RESEARCH

Open Access

Generalized statistical convergence of difference sequences

Abdullah Alotaibi¹ and Mohammad Mursaleen^{2*}

*Correspondence: mursaleenm@gmail.com ²Department of Mathematics, Aligarh Muslim University, Aligarh, 202002, India Full list of author information is available at the end of the article

Abstract

In this paper we define the $\lambda(u)$ -statistical convergence that generalizes, in a certain sense, the notion of λ -statistical convergence. We find some relations with sets of sequences which are related to the notion of strong convergence. **MSC:** 40A05; 40H05

Keywords: statistical convergence; λ -statistical convergence; difference sequences

1 Introduction and preliminaries

The notion of statistical convergence (see Fast [1]) has been studied in various setups, and its various generalizations, extensions and variants have been studied by various authors so far. For example, lacunary statistical convergence [2], *A*-statistical convergence [3, 4], statistical summability (*C*, 1) [5, 6], statistical λ -summability [7], statistical σ -convergence [8], statistical *A*-summability [9], λ -statistical convergence with order α [10], lacunary and λ -statistical convergence in a solid Riesz space [11, 12], lacunary statistical convergence and ideal convergence in random 2-normed spaces [13, 14], generalized weighted statistical convergence [15] *etc.* In this paper we define the notion of λ -statistical convergence as a matrix domain of a difference operator [16], which is obtained by replacing the sequence x by $u\Delta x$, where $\Delta x = (x_k - x_{k+1})_{k=1}^{\infty}$ and $u = (u_k)_{k=1}^{\infty}$ is another sequence with $u_k \neq 0$ for all k. We find some relations with sets of sequences which are related to the notion of strong convergence [17].

Let *K* be a subset of the set of natural numbers \mathbb{N} . Then the *asymptotic density* of *K* denoted by $\delta(K)$ is defined as $\delta(K) = \lim_{n \to \infty} \frac{1}{n} |\{k \le n : k \in K\}|$, where the vertical bars denote the cardinality of the enclosed set.

A number sequence $x = (x_k)$ is said to be *statistically convergent* to the number *L* if for each $\epsilon > 0$, the set $K(\epsilon) = \{k \le n : |x_k - L| > \epsilon\}$ has asymptotic density zero, *i.e.*,

$$\lim_{n}\frac{1}{n}\Big|\big\{k\leq n:|x_k-L|\big\}\big|=0.$$

In this case, we write $S - \lim x = L$.

Let $\lambda = (\lambda_n)$ be a non-decreasing sequence of positive numbers tending to ∞ such that

$$\lambda_{n+1} \leq \lambda_n + 1, \quad \lambda_1 = 0.$$

© 2013 Alotaibi and Mursaleen; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The generalized de la Vallée-Poussin mean is defined by

$$t_n(x) =: \frac{1}{\lambda_n} \sum_{j \in I_n} x_j,$$

where $I_n = [n - \lambda_n + 1, n]$.

A sequence $x = (x_i)$ is said to be (V, λ) -summable to a number *L* if

$$t_n(x) \to L$$
 as $n \to \infty$.

In this case, *L* is called the λ -limit of *x*.

Let $K \subseteq \mathbb{N}$. Then the λ -*density* of K is defined by

$$\delta_{\lambda}(K) = \lim_{n} \frac{1}{\lambda_n} \Big| \{n - \lambda_n + 1 \le j \le n : j \in K\} \Big|.$$

In case $\lambda_n = n$, λ -density reduces to the asymptotic density. Also, since $(\lambda_n/n) \le 1$, $\delta(K) \le \delta_{\lambda}(K)$ for every $K \subseteq \mathbb{N}$.

A sequence $x = (x_k)$ is said to be λ -*statistically convergent* (see [12]) to *L* if for every $\epsilon > 0$ the set $K_{\epsilon} := \{k \in \mathbb{N} : |x_k - L| \ge \epsilon\}$ has λ -density zero, *i.e.*, $\delta_{\lambda}(K_{\epsilon}) = 0$. That is,

$$\lim_{n}\frac{1}{\lambda_{n}}\big|\big\{k\in I_{n}:|x_{k}-L|\geq\epsilon\big\}\big|=0.$$

In this case, we write S_{λ} -lim x = L and we denote the set of all λ -statistically convergent sequences by S_{λ} .

2 $\lambda(u)$ -Statistical convergence

We consider the infinite matrix of first difference $\Delta = (a_{nm})_{n,m\geq 1}$ defined by $a_{nn} = 1$, $a_{n,n+1} = -1$ and $a_{nm} = 0$ otherwise. Let D_u be the diagonal matrix defined by $[D_u]_{nn} = u_n$ for all n and consider the set U of all sequences such that $u_n \neq 0$ for all n. Then we write $\Delta(u) = D_u \Delta$ for $u \in U$.

From the generalized de la Vallée-Poussin mean defined by

$$t_n(x) = \frac{1}{\lambda_n} \sum_{k \in I_n} x_k \quad \text{for } x = (x_k)_k,$$

we are led to define the following sets:

$$[V,\lambda]_0(\Delta(u)) = \left\{ x = (x_k) : \lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{k \in I_n} |\Delta(u)x_k| = 0 \right\}$$
$$= \left\{ x = (x_k) : \lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{k \in I_n} |u_k(x_k - x_{k+1})| = 0 \right\},$$
$$[V,\lambda]_\infty(\Delta(u)) = \left\{ x = (x_k) : \sup_n \frac{1}{\lambda_n} \sum_{k \in I_n} |\Delta(u)x_k| < \infty \right\}$$
$$= \left\{ x = (x_k) : \sup_n \frac{1}{\lambda_n} \sum_{k \in I_n} |u_k(x_k - x_{k+1})| = 0 \right\}.$$

In the case when $\lambda_n = n$, we write the previous sets $[V]_0(\Delta(u))$ and $[V]_\infty(\Delta(u))$, respectively. Now we can state the definition of $\lambda(u)$ -statistical convergence to zero.

A sequence $x = (x_k)_{k \ge 1}$ is said to be $\lambda(u)$ -statistically convergent to zero if for every $\varepsilon > 0$,

$$\lim_{n\to\infty}\frac{1}{\lambda_n}\big|\big\{k\in I_n:\big|\Delta(u)x_k\big|\geq\varepsilon\big\}\big|=0.$$

In this case, we write $x_k \to 0S_{\lambda}(\Delta(u))$. If $\lambda_n = n$ for all n, we then write $x_k \to 0S(\Delta(u))$.

3 Main results

We are ready to prove the following result.

Theorem 1 Let $u \in U$. Then

- (a) $[V, \lambda]_0(\Delta(u)) \subset S^0_{\lambda}(\Delta(u))$ and the inclusion is proper,
- (b) if $x \in l_{\infty}$ and $x_k \to 0S_{\lambda}(\Delta(u))$, then $x \in [V, \lambda]_0(\Delta(u))$,
- (c) $S^0_{\lambda}(\Delta(u)) \cap l_{\infty} = [V, \lambda]_0(\Delta(u)) \cap l_{\infty}$.

Proof (a) Let $\varepsilon > 0$ be given and $x \in [V, \lambda]_0(\Delta(u))$. Then we have

$$\frac{1}{\lambda_n}\sum_{k\in I_n} |\Delta(u)x_k| \geq \frac{1}{\lambda_n}\sum_{\substack{k\in I_n\\|x_k-L|\geq \varepsilon}} |\Delta(u)x_k| \geq \frac{\varepsilon}{\lambda_n} |\{k\in I_n: |\Delta(u)x_k|\geq \varepsilon\}|.$$

Therefore $x \in S_{\lambda}^{0}(\Delta(u))$. The following example shows that the inclusion is proper: Let $x = (x_k)$ be defined by

$$x_k = \begin{cases} \sum_{j=k}^{\infty} j, & \text{for } n - [\sqrt{\lambda_n}] + 1 \le k \le n, \\ 0, & \text{otherwise.} \end{cases}$$

Then $x \notin l_{\infty}$ and for $0 < \varepsilon \leq 1$,

$$\frac{1}{\lambda_n} |\{k \in I_n : |\Delta(u)x_k| \ge \varepsilon\}| = \frac{[\sqrt{\lambda_n}]}{\lambda_n} \to 0 \quad (n \to \infty),$$

i.e., $x \in S^0_{\lambda}(\Delta(u))$. But

$$\frac{1}{\lambda_n}\sum_{k\in I_n} |\Delta(u)x_k| \not\rightarrow 0 \quad (n \rightarrow \infty),$$

i.e., $x \notin [V, \lambda]_0(\Delta(u))$.

(b) Let $x \in l_{\infty}$ and $x_k \to 0S_{\lambda}(\Delta(u))$. Then $|\Delta(u)x_k| \le M$ for all k, where M > 0. For $\varepsilon > 0$, we have

$$\begin{aligned} \frac{1}{\lambda_n} \sum_{k \in I_n} |\Delta(u) x_k| &= \frac{1}{\lambda_n} \sum_{\substack{k \in I_n \\ |x_k - L| \ge \epsilon}} |\Delta(u) x_k| + \frac{1}{\lambda_n} \sum_{\substack{k \in I_n \\ |x_k - L| < \epsilon}} |\Delta(u) x_k| \\ &\leq \frac{M}{\lambda_n} |\{k \in I_n : |\Delta(u) x_k| \ge \varepsilon\}| + \varepsilon. \end{aligned}$$

Hence, $x \in [V, \lambda]_0(\Delta(u))$.

(c) This immediately follows from (a) and (b). This completes the proof of the theorem.

Theorem 2 $S^0(\Delta(u)) \subseteq S^0_{\lambda}(\Delta(u))$ if and only if

$$\liminf_{n \to \infty} \frac{\lambda_n}{n} > 0, \tag{(*)}$$

where by $x \in S^0(\Delta(u))$ (or $x \in S^0_{\lambda}(\Delta(u))$) we mean $x_k \to 0S(\Delta(u))$ (or $x_k \to 0S_{\lambda}(\Delta(u))$).

Proof For $\varepsilon > 0$, we have

$$\{k \in I_n : |\Delta(u)x_k| \ge \varepsilon\} \subset \{k \le n : |\Delta(u)x_k| \ge \varepsilon\}.$$

Therefore

$$\begin{split} \frac{1}{n} |\{k \le n : |\Delta(u)x_k| \ge \varepsilon\}| \ge \frac{1}{n} |\{k \in I_n : |\Delta(u)x_k| \ge \varepsilon\}| \\ \ge \frac{\lambda_n}{n} \cdot \frac{1}{\lambda_n} |\{k \in I_n : |\Delta(u)x_k| \ge \varepsilon\}|. \end{split}$$

Taking the limit as $n \to \infty$ and using (*), we get the inclusion.

Conversely, suppose that

$$\liminf_{n\to\infty}\frac{\lambda_n}{n}=0.$$

Choose a subsequence $(n(j))_{j\geq 1}$ such that $\frac{\lambda_{n(j)}}{n(j)} < \frac{1}{j}$. Define a sequence $x = (x_k)_{k\geq 1}$ such that

$$\Delta x_k = \begin{cases} 1, & \text{for } k \in I_{n(j)}, j = 1, 2, 3, \dots, \\ 0, & \text{otherwise.} \end{cases}$$

Then $\Delta x \in [C,1]$ and hence, by Theorem 2.1 of [18], $x \in S^0(\Delta(u))$. On the other hand, $x \notin [V,\lambda]_0(\Delta(u))$ and Theorem 1(b) implies that $x \notin S^0_{\lambda}(\Delta(u))$. Hence, (*) is necessary.

This completes the proof of the theorem.

Presently, for the reverse inclusion, we have only one way condition.

Theorem 3 If $\limsup_{n \to \infty} (n - \lambda_n) < \infty$, then $S^0_{\lambda}(\Delta(u)) \subseteq S^0(\Delta(u))$.

Proof Let $\limsup_n (n - \lambda_n) < \infty$. Then there exists M > 0 such that $n - \lambda_n \le M$ for all n. Since $\frac{1}{n} \le \frac{1}{\lambda_n}$ and $\{1 \le k \le n : |\Delta(u)x_k| \ge \varepsilon\} \subseteq \{k \in I_n : |\Delta(u)x_k| \ge \varepsilon\} \cup \{1 \le k \le n - \lambda_n : |\Delta(u)x_k| \ge \varepsilon\}$, we have

$$\frac{1}{n} |\{1 \le k \le n : |\Delta(u)x_k| \ge \varepsilon\}|$$
$$\le \frac{1}{\lambda_n} |\{1 \le k \le n : |\Delta(u)x_k| \ge \varepsilon\}|$$

$$\leq \frac{1}{\lambda_n} |\{k \in I_n : |\Delta(u)x_k| \geq \varepsilon\}| + \frac{1}{\lambda_n} |\{k \leq n - \lambda_n : |\Delta(u)x_k| \geq \varepsilon\}|$$

$$\leq \frac{1}{\lambda_n} |\{k \in I_n : |\Delta(u)x_k| \geq \varepsilon\}| + \frac{M}{\lambda_n}.$$

Now, taking the limit as $n \to \infty$, we get $S^0_{\lambda}(\Delta(u)) \subseteq S^0(\Delta(u))$.

This completes the proof of the theorem.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Both authors contributed equally and significantly in writing this paper. Both authors read and approved the final manuscript.

Author details

¹Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia. ²Department of Mathematics, Aligarh Muslim University, Aligarh, 202002, India.

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah under Grant No. (174/130/1433). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Received: 16 March 2013 Accepted: 26 June 2013 Published: 13 July 2013

References

- 1. Fast, H: Sur la convergence statistique. Colloq. Math. 2, 241-244 (1951)
- 2. Fridy, JA, Orhan, C: Lacunary statistical convergence. Pac. J. Math. 160, 43-51 (1993)
- Alotaibi, A, Mursaleen, M: A-Statistical summability of Fourier series and Walsh-Fourier series. Appl. Math. Inf. Sci. 6(3), 535-538 (2012)
- 4. Kolk, E: The statistical convergence in Banach spaces. Tartu Ülik. Toim. 928, 41-52 (1991)
- 5. Moricz, F: Tauberian conditions under which statistical convergence follows from statistical summability (C, 1). J. Math. Anal. Appl. **275**, 277-287 (2002)
- Mohiuddine, SA, Alotaibi, A: Korovkin second theorem via statistical summability (C, 1). J. Inequal. Appl. 2013, 149 (2013)
- Mursaleen, M, Alotaibi, A: Statistical summability and approximation by de la Vallée-Poussin mean. Appl. Math. Lett. 24, 320-324 (2011) (Erratum: Appl. Math. Lett. 25, 665 (2012))
- 8. Mursaleen, M, Edely, OHH: On the invariant mean and statistical convergence. Appl. Math. Lett. 22, 1700-1704 (2009)
- 9. Edely, OHH, Mursaleen, M: On statistical A-summability. Math. Comput. Model. 49, 672-680 (2009)
- 10. Colak, R, Bektas, CA: λ -Statistical convergence of order α . Acta Math. Sci. **31**(3), 953-959 (2011)
- Mohiuddine, SA, Alghamdi, MA: Statistical summability through a lacunary sequence in locally solid Riesz spaces. J. Inequal. Appl. 2012, 225 (2012)
- 12. Mohiuddine, SA, Alotaibi, A, Mursaleen, M: Statistical convergence through de la Vallée-Poussin mean in locally solid Riesz spaces. Adv. Differ. Equ. 2013, 66 (2013)
- Mohiuddine, SA, Aiyub, M: Lacunary statistical convergence in random 2-normed spaces. Appl. Math. Inf. Sci. 6(3), 581-585 (2012)
- 14. Mohiuddine, SA, Alotaibi, A, Alsulami, SM: Ideal convergence of double sequences in random 2-normed spaces. Adv. Differ. Equ. 2012, 149 (2012)
- Belen, C, Mohiuddine, SA: Generalized weighted statistical convergence and application. Appl. Math. Comput. 219, 9821-9826 (2013)
- Malkowsky, E, Mursaleen, M, Suantai, S: The dual spaces of sets of difference sequences of order m and matrix transformations. Acta Math. Sin. Engl. Ser. 23, 521-532 (2007)
- 17. Savaş, E, Kiliçman, A: A note on some strongly sequence spaces. Abstr. Appl. Anal. 2011, Article ID 598393 (2011)
- 18. Connor, JS: The statistical and strong p-Cesàro convergence of sequences. Analysis 8, 47-63 (1988)

doi:10.1186/1687-1847-2013-212

Cite this article as: Alotaibi and Mursaleen: Generalized statistical convergence of difference sequences. Advances in Difference Equations 2013 2013:212.