fixed point theorem, the Avery-Henderson
fixed point theorem and the Leggett-Williams fixed point theorem to obtain some
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1 Introduction
Analysis on measure chains was initiated by Stefan Hilger [] as a bridge between con-
tinuous and discrete calculus. Dynamic equations on time scales have been a component
of applied analysis on measure chains to describe the processes that feature both con-
tinuous and discrete elements [–]. This subject not only gives a unified approach to
the study of differential and difference equations, but also gives an extended approach to
the study of dynamic equations with nonuniform step size or a combination of real and
discrete domains. Further, the study of time scale equations has led to several important
applications, e.g., in the study of economics, insect populationmodels, heat transfer, stock
market and epidemic models (see [–]), etc. Integral boundary value problems occur in
the study of nonlocal phenomena in many different areas of applied mathematics, physics
and engineering, e.g., in heat conduction, chemical engineering, underground water flow,
thermo-elasticity, plasma physics, etc. (see [–] and the references therein).
Throughout this paper, we denote the one-dimensional p-Laplacian operator by ϕp(u),

i.e., ϕp(u) = |u|p–u for p >  with ϕ–
p = ϕq, where /p + /q = . For convenience, we make

the blanket assumption that , T are points in a time scale T; for an interval (,T)T, we
always mean (,T)∩T. Other types of an interval are defined similarly.
In , Sun and Li [] discussed the existence of at least one, two or three positive

solutions of the following boundary value problem:

(
ϕp

(
u�(t)

))� + h(t)f
(
uσ (t)

)
= , t ∈ [a,b]T, (.)

u(a) – B
(
u�(a)

)
= , u�

(
σ (b)

)
= . (.)
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They used the Krasnosel’skii fixed point theorem, the Avery-Henderson fixed point the-
orem and the Leggett-Williams fixed point theorem to prove the existence of multiple
positive solutions to problem (.)-(.).
In , Zhang and Qiao [] studied the existence criteria for the m-point boundary

value problem:

(
ϕp

(
u�(t)

))� + a(t)f
(
t,u(t)

)
= , t ∈ [, ]T, (.)

u() = , u() =
m–∑
i=

aiu(ξi). (.)

They obtained some results for the existence of multiple positive solutions of prob-
lem (.)-(.) by using the Krasnosel’skii fixed point theorem, the Avery-Henderson fixed
point theorem and the Leggett-Williams fixed point theorem.
In , Li and Zhang [] considered the existence of at least three positive solutions

for the boundary value problem with integral boundary conditions:

(
ϕp

(
x�(t)

))� + λf
(
t,x(t),x�(t)

)
= , t ∈ (,T)T, (.)

x�() = , αx(T) – βx() =
∫ T


g(s)x(s)∇s. (.)

They established some sufficient conditions for the existence of positive solutions to prob-
lem (.)-(.) by using the Legget-Williams fixed point theorem. For some recent results
on the existence of positive solutions for p-Laplacian dynamic equations on time scales,
see [–]. However, to the best of the authors’ knowledge, existence results for positive
solutions ofm-point integral boundary value problems for nonlinear p-Laplacian dynamic
equations on time scales have not been studied.
In this article, we are concerned with the existence of multiple positive solutions to the

m-point integral boundary value problem for a second-order p-Laplacian dynamic equa-
tion on time scale T:

(
ϕp

(
u�(t)

))� + a(t)f
(
t,u(t)

)
= , t ∈ [, ]T, (.)

u�() = , u() =
m–∑
i=

αi

∫ ξi

ξi–

u(s)�s, (.)

where T is a time scale,  = ξ < ξ < ξ < · · · < ξm– < ξm– =  and

(H)  <
∑m–

i= αi(ξi – ξi–) <  such that αi ≥  for i ∈ {, , . . . ,m – } ∪ {m – }, αm– > ;
(H) f ∈ Crd([, ]T × [,∞), [,∞));
(H) a ∈ Crd([, ]T, [,∞)) and there exists t ∈ (ξm–, )T such that a(t) > .

The rest of the paper is organized as follows. In Section , we state and prove some lem-
mas which are used later. In Section , we use the Krasnosel’skii [] fixed point theorem
to obtain the existence of at least one positive solution of problem (.)-(.). In Section ,
by using the Avery-Henderson [] fixed point theorem, we establish sufficient condi-
tions for the existence of at least two positive solutions of problem (.)-(.). In Section ,
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the existence of at least three positive solutions of problem (.)-(.) are proved by us-
ing the Leggett-Williams [] fixed point theorem. Two illustrative examples are given in
Section .
For convenience, we list the following well-known definitions which can be found in []

and the references therein.

Definition . A time scale T is an arbitrary nonempty closed subset of the real set R
with topology and ordering inherited from R.
The forward and backward jump operators σ ,ρ : T → T and the graininess μ : T→R

+

are defined, respectively, by

σ (t) := inf{s ∈ T|s > t}, ρ(t) := sup{s ∈ T|s < t}, μ(t) := σ (t) – t,

for all t ∈ T. If σ (t) > t, t is said to be right scattered, and if ρ(t) < t, t is said to be left
scattered; if σ (t) = t, t is said to be right dense, and if ρ(t) = t, t is said to be left dense. If T
has a left-scattered maximumM, define Tk = T – {M}; otherwise set Tk = T.

Definition . A function f : T → R is rd-continuous (rd-continuous is short for right-
dense continuous) provided it is continuous at each right-dense point in T and has a left-
sided limit at each left-dense point in T. The set of rd-continuous functions f : T →Rwill
be denoted by Crd(T) = Crd(T,R).

Definition . For f : T →R and t ∈ T
k , the delta derivative of f at the point t is defined

to be the number f �(t) (provided it exists), with the property that for each ε > , there is
a neighborhood U of t such that

∣∣f (σ (t)) – f (s) – f �(t)
(
σ (t) – s

)∣∣ ≤ ε
∣∣σ (t) – s

∣∣
for all s ∈U .

Definition . For a function f : T →R, the delta derivative is defined at the point t by

f �(t) =
f (σ (t)) – f (t)

σ (t) – t
,

if f is continuous at t and t is right-scattered. If t is not right-scattered, then the derivative
is defined by

f �(t) = lim
s→t

f (σ (t)) – f (s)
σ (t) – s

= lim
s→t

f (t) – f (s)
t – s

provided this limit exists.

Definition . If F�(t) = f (t), then we define the delta integral by

∫ t

a
f (s)�s = F(t) – F(a).
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2 Preliminaries
In this section, we first prove and recall some lemmas which are used in what follows.

Lemma . Let
∑m–

i= αi(ξi – ξi–) 
= . Then, for y ∈ Crd([, ]T,R), the problem

(
ϕp

(
u�(t)

))� + y(t) = , t ∈ [, ]T, (.)

u�() = , u() =
m–∑
i=

αi

∫ ξi

ξi–

u(s)�s, (.)

has a unique solution

u(t) = –
∫ t


ϕq

(∫ τ


y(s)�s

)
�τ

–


 –
∑m–

i= αi(ξi – ξi–)

m–∑
i=

αi

∫ ξi

ξi–

∫ η


ϕq

(∫ τ


y(s)�s

)
�τ�η

+


 –
∑m–

i= αi(ξi – ξi–)

∫ 


ϕq

(∫ τ


y(s)�s

)
�τ . (.)

Proof Integrating (.) from  to t and using the first condition of (.), one gets

u�(t) = –ϕq

(∫ t


y(s)�s

)
. (.)

Integrating (.) from  to t, we obtain

u(t) = u() –
∫ t


ϕq

(∫ τ


y(s)�s

)
�τ . (.)

In particular, for t = , we have

u() = u() –
∫ 


ϕq

(∫ τ


y(s)�s

)
�τ .

Using the second condition of (.), we get that

u() –
∫ 


ϕq

(∫ τ


y(s)�s

)
�τ

= u()
m–∑
i=

αi(ξi – ξi–) –
m–∑
i=

αi

∫ ξi

ξi–

∫ η


ϕq

(∫ τ


y(s)�s

)
�τ�η.

Hence,

u() =


 –
∑m–

i= αi(ξi – ξi–)

[∫ 


ϕq

(∫ τ


y(s)�s

)
�τ

–
m–∑
i=

αi

∫ ξi

ξi–

∫ η


ϕq

(∫ τ


y(s)�s

)
�τ�η

]
.

Substituting the value of u() in (.), we obtain the solution (.). �
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Lemma . Let
∑m–

i= αi(ξi – ξi–) 
= . If y ∈ Crd([, ]T, [,∞)), then the unique solution u
of problem (.)-(.) satisfies

u�(t) ≤ , u��(t) ≤ , t ∈ [, ]T.

Proof From (.), we have u�(t)≤  for t ∈ [, ]T. In fact, ϕq(x) is a monotone increasing
continuously differentiable function and

(∫ t


y(s)�s

)�

= y(t) ≥ .

Then, by the chain rule [], we get u��(t)≤  for t ∈ [, ]T. �

Lemma . Let  <
∑m–

i= αi(ξi – ξi–) < . If y ∈ Crd([, ]T, [,∞)), then the unique solu-
tion u of problem (.)-(.) satisfies

u(t) ≥ , t ∈ [, ]T.

Proof From Lemma ., u�(t) ≤  for t ∈ [, ]T, we know that u is nonincreasing on
[, ]T. Consequently, for each t, t ∈ T and t ≤ t, it holds that u(t) ≥ u(t).
Therefore,

u() ≥ u(ξ)≥ · · · ≥ u(ξi–) ≥ u(ξi) ≥ · · · ≥ u(ξm–) ≥ u(). (.)

If u() < , then the second condition of (.) together with (.) implies that

u() =
m–∑
i=

αi

∫ ξi

ξi–

u(s)�s≥
m–∑
i=

αiu(ξi)(ξi – ξi–)

≥ u()
m–∑
i=

αi(ξi – ξi–).

This contradicts the fact that  <
∑m–

i= αi(ξi – ξi–) < .
If u() < , it follows thatu() <  since u is nonincreasing.Hence, we get a contradiction.

Indeed, if u() <  and u() < , we again obtain a contradiction. �

Lemma . Let
∑m–

i= αi(ξi – ξi–) > . If y ∈ Crd([, ]T, [,∞)), then problem (.)-(.)
has no positive solutions.

Proof Suppose that problem (.)-(.) has a positive solution u satisfying u(t) ≥  for
t ∈ [, ]T. Then u(ξi) ≥  for all i = , . . . ,m– . By the second condition of (.) and (.),
we have

u() =
m–∑
i=

αi

∫ ξi

ξi–

u(s)�s

≥
m–∑
i=

αiu(ξi)(ξi – ξi–)
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≥ u()
m–∑
i=

αi(ξi – ξi–)

> u(),

getting a contradiction. �

Let E denote the Banach space Crd[, ]T with the norm ‖u‖ = supt∈[,]T |u(t)|. Define
the cone P ⊂ E, by

P =

{
u ∈ E|u(t)≥ ,u�(t) ≤ ,u��(t)≤  for t ∈ [, ]T,

and u�() = ,u() =
m–∑
i=

αi

∫ ξi

ξi–

u(s)�s

}
. (.)

Define the operator A : P → E by

Au(t) = –
∫ t


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

–


 –

m–∑
i=

αi

∫ ξi

ξi–

∫ η


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

+


 –

∫ 


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ , (.)

where a positive constant  =
∑m–

i= αi(ξi – ξi–) < . In view of Lemma ., the solutions
of problem (.)-(.) are given by the operator equation, u(t) = Au(t).
From (.), we claim that for each u ∈ P, Au ∈ P and satisfies (.). In fact, for t ∈ [, ]T,

we get

Au(t) ≥ Au()

= –
∫ 


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

–


 –

m–∑
i=

αi

∫ ξi

ξi–

∫ η


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

+


 –

∫ 


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

=


 –

∫ 


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

–


 –

m–∑
i=

αi

∫ ξi

ξi–

∫ η


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η ≥ .

This implies that Au(t) ≥  for t ∈ [, ]T. As in Lemma ., we can prove that (Au)�(t) ≤
, (Au)��(t) ≤  for t ∈ [, ]T. In addition, we find that (Au)�() =  and (Au)() =∑m–

i= αi
∫ ξi
ξi–

Au(s)�s. So, A : P → P. It is also easy to check that A : P → P is completely
continuous.

http://www.advancesindifferenceequations.com/content/2013/1/206
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Lemma . Let (H) hold. If u ∈ P, then

min
t∈[,]T

u(t) ≥ γ ‖u‖, (.)

where

γ =
αm–(ξm– – ξm–)( – ξm–)
 – αm–ξm–(ξm– – ξm–)

, (.)

which γ > .

Proof Since u�(t)≤  for t ∈ [, ]T, we have ‖u‖ = u(), mint∈[,]T u(t) = u().
Thus,

u() =
m–∑
i=

αi

∫ ξi

ξi–

u(s)�s≥
m–∑
i=

αiu(ξi)(ξi – ξi–) ≥ αm–u(ξm–)(ξm– – ξm–). (.)

From u��(t) ≤  for t ∈ [, ]T and (.), we get

u() ≤ u() +
u() – u(ξm–)

 – ξm–
( – )

≤ u()
[
 –


 – ξm–

+


αm–(ξm– – ξm–)( – ξm–)

]

= u()
[
 – αm–ξm–(ξm– – ξm–)
αm–(ξm– – ξm–)( – ξm–)

]
.

This implies that

min
t∈[,]T

u(t) ≥ αm–(ξm– – ξm–)( – ξm–)
 – αm–ξm–(ξm– – ξm–)

‖u‖.

Note that (H) yields

 <  –
m–∑
i=

αi(ξi – ξi–) <  – αm–(ξm– – ξm–) <  – αm–ξm–(ξm– – ξm–).

Thus we have γ > . The proof of Lemma . is complete. �

In the following, for the sake of convenience, we set constants

L =
 –∫ 

 ϕq(
∫ τ

 a(s)�s)�τ
, (.)

M =
 –

γξm–
∫ 
ξm–

ϕq(
∫ τ

ξm–
a(s)�s)�τ

, (.)

N =
 –

γ
∫ 
ξm–

ϕq(
∫ τ

ξm–
a(s)�s)�τ

. (.)

http://www.advancesindifferenceequations.com/content/2013/1/206
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3 Existence of at least one positive solution
Now we are in a position to establish the main result. Our first result is based on the
Krasnosel’skii fixed point theorem.

Theorem . (see []) Let E be a Banach space, and let P ⊂ E be a cone. Assume that �

and � are bounded open subsets of E with  ∈ �, � ⊂ �, and let A : P∩ (� \ �) → P
be a completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂�, ‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂�; or
(ii) ‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂�, ‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂� hold.

Then A has a fixed point in P ∩ (� \ �).

Theorem . Assume that (H)-(H) hold. In addition, suppose that there exist numbers
 < r < R <∞ such that

(A) f (t,u) ≤ ϕp(L)ϕp(r) for t ∈ [, ]T and ≤ u ≤ r;
(A) f (t,u) ≥ ϕp(Mr)ϕp(R) for t ∈ [ξm–, ]T and R≤ u < ∞,

where constants L,M are defined by (.) and (.), respectively.
Then problem (.)-(.) has at least one positive solution.

Proof Firstly, we define a cone P and a completely continuous operator A : P → P as in
(.) and (.), respectively.
Let � = {u ∈ Crd([, ]T) : ‖u‖ < r}. For any u ∈ P ∩ ∂� with ‖u‖ = r, from condition

(A), we obtain

Au(t) = –
∫ t


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

–


 –

m–∑
i=

αi

∫ ξi

ξi–

∫ η


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

+


 –

∫ 


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

≤ 
 –

∫ 


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

≤ ϕq(ϕp(L)ϕp(r))
 –

∫ 


ϕq

(∫ τ


a(s)�s

)
�τ

=
rL

 –

∫ 


ϕq

(∫ τ


a(s)�s

)
�τ = r = ‖u‖.

This implies that ‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂�.
Set � = {u ∈ Crd([, ]T) : ‖u‖ < R}. Since u ∈ P ∩ ∂�, it follows that mint∈[,]T u(t) ≥

γ ‖u‖ = γR. Hence from condition (A), for any u ∈ P ∩ ∂�, we have

‖Au‖ ≥ Au(ξm–)

= –
∫ ξm–


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

–


 –

m–∑
i=

αi

∫ ξi

ξi–

∫ η


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

http://www.advancesindifferenceequations.com/content/2013/1/206
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+


 –

∫ 


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

=
∫ 
 ϕq(

∫ τ

 a(s)f (s,u(s))�s)�τ –
∫ ξm–
 ϕq(

∫ τ

 a(s)f (s,u(s))�s)�τ

 –

+


 –

[


∫ ξm–


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

–
m–∑
i=

αi

∫ ξi

ξi–

∫ η


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

]

≥ 
 –

∫ 

ξm–

ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

–


 –

∫ 

ξm–

∫ η

ξm–

ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

≥ 
 –

∫ 

ξm–

ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

–


 –

∫ 

ξm–

∫ 

ξm–

ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

=
ξm–

 –

∫ 

ξm–

ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

≥ ξm–

 –

∫ 

ξm–

ϕq

(∫ τ

ξm–

a(s)f
(
s,u(s)

)
�s

)
�τ

≥ ϕq
(
ϕp(Mγ )ϕp(R)

)ξm–
∫ 
ξm–

ϕq(
∫ τ

ξm–
a(s)�s)�τ

 –

=
MγR
 –

ξm–

∫ 

ξm–

ϕq

(∫ τ

ξm–

a(s)�s
)

�τ = ‖u‖.

Therefore, ‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂�.
Thus, from Theorem ., it follows that A has a fixed point u in P ∩ (� \ �) such that

r ≤ ‖u‖ ≤ R. Therefore, problem (.)-(.) has at least one positive solution. �

4 Existence of at least two positive solutions
In this section, we obtain the existence of at least two positive solutions of problem (.)-
(.) by using the Avery-Henderson fixed point theorem which is as follows.

Theorem . (see []) Let P be a cone in a real Banach space E. Set

P(�,ρ) =
{
u ∈ P|�(u) < ρ

}
.

Let ν and � be increasing nonnegative continuous functionals on P, and let θ be a nonneg-
ative continuous functional on P with θ () =  such that, for some ρ >  and N > ,

�(u) ≤ θ (u)≤ ν(u) and ‖u‖ ≤ N�(u)

http://www.advancesindifferenceequations.com/content/2013/1/206
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for all u ∈ P(�,ρ). Suppose there exist a completely continuous operator A : P(�,ρ) → P
and  < ρ < ρ < ρ such that

θ (λu) = λθ (u) for ≤ λ ≤  and u ∈ ∂P(θ ,ρ),

and
(i) �(Au) > ρ for all u ∈ ∂P(�,ρ);
(ii) θ (Au) < ρ for all u ∈ ∂P(θ ,ρ);
(iii) P(ν,ρ) 
= ∅ and ν(Au) > ρ for all u ∈ ∂P(ν,ρ).

Then A has at least two fixed points u and u belonging to P(�,ρ) satisfying

ρ < ν(u) with θ (u) < ρ, and ρ < θ (u) with �(u) < ρ.

Define a constant l ∈ (, )T such that  < ξm– < l < . Let �, θ and ν be increasing, non-
negative and continuous functionals on P, defined by

�(u) = u(ξm–), θ (u) = u(ξm–), ν(u) = u(l).

Obviously, �(u) = θ (u) ≤ ν(u) for each u ∈ P. Moreover, Lemma . implies �(u) =
u(ξm–) ≥ γ ‖u‖ for each u ∈ P. It is easy to see that θ () =  and θ (λu) = λθ (u) for all
 ≤ λ ≤  and u ∈ ∂P(θ ,ρ).
We can now prove the following theorem.

Theorem . Assume that (H)-(H) hold, and suppose that there exist positive numbers
ρ < ρ < ρ such that the function f satisfies the following conditions:

(B) f (t,u) > ϕp(Nγ )ϕp(ρ) for t ∈ [ξm–, l]T and u ∈ [γρ,ρ];
(B) f (t,u) < ϕp(L)ϕp(ρ) for t ∈ [ξm–, ]T and u ∈ [,ρ];
(B) f (t,u) > ϕp(Mγ )ϕp(ρ) for t ∈ [ξm–, l]T and u ∈ [ρ, (/γ )ρ],

where constants L,M, N are defined by (.), (.) and (.), respectively.
Then problem (.)-(.) has at least two positive solutions u and u such that ρ < u(l)

with u(ξm–) < ρ and ρ < u(ξm–) with u(ξm–) < ρ.

Proof Wenowwish to prove that all of the conditions of Theorem. are satisfied. For this
purpose, we define the cone P as (.) and a completely continuous operator A : P → P by
(.).
To check condition (i) of Theorem., we choose u ∈ ∂P(�,ρ), then�(u) = ρ. This im-

plies that ρ ≤ ‖u‖ ≤ (/γ )�(u) = (/γ )ρ. For t ∈ [ξm–, ]T, we have ρ ≤ u(t) ≤ (/γ )ρ.
From condition (B), we get that f (t,u) > ϕp(Mγ )ϕp(ρ) for t ∈ [ξm–, l]T. Since Au ∈ P, we
obtain

�(Au) = (Au)(ξm–)

= –
∫ ξm–


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

–


 –

m–∑
i=

αi

∫ ξi

ξi–

∫ η


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η
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+


 –

∫ 


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

=
∫ 
 ϕq(

∫ τ

 a(s)f (s,u(s))�s)�τ –
∫ ξm–
 ϕq(

∫ τ

 a(s)f (s,u(s))�s)�τ

 –

+


 –

[


∫ ξm–


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

–
m–∑
i=

αi

∫ ξi

ξi–

∫ η


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

]

≥ 
 –

∫ 

ξm–

ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

–


 –

∫ 

ξm–

∫ η

ξm–

ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

≥ 
 –

∫ 

ξm–

ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

–


 –

∫ 

ξm–

∫ 

ξm–

ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

=
ξm–

 –

∫ 

ξm–

ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

≥ ξm–

 –

∫ 

ξm–

ϕq

(∫ τ

ξm–

a(s)f
(
s,u(s)

)
�s

)
�τ

> ϕq
(
ϕp(Mγ )ϕp(ρ)

)ξm–
∫ 
ξm–

ϕq(
∫ τ

ξm–
a(s)�s)�τ

 –

=
Mγρ

 –
ξm–

∫ 

ξm–

ϕq

(∫ τ

ξm–

a(s)�s
)

�τ

= ρ.

Hence, condition (i) of Theorem . holds.
We now prove that condition (ii) in Theorem . holds. In fact, for u ∈ ∂P(θ ,ρ), we have

θ (u) = ρ. This implies that  ≤ u(t) ≤ ‖u‖ ≤ (/γ )ρ for t ∈ [ξm–, ]T. From condition
(B), we have

θ (Au) = (Au)(ξm–)

≤ 
 –

∫ 


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

<
ϕq(ϕp(L)ϕp(ρ))

 –

∫ 


ϕq

(∫ τ


a(s)�s

)
�τ

=
Lρ

 –

∫ 


ϕq

(∫ τ


a(s)�s

)
�τ

= ρ = ‖u‖.

This shows that condition (ii) of Theorem . is satisfied.
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Now, we assert that condition (iii) of Theorem . also holds. If u(t) = ρ/ for t ∈ [, ]T,
then ν(u) = ρ/. Thus P(ν,ρ) 
= ∅. Let u ∈ ∂P(ν,ρ), then ν(u) = u(l) = ρ. So that γρ ≤
u(t) ≤ ‖u‖ ≤ ρ. From condition (B), for any Au ∈ P, we have

ν(Au) = (Au)(l)≥ (Au)()

= –
∫ 


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

–


 –

m–∑
i=

αi

∫ ξi

ξi–

∫ η


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

+


 –

∫ 


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

=


 –

[


∫ 


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

–
m–∑
i=

αi

∫ ξi

ξi–

∫ η


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

]

=


 –

[m–∑
i=

αi

∫ ξi

ξi–

∫ 


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

–
m–∑
i=

αi

∫ ξi

ξi–

∫ η


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

]

=


 –

m–∑
i=

αi

∫ ξi

ξi–

∫ 

η

ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

≥ 
 –

m–∑
i=

αi

∫ ξi

ξi–

∫ 

ξm–

ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

≥ 

 –

∫ 

ξm–

ϕq

(∫ τ

ξm–

a(s)f
(
s,u(s)

)
�s

)
�τ

> ϕq
(
ϕp(Nγ )ϕp(ρ)

)
∫ 
ξm–

ϕq(
∫ τ

ξm–
a(s)�s)�τ

 –

=
Nγρ

 –

∫ 

ξm–

ϕq

(∫ τ

ξm–

a(s)�s
)

�τ = ρ.

Therefore, condition (iii) of Theorem . is satisfied.
Thus, by Theorem ., problem (.)-(.) has at least two positive solutions u and u

such that ρ < u(l) with u(ξm–) < ρ and ρ < u(ξm–) with u(ξm–) < ρ. �

5 Existence of at least three positive solutions
In this section, we use the Leggett-Williams fixed point theorem to prove the existence of
at least three positive solutions to problem (.)-(.). The Leggett-Williams fixed point
theorem is as follows.
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Theorem . (see []) Let P be a cone in the real Banach space E. Set

Pr =
{
x ∈ P|‖x‖ < r

}
, P(� ,a,b) =

{
x ∈ P|a ≤ �(x),‖x‖ ≤ b

}
.

Let A : Pr → Pr be a completely continuous operator and let� be a nonnegative continuous
concave functional on P with �(u) ≤ ‖u‖ for all u ∈ Pr . Suppose that there exists  < ρ <
ρ < (/γ )ρ < ρ such that the following conditions hold:

(i) {u ∈ P(� ,ρ, (/γ )ρ)|�(u) > ρ} 
= ∅ and �(Au) > ρ for all u ∈ ∂P(� ,ρ, (/γ )ρ);
(ii) ‖Au‖ < ρ for ‖u‖ ≤ ρ;
(iii) �(Au) > ρ for u ∈ P(� ,ρ,ρ) with ‖Au‖ > (/γ )ρ.

Then A has at least three fixed points u, u and u in Pr satisfying ‖u‖ < ρ, �(u) > ρ,
ρ < ‖u‖ with �(u) < ρ.

We now prove the following result.

Theorem. Assume that (H)-(H) hold. Suppose that there exist constants  < ρ < ρ <
(/γ )ρ ≤ ρ such that

(C) f (t,u) ≤ ϕp(L)ϕp(ρ) for t ∈ [ξm–, ]T and u ∈ [,ρ];
(C) f (t,u) > ϕp(Mγ )ϕp(ρ) for t ∈ [ξm–, ]T and u ∈ [ρ, (/γ )ρ];
(C) f (t,u) < ϕp(L)ϕp(ρ) for t ∈ [ξm–, ]T and u ∈ [,ρ],

where constants L,M are defined by (.) and (.), respectively.
Thenproblem (.)-(.)has at least three positive solutions u,u and u such that ‖u‖ <

ρ, u(ξm–) > ρ, ‖u‖ > ρ with u(ξm–) < ρ.

Proof We will show that all the conditions of Leggett-Williams Theorem . hold with
respect to the operator A defined in (.).
At first, we define a nonnegative continuous concave functional � : P → [,∞) by

�(u) = u(ξm–), where the cone P is defined by (.). In fact, for u ∈ P, we get �(u) ≤ ‖u‖.
If u ∈ Pρ , then ‖u‖ ≤ ρ. From condition (C), we obtain

Au(t) = –
∫ t


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

–


 –

m–∑
i=

αi

∫ ξi

ξi–

∫ η


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

+


 –

∫ 


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

≤ 
 –

∫ 


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

≤ ϕq(ϕp(L)ϕp(ρ))
 –

∫ 


ϕq

(∫ τ


a(s)�s

)
�τ

=
Lρ

 –

∫ 


ϕq

(∫ τ


a(s)�s

)
�τ = ρ.

This implies that ‖Au‖ ≤ ρ. Therefore, we have A : Pρ → Pρ . Since (ρ/γ ) ∈
P(� ,ρ, (ρ/γ )) and �((ρ/γ )) = (ρ/γ ) > ρ, then {u ∈ P(� ,ρ, (ρ/γ ))|�(u) > ρ} 
= ∅.
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For u ∈ P(� ,ρ, (ρ/γ )), we get ρ ≤ u(ξm–) ≤ ‖u‖ ≤ (ρ/γ ). By using condition (C), we
obtain

�(Au) = (Au)(ξm–)

= –
∫ ξm–


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

–


 –

m–∑
i=

αi

∫ ξi

ξi–

∫ η


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

+


 –

∫ 


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

=
∫ 
 ϕq(

∫ τ

 a(s)f (s,u(s))�s)�τ –
∫ ξm–
 ϕq(

∫ τ

 a(s)f (s,u(s))�s)�τ

 –

+


 –

[


∫ ξm–


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

–
m–∑
i=

αi

∫ ξi

ξi–

∫ η


ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

]

≥ 
 –

∫ 

ξm–

ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

–


 –

∫ 

ξm–

∫ η

ξm–

ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

≥ 
 –

∫ 

ξm–

ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

–


 –

∫ 

ξm–

∫ 

ξm–

ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ�η

=
ξm–

 –

∫ 

ξm–

ϕq

(∫ τ


a(s)f

(
s,u(s)

)
�s

)
�τ

≥ ξm–

 –

∫ 

ξm–

ϕq

(∫ τ

ξm–

a(s)f
(
s,u(s)

)
�s

)
�τ

> ϕq
(
ϕp(Mγ )ϕp(ρ)

)ξm–
∫ 
ξm–

ϕq(
∫ τ

ξm–
a(s)�s)�τ

 –

=
Mγρ

 –
ξm–

∫ 

ξm–

ϕq

(∫ τ

ξm–

a(s)�s
)

�τ = ρ.

Hence, condition (i) of Theorem . is satisfied.
Indeed, if ‖u‖ ≤ ρ, then condition (C) implies that

(Au)(t) <
ϕq(ϕp(L)ϕp(ρ))

 –

∫ 


ϕq

(∫ τ


a(s)�s

)
�τ

=
Lρ

 –

∫ 


ϕq

(∫ τ


a(s)�s

)
�τ = ρ.

Thus ‖Au‖ < ρ. Therefore, condition (ii) of Theorem . holds.

http://www.advancesindifferenceequations.com/content/2013/1/206


Thiramanus and Tariboon Advances in Difference Equations 2013, 2013:206 Page 15 of 18
http://www.advancesindifferenceequations.com/content/2013/1/206

We finally show that condition (iii) of Theorem . also holds. Assume that u ∈
P(� ,ρ,ρ), with ‖Au‖ > (/γ )ρ. Then we obtain

�(Au) = (Au)(ξm–)

≥ (Au)()

≥ γ ‖Au‖ > ρ.

So, condition (iii) of Theorem . is satisfied. Therefore, an application of Theorem .
implies that problem (.)-(.) has at least three positive solutions u, u and u such that
‖u‖ < ρ, u(ξm–) > ρ and ‖u‖ > ρ with u(ξm–) < ρ. �

6 Numerical examples
In this section, we present some examples to illustrate our results.

Example . Consider the following six-point integral boundary value problem with p =
 and T =R:

(
ϕp

(
u�(t)

))� + f
(
t,u(t)

)
= , t ∈ [, ]T, (.)

u�() = , u() =



∫ /


u(s)�s +




∫ /

/
u(s)�s + 

∫ /

/
u(s)�s, (.)

where

f (t,u) =

⎧⎪⎪⎨
⎪⎪⎩


 t + u, t ∈ [, ],u ∈ [,  ],


 t + u + (u – 
 )

/, t ∈ [, ],u ∈ [  ,

 ],


 t + u + (u – 

 )
/ + (u – 

 ), t ∈ [, ],u ∈ [  ,∞).

Set α = /, α = /, α = , α = α = , ξ = , ξ = /, ξ = /, ξ = /, ξ = /, ξ = 
and a(t) = . We can show that

 =
∑
i=

αi(ξi – ξi–) =



< .

Through a simple calculation we can get

γ =
αm–(ξm– – ξm–)( – ξm–)
 – αm–ξm–(ξm– – ξm–)

=



,

M =
 –

γξm–
∫ 
ξm–

ϕq(
∫ τ

ξm–
a(s)�s)�τ

=



√
,

L =
 –∫ 

 ϕq(
∫ τ

 a(s)�s)�τ
=




.

Choose r = / and R = /, then f (t,u) satisfies

f (t,u) ≤ 


+
(



)

<
(



× 


)

= ϕ(Lr), t ∈ [, ],u ∈
[
,




]
,
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and

f (t,u) ≥ 


(



)
+

(



)

+ 
(


–



)/

>
(


√



× 


× 



)

= ϕ(MγR), t ∈
[


, 

]
,u ∈

[


,∞

)
.

By Theorem ., we have that boundary value problem (.)-(.) has at least one positive
solution.

Example . Consider the following six-point integral boundary value problem with p =
 and T = {} ∪ {/n : n ∈N} ∪ (  , ] (N stands for the natural number set).

(
ϕp

(
u�(t)

))� + f
(
t,u(t)

)
= , t ∈ [, ]T, (.)

u�() = , u() =



∫ /


u(s)�s +




∫ /

/
u(s)�s + 

∫ /

/
u(s)�s, (.)

where

f (t,u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


 t +


u,

t ∈ [  , ],u ∈ [, ],

 t +


u + (u – )/,

t ∈ [  , ],u ∈ [, ],

 t +


u + (u – )/ + 

 (u – )/,

t ∈ [  , ],u ∈ [,  ],

 t +


u + (u – )/ + 

 (u – )/ + 
 (u – 

 ),

t ∈ [  , ],u ∈ [  , ].

Set α = /, α = /, α = , α = α = , ξ = , ξ = /, ξ = /, ξ = /, ξ = /, ξ = 
and a(t) = . We can show that

 =
∑
i=

αi(ξi – ξi–) =



< .

Through a simple calculation we can get

γ =
αm–(ξm– – ξm–)( – ξm–)
 – αm–ξm–(ξm– – ξm–)

=


,

M =
 –

γξm–
∫ 
ξm–

ϕq(
∫ τ

ξm–
a(s)�s)�τ

=



,

L =
 –∫ 

 ϕq(
∫ τ

 a(s)�s)�τ
=



.

Choose ρ = , ρ =  and ρ = , then f (t,u) satisfies

f (t,u) ≤ 


+



<



×  = ϕ(Lρ), t ∈
[


, 

]
,u ∈ [, ],
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and

f (t,u) ≥ 


(



)
+




() + ( – )/

>



× 


×  = ϕ(Mγρ), t ∈
[


, 

]
,u ∈

[
,




]
,

and

f (t,u) ≤ 


+



() + ( – )/ +




( – )/ +



(
 –




)

<



×  = ϕ(Lρ), t ∈
[


, 

]
,u ∈ [, ].

By Theorem ., we get that problem (.)-(.) has at least three positive solutions u, u
and u such that ‖u‖ < , u(  ) >  and ‖u‖ >  with u(  ) < .
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