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Abstract
In this paper we define the λ(u)-statistical convergence that generalizes, in a certain
sense, the notion of λ-statistical convergence. We find some relations with sets of
sequences which are related to the notion of strong convergence.
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1 Introduction and preliminaries
The notion of statistical convergence (see Fast []) has been studied in various setups, and
its various generalizations, extensions and variants have been studied by various authors
so far. For example, lacunary statistical convergence [], A-statistical convergence [, ],
statistical summability (C, ) [, ], statistical λ-summability [], statistical σ -convergence
[], statisticalA-summability [], λ-statistical convergence with order α [], lacunary and
λ-statistical convergence in a solid Riesz space [, ], lacunary statistical convergence
and ideal convergence in random -normed spaces [, ], generalized weighted statisti-
cal convergence [] etc. In this paper we define the notion of λ-statistical convergence as a
matrix domain of a difference operator [], which is obtained by replacing the sequence x
by u�x, where �x = (xk – xk+)∞k= and u = (uk)∞k= is another sequence with uk �=  for all k.
We find some relations with sets of sequences which are related to the notion of strong
convergence [].
Let K be a subset of the set of natural numbers N. Then the asymptotic density of K

denoted by δ(K) is defined as δ(K) = limn

n |{k ≤ n : k ∈ K}|, where the vertical bars denote

the cardinality of the enclosed set.
A number sequence x = (xk) is said to be statistically convergent to the number L if for

each ε > , the set K(ε) = {k ≤ n : |xk – L| > ε} has asymptotic density zero, i.e.,

lim
n


n

∣∣{k ≤ n : |xk – L|}∣∣ = .

In this case, we write S- limx = L.
Let λ = (λn) be a non-decreasing sequence of positive numbers tending to ∞ such that

λn+ ≤ λn + , λ = .
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The generalized de la Vallée-Poussin mean is defined by

tn(x) =:

λn

∑
j∈In

xj,

where In = [n – λn + ,n].
A sequence x = (xj) is said to be (V ,λ)-summable to a number L if

tn(x)→ L as n→ ∞.

In this case, L is called the λ-limit of x.
Let K ⊆N. Then the λ-density of K is defined by

δλ(K) = lim
n


λn

∣∣{n – λn +  ≤ j ≤ n : j ∈ K}∣∣.
In case λn = n, λ-density reduces to the asymptotic density. Also, since (λn/n) ≤ , δ(K) ≤
δλ(K) for every K ⊆N.
A sequence x = (xk) is said to be λ-statistically convergent (see []) to L if for every ε > 

the set Kε := {k ∈N : |xk – L| ≥ ε} has λ-density zero, i.e., δλ(Kε) = . That is,

lim
n


λn

∣∣{k ∈ In : |xk – L| ≥ ε
}∣∣ = .

In this case, we write Sλ- limx = L and we denote the set of all λ-statistically convergent
sequences by Sλ.

2 λ(u)-Statistical convergence
Weconsider the infinitematrix of first difference� = (anm)n,m≥ defined by ann = , an,n+ =
– and anm =  otherwise. LetDu be the diagonalmatrix defined by [Du]nn = un for all n and
consider the set U of all sequences such that un �=  for all n. Then we write �(u) = Du�

for u ∈ U .
From the generalized de la Vallée-Poussin mean defined by

tn(x) =

λn

∑
k∈In

xk for x = (xk)k ,

we are led to define the following sets:

[V ,λ]
(
�(u)

)
=

{
x = (xk) : limn→∞


λn

∑
k∈In

∣∣�(u)xk
∣∣ = 

}

=
{
x = (xk) : limn→∞


λn

∑
k∈In

∣∣uk(xk – xk+)
∣∣ = 

}
,

[V ,λ]∞
(
�(u)

)
=

{
x = (xk) : sup

n


λn

∑
k∈In

∣∣�(u)xk
∣∣ < ∞

}

=
{
x = (xk) : sup

n


λn

∑
k∈In

∣∣uk(xk – xk+)
∣∣ = 

}
.
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In the case when λn = n, we write the previous sets [V ](�(u)) and [V ]∞(�(u)), respec-
tively. Now we can state the definition of λ(u)-statistical convergence to zero.
A sequence x = (xk)k≥ is said to be λ(u)-statistically convergent to zero if for every ε > ,

lim
n→∞


λn

∣∣{k ∈ In :
∣∣�(u)xk

∣∣ ≥ ε
}∣∣ = .

In this case, we write xk → Sλ(�(u)). If λn = n for all n, we then write xk → S(�(u)).

3 Main results
We are ready to prove the following result.

Theorem  Let u ∈U . Then
(a) [V ,λ](�(u)) ⊂ Sλ(�(u)) and the inclusion is proper,
(b) if x ∈ l∞ and xk → Sλ(�(u)), then x ∈ [V ,λ](�(u)),
(c) Sλ(�(u))∩ l∞ = [V ,λ](�(u))∩ l∞.

Proof (a) Let ε >  be given and x ∈ [V ,λ](�(u)). Then we have


λn

∑
k∈In

∣∣�(u)xk
∣∣ ≥ 

λn

∑
k∈In

|xk–L|≥ε

∣∣�(u)xk
∣∣ ≥ ε

λn

∣∣{k ∈ In :
∣∣�(u)xk

∣∣ ≥ ε
}∣∣.

Therefore x ∈ Sλ(�(u)). The following example shows that the inclusion is proper: Let
x = (xk) be defined by

xk =

{∑∞
j=k j, for n – [

√
λn] + ≤ k ≤ n,

, otherwise.

Then x /∈ l∞ and for  < ε ≤ ,


λn

∣∣{k ∈ In :
∣∣�(u)xk

∣∣ ≥ ε
}∣∣ = [

√
λn]

λn
→  (n→ ∞),

i.e., x ∈ Sλ(�(u)). But


λn

∑
k∈In

∣∣�(u)xk
∣∣ �  (n→ ∞),

i.e., x /∈ [V ,λ](�(u)).
(b) Let x ∈ l∞ and xk → Sλ(�(u)). Then |�(u)xk| ≤ M for all k, whereM > . For ε > ,

we have


λn

∑
k∈In

∣∣�(u)xk
∣∣ = 

λn

∑
k∈In

|xk–L|≥ε

∣∣�(u)xk
∣∣ + 

λn

∑
k∈In

|xk–L|<ε

∣∣�(u)xk
∣∣

≤ M
λn

∣∣{k ∈ In :
∣∣�(u)xk

∣∣ ≥ ε
}∣∣ + ε.

Hence, x ∈ [V ,λ](�(u)).
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(c) This immediately follows from (a) and (b).
This completes the proof of the theorem. �

Theorem  S(�(u))⊆ Sλ(�(u)) if and only if

lim inf
n→∞

λn

n
> , (∗)

where by x ∈ S(�(u)) (or x ∈ Sλ(�(u))) we mean xk → S(�(u)) (or xk → Sλ(�(u))).

Proof For ε > , we have

{
k ∈ In :

∣∣�(u)xk
∣∣ ≥ ε

} ⊂ {
k ≤ n :

∣∣�(u)xk
∣∣ ≥ ε

}
.

Therefore


n

∣∣{k ≤ n :
∣∣�(u)xk

∣∣ ≥ ε
}∣∣ ≥ 

n
∣∣{k ∈ In :

∣∣�(u)xk
∣∣ ≥ ε

}∣∣
≥ λn

n
· 
λn

∣∣{k ∈ In :
∣∣�(u)xk

∣∣ ≥ ε
}∣∣.

Taking the limit as n→ ∞ and using (∗), we get the inclusion.
Conversely, suppose that

lim inf
n→∞

λn

n
= .

Choose a subsequence (n(j))j≥ such that λn(j)
n(j) < 

j . Define a sequence x = (xk)k≥ such
that

�xk =

{
, for k ∈ In(j), j = , , , . . . ,
, otherwise.

Then �x ∈ [C, ] and hence, by Theorem . of [], x ∈ S(�(u)). On the other hand,
x /∈ [V ,λ](�(u)) and Theorem (b) implies that x /∈ Sλ(�(u)). Hence, (∗) is neces-
sary.
This completes the proof of the theorem. �

Presently, for the reverse inclusion, we have only one way condition.

Theorem  If lim supn(n – λn) < ∞, then Sλ(�(u)) ⊆ S(�(u)).

Proof Let lim supn(n – λn) < ∞. Then there exists M >  such that n – λn ≤ M for all n.
Since 

n ≤ 
λn

and { ≤ k ≤ n : |�(u)xk| ≥ ε} ⊆ {k ∈ In : |�(u)xk| ≥ ε} ∪ { ≤ k ≤ n – λn :
|�(u)xk| ≥ ε}, we have


n

∣∣{ ≤ k ≤ n :
∣∣�(u)xk

∣∣ ≥ ε
}∣∣

≤ 
λn

∣∣{ ≤ k ≤ n :
∣∣�(u)xk

∣∣ ≥ ε
}∣∣
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≤ 
λn

∣∣{k ∈ In :
∣∣�(u)xk

∣∣ ≥ ε
}∣∣ + 

λn

∣∣{k ≤ n – λn :
∣∣�(u)xk

∣∣ ≥ ε
}∣∣

≤ 
λn

∣∣{k ∈ In :
∣∣�(u)xk

∣∣ ≥ ε
}∣∣ + M

λn
.

Now, taking the limit as n → ∞, we get Sλ(�(u)) ⊆ S(�(u)).
This completes the proof of the theorem. �
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