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Abstract
In this paper, we study the existence of positive solutions for a nonlinear fractional
boundary value problem on the half-line. Based on the monotone iterative technique,
we obtain the existence of positive solutions of a fractional boundary value problem
and establish iterative schemes for approximating the solutions. As application, an
example is presented to illustrate the main results.
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1 Introduction
The initial and boundary value problems for nonlinear fractional differential equations
arise from the study of models of viscoelasticity, control, porous media, etc. [, ]. In the
past few years, the existence and multiplicity of positive solutions for nonlinear fractional
boundary value problems have been widely studied by many authors (see [–] and the
references therein).
Most of these papers only considered the existence of positive solutions of various

boundary value problems. Yet how can we find the solutions when their existence
is known? Sun et al. [] proved the existence of positive solutions for second-order
p-Laplacian boundary value problemswhich are defined on finite intervals via the iterative
technique. Liang and Zhang [] investigated the existence of three positive solutions for
the followingm-point fractional boundary value problem on an infinite interval by means
of the Leggett-Williams fixed point theorems on cones. In [, ], by employing the stan-
dard fixed point theorems and themonotone iterative technique, the authors deal with the
existence of solutions for nonlinear fractional boundary value problems on an unbounded
domain. Motivated by all the works above, we investigate the iteration and existence of
positive solutions for the following fractional boundary value problems on the half-line:

{
Dα

+u(t) + q(t)f (t,u(t)) = , t ∈ (,∞),
u() = , limt→∞ Dα–

+ u(t) = λ ≥ ,
(.)

where  < α < , Dα
+ is the standard Riemann-Liouville fractional derivative. By applying

monotone iterative techniques, we construct some successive iterative schemes to ap-
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proximate the solutions in this paper. They start off with a simple function and the zero
function respectively, which is convenient for application.
Throughout this paper, we assume that the following conditions hold:

(H) f ∈ C([,∞)× [,∞), [,∞)), f (t, ) �≡  on any subinterval of [,∞) and when u is
bounded, f (t, ( + tα–)u) is bounded on [,∞);

(H) q(t) : [,∞) → [,∞) is not identical zero on any closed subinterval of [,∞), and
 <

∫ ∞
 q(s)ds < ∞.

2 Preliminaries
We need the following definitions and lemmas that will be used to prove our main results.

Definition . [] The integral

Iα+f (t) =


�(α)

∫ t



f (s)
(t – s)–α

ds, t > ,

where α > , is called the Riemann-Liouville fractional integral of order α and �(α) is the
Euler gamma function defined by �(α) =

∫ ∞
 tα–e–t dt, α > .

Definition . [] For a function f (x) given in the interval [,∞), the expression

Dα
+f (t) =


�(α)

(
d
dt

)n ∫ t



f (s)
(t – s)α–n+

ds,

where n = [α]+, [α] denotes the integer part of number α, is called the Riemann-Liouville
fractional derivative of order α.

Lemma . [] Let α >  and u ∈ C(,∞)∩L(,∞).Then the fractional differential equa-
tion

Dα
+u(t) = 

has

u(t) = ctα– + ctα– + · · · + cntα–n, ci ∈ R, i = , , . . . ,n,n = [α] + 

as a unique solution.

Lemma . [] Assume that u(t) ∈ C(,∞)∩L(,∞) with a fractional derivative of order
α >  that belongs to C(,∞)∩ L(,∞). Then

Iα+D
α
+u(t) = u(t) + ctα– + ctα– + · · · + cntα–n,

for some ci ∈ R, i = , , . . . ,n, n = [α] + .

Lemma . Let g ∈ C[,∞), then the fractional boundary value problem

{
Dα

+u(t) + g(t) = , t ∈ (,∞),  < α < ,
u() = , limt→∞ Dα–

+ u(t) = λ ≥ 
(.)
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has a unique solution

u(t) =
∫ ∞


G(t, s)g(s)ds +

λ

�(α)
tα–,

where

G(t, s) =


�(α)

{
tα– – (t – s)α–,  ≤ s ≤ t <∞,
tα–,  ≤ t ≤ s <∞.

(.)

Proof By Lemma ., the solution of (.) can be written as

u(t) = ctα– + ctα– –
∫ t



(t – s)α–

�(α)
g(s)ds.

From u() = , we know that c = .
Together with limt→∞ Dα–

+ u(t) = λ ≥ , we have

c =
λ +

∫ ∞
 g(s)ds
�(α)

.

Therefore, the unique solution of fractional boundary value problem (.) is

u(t) = –
∫ t



(t – s)α–

�(α)
g(s)ds +

∫ ∞



tα–

�(α)
g(s)ds +

λ

�(α)
tα–

=
∫ t



tα– – (t – s)α–

�(α)
g(s)ds +

∫ ∞

t

tα–

�(α)
g(s)ds +

λ

�(α)
tα–

=
∫ ∞


G(t, s)g(s)ds +

λ

�(α)
tα–.

The proof is complete. �

Lemma . The function G(t, s) defined by (.) satisfies the following:
() G(t, s) is a continuous function and G(t, s)≥  for (t, s) ∈ [,∞)× [,∞);
() G(t, s)≤ tα–

�(α) ,
G(t,s)
+tα– ≤ 

�(α) for (t, s) ∈ [,∞)× [,∞).

The proof is easy, so we omit it here.
In this paper, we use the following space E, which is denoted by

E =
{
u ∈ C[,∞) : sup

≤t<∞
|u(t)|
 + tα–

<∞
}
,

to study fractional boundary value problem (.). From [], we know that E is a Banach
space equipped with the norm ‖u‖ = sup≤t<∞

|u(t)|
+tα– < ∞. Define the cone P ⊂ E by

P =
{
u ∈ E : u(t) ≥ , t ∈ [,∞)

}
,

and an integral operator T : P → E by

Tu(t) =
∫ ∞


G(t, s)q(s)f

(
s,u(s)

)
ds +

λ

�(α)
tα–,  ≤ t < ∞, (.)

where G(t, s) is defined by (.).
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Lemma . [] Let V = {u ∈ E : ‖u‖ < l} (l > ), V = { u(t)
+tα– : u ∈ V }. If V is equicontinu-

ous on any compact intervals of [,∞) and equiconvergent at infinity, then V is relatively
compact on E.

Remark . V is called equiconvergent at infinity if and only if for all ε > , there exists
v(ε) >  such that for all u ∈ V, t, t ≥ v, the following holds:

∣∣∣∣ u(t)
 + tα–

–
u(t)

 + tα–

∣∣∣∣ < ε.

Lemma . Let (H) and (H) hold, then T : P → P is completely continuous.

Proof First, it is easy to check that T : P → P is well defined. Now, we prove that T is
continuous and compact respectively. Let un → u as n → ∞ in P, then there exists r
such that supn∈N\{} ‖un‖ < r. Let Br = sup{f (t, ( + tα–)u) | (t,u) ∈ [,∞) × [, r]}. By
(H), we have

∫ ∞


q(s)f

(
s,u(s)

)
ds≤ Br

∫ ∞


q(s)ds < ∞.

Then by the Lebesgue dominated convergence theorem and the continuity of f , we can
get

∫ ∞


q(s)f

(
s,un(s)

)
ds →

∫ ∞


q(s)f

(
s,u(s)

)
ds as n→ ∞.

Therefore, we have

‖Tun – Tu‖ = sup
≤t<∞

∣∣∣∣
∫ ∞



G(t, s)
 + tα–

q(s)
[
f
(
s,un(s)

)
– f

(
s,u(s)

)]
ds

∣∣∣∣
≤ 

�(α)

∣∣∣∣
∫ ∞


q(s)f

(
s,un(s)

)
ds –

∫ ∞


q(s)f

(
s,u(s)

)
ds

∣∣∣∣ → , n→ ∞.

Then T is continuous.
Let � be any bounded subset of P. Then there exists r >  such that ‖u‖ ≤ r for any

u ∈ �. Let Br = sup{f (t, ( + tα–)u) | (t,u) ∈ [,∞) × [, r]}, therefore, from Lemma .,
we have

‖Tu‖ = sup
≤t<∞


 + tα–

∣∣∣∣
∫ ∞


G(t, s)q(s)f

(
s,u(s)

)
ds +

λ

�(α)
tα–

∣∣∣∣
≤ Br

�(α)

∫ ∞


q(s)ds +

λ

�(α)
< ∞.

So, T� is bounded. Moreover, for any T ∈ (,∞) and t, t ∈ [,T], without loss of gener-
ality, we may assume that t > t, we have

∣∣∣∣ Tu(t) + tα–
–

Tu(t)
 + tα–

∣∣∣∣
≤

∫ ∞



∣∣∣∣ G(t, s) + tα–
–
G(t, s)
 + tα–

∣∣∣∣q(s)f (s,u(s))ds + λ

�(α)
∣∣tα– – tα–

∣∣
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≤
∫ ∞



∣∣∣∣ G(t, s) + tα–
–
G(t, s)
 + tα–

∣∣∣∣q(s)f (s,u(s))ds
+

∫ ∞



∣∣∣∣G(t, s) + tα–
–
G(t, s)
 + tα–

∣∣∣∣q(s)f (s,u(s))ds + λ

�(α)
∣∣tα– – tα–

∣∣.
On the other hand, we have

∫ ∞



∣∣∣∣ G(t, s) + tα–
–
G(t, s)
 + tα–

∣∣∣∣q(s)f (s,u(s))ds
≤

∫ t



∣∣∣∣ G(t, s) + tα–
–
G(t, s)
 + tα–

∣∣∣∣q(s)f (s,u(s))ds
+

∫ t

t

∣∣∣∣ G(t, s) + tα–
–
G(t, s)
 + tα–

∣∣∣∣q(s)f (s,u(s))ds
+

∫ ∞

t

∣∣∣∣ G(t, s) + tα–
–
G(t, s)
 + tα–

∣∣∣∣q(s)f (s,u(s))ds
≤ Br

�(α)

∫ t



[tα– – tα– ] + [(t – s)α– – (t – s)α–]
 + tα–

q(s)ds

+
Br

�(α)

∫ t

t

[tα– – tα– ] + (t – s)α–

 + tα–
q(s)ds +

Br

�(α)

∫ ∞

t

tα– – tα–

 + tα–
q(s)ds.

Similarly, we have

∫ ∞



∣∣∣∣G(t, s) + tα–
–
G(t, s)
 + tα–

∣∣∣∣q(s)f (s,u(s))ds→  uniformly as t → t,

λ

�(α)
∣∣tα– – tα–

∣∣ →  uniformly as t → t.

Hence, T� is locally equicontinuous on [,∞).
Next, we show that T : P → E is equiconvergent at ∞. For any u ∈ �, we have

∫ ∞


q(s)f

(
s,u(s)

)
ds <∞,

and

lim
t→∞

∣∣∣∣ Tu(t)
 + tα–

∣∣∣∣ = lim
t→∞


 + tα–

∫ ∞


G(t, s)q(s)f

(
s,u(s)

)
ds + lim

t→∞
λ

�(α)
· tα–

 + tα–

=
λ

�(α)
< ∞.

Hence, T� is equiconvergent at infinity. By using Lemma ., we obtain that T : P → P
is completely continuous. The proof is complete. �

3 Main results
We will prove the following existence results.

Theorem . Assume that (H) and (H) hold, and there exists a > λ
�(α) such that:

(H) f (t,u) ≤ f (t,u) for any  ≤ t <∞,  ≤ u ≤ u;
(H) f (t, ( + tα–)u) ≤ a�(α)


∫ ∞
 q(s)ds , (t,u) ∈ [,∞)× [,a].

http://www.advancesindifferenceequations.com/content/2013/1/210
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Then fractional boundary value problem (.)has two positive solutions w* and v* on [,∞),
satisfying  ≤ ‖w*‖ ≤ a,  ≤ ‖v*‖ ≤ a,  < v* ≤ w*, and

lim
n→∞wn = lim

n→∞Tnw = w*, lim
n→∞ vn = lim

n→∞Tnv(t) = v*,

where

w(t) =
(
a

+

λ

�(α)

)
tα–, v(t) = , t ∈ [,∞).

Proof By Lemma ., we know that T : P → P is completely continuous. For any u,u ∈ P
with u ≤ u, from the definition of T and (H), we can easily get that Tu ≤ Tu. We
denote

Pa =
{
u ∈ P : ‖u‖ ≤ a

}
.

Then, in what follows, we first prove that T : Pa → Pa.
If u ∈ Pa, then ‖u‖ ≤ a, that is,  ≤ u(t)

+tα– ≤ a,  ≤ t < ∞. Then assumption (H) implies
f (t,u(t))≤ a�(α)


∫ ∞
 q(s)ds for all (t,u) ∈ [,∞)× [,a], together with (.), (H), we get

‖Tu‖ = sup
≤t<∞

∣∣∣∣
∫ ∞



G(t, s)
 + tα–

q(s)f
(
s,u(s)

)
ds +

λ

�(α)
· tα–

 + tα–

∣∣∣∣
≤

∫ ∞
 q(s)ds
�(α)

· a�(α)

∫ ∞
 q(s)ds

+
λ

�(α)

<
a

+
a

= a.

Hence, we have proved that T : Pa → Pa.
Let w(t) = ( a +

λ
�(α) )t

α–,  ≤ t < ∞, then w(t) ∈ Pa. Let w = Tw, w = Tw; then by
Lemma ., we have that w ∈ Pa and w ∈ Pa. We denote wn+ = Twn = Tnw, n = , , . . . .
Since T : Pa → Pa, we have that wn ∈ T(Pa) ⊂ Pa, n = , , . . . . It follows from the complete
continuity of T that {wn}∞n= is a sequentially compact set.
By (.) and (H), we get

w(t) =
∫ ∞


G(t, s)q(s)f

(
s,w(s)

)
ds +

λ

�(α)
tα–

≤ a�(α)

∫ ∞
 q(s)ds

·
∫ ∞



tα–

�(α)
q(s)ds +

λ

�(α)
tα–

=
(
a

+

λ

�(α)

)
tα–

= w(t).

So, by (H), we have

w(t) = Tw(t)≤ Tw(t)≤ w(t),  ≤ t <∞.

http://www.advancesindifferenceequations.com/content/2013/1/210
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By induction, we get

wn+ ≤ wn,  ≤ t <∞,n = , , , . . . . (.)

Thus, there exists w* ∈ Pa such that wn → w* as n→ ∞. Applying the continuity of T and
wn+ = Twn, we get that Tw* = w*.
Let v(t) = ,  ≤ t < ∞; then v(t) ∈ Pa. Let v = Tv, v = Tv; then by Lemma ., we

know that v ∈ Pa and v ∈ Pa. We denote vn+ = Tvn = Tnv, n = , , , . . . . Since T : Pa →
Pa, we have vn ∈ T(Pa) ⊂ Pa, n = , , . . . . It follows from the complete continuity of T that
{vn}∞n= is a sequentially compact set.
Since v = Tv ∈ Pa, we have

v(t) = (Tv)(t) = (T)(t)≥ ,  ≤ t < ∞.

So, we have

v(t) = (Tv)(t) ≥ (Tv)(t) = v(t),  ≤ t < ∞.

By induction, we get

vn+ ≥ vn,  ≤ t < ∞,n = , , , . . . . (.)

Thus, there exists v* ∈ Pa such that vn → v* as n → ∞. Applying the continuity of T and
vn+ = Tvn, we get Tv* = v*.
Since w(t) = ( a +

λ
�(α) )t

α– ≥ v = , and the operator T is increasing, then

w = Tw ≥ Tv = v,

by induction, we have

wn ≥ vn,  ≤ t < ∞,n = , , , . . . .

Together with (.), (.), we obtain

v ≤ v ≤ · · · ≤ vn ≤ vn+ ≤ · · · ≤ wn+ ≤ wn ≤ · · · ≤ w.

If f (t, ) �≡ ,  ≤ t < ∞, then the zero function is not the solution of fractional bound-
ary value problem (.). Thus, v* is a positive solution of fractional boundary value prob-
lem (.).
It is well known that each fixed point of T in P is a solution of fractional boundary value

problem (.). Hence,w* and v* are two positive solutions on [,∞) of fractional boundary
value problem (.), satisfying  < Tv ≤ v* ≤ w*. �

4 An example
Example . Consider the boundary value problemof the fractional differential equation.

⎧⎨
⎩D



+u(t) + e–t f (t,u(t)) = , t ∈ (,∞),

u() = , limt→∞ D


+u(t) = ,

(.)

http://www.advancesindifferenceequations.com/content/2013/1/210
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where

f
(
t,u(t)

)
=

{ |cos t| + ( u
+

√
t )

,  ≤ t < ∞, ≤ u ≤ ;
|cos t| + ( 

+
√
t )

,  ≤ t < ∞,u≥ .

In this case, α = 
 , q(t) = e–t , λ = , �(  ) ≈ .. It is clear that (H)-(H) hold. Select

a = , by direct calculation, we can obtain

∫ ∞


q(s)ds =

∫ ∞


e–s ds = ,

f
(
t,

(
 + t



)
u
) ≤  +  =  <

a�(α)

∫ ∞
 q(s)ds

≈ × .


= ., t ∈ [,∞),u ∈ [, ].

The conditions in Theorem . are all satisfied. Therefore, fractional boundary value prob-
lem (.) has two positive solutions.
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