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1 Introduction
Fractional order differential equations have been of great interest recently because they
play a vital role in describing many phenomena related to physics, chemistry, mechanics,
control systems, flow in porous media, electrical networks, mathematical biology and vis-
coelasticity. For a reader interested in the systematic development of the topic, we refer to
the books [–]. A variety of results on initial and boundary value problems of fractional
differential equations and inclusions can easily be found in the literature on the topic. For
some recent results, we can refer to [–] and references cited therein.
Bai [] discussed the existence of positive solutions for the following three-point frac-

tional boundary value problem:

Dqu(t) = f
(
t,u(t)

)
,  < q ≤ , t ∈ (, ),

u() = , u() = αβu(η),  < η < ,
(.)

where Dq denotes the Riemann-Liouville fractional derivative, and  < βηq– < . Some
existence results for at least one positive solution are obtained by the use of fixed point
index theory.
In paper [] the authors studied the following boundary value problem of fractional

order differential equations with three-point fractional integral boundary conditions:

cDqu(t) = f
(
t,u(t)

)
,  < q ≤ , t ∈ (, ),

u() = , u() = αIpu(η),  < η < ,
(.)
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where cDq denotes the Caputo fractional derivative of order q, Ip is the Riemann-Liouville
fractional integral of order p, f ∈ C([, ] × R) and α ∈ R, α �= �(p + )/ηp+. Existence
and uniqueness results are proved via Banach’s contraction principle and Schaefer’s fixed
point theorem. The results of [] are completed in [], by existence results via Krasnosel-
skii’s fixed point theorem and Leray-Schauder’s degree theory, and extended to cover the
multivalued case.
In [] existence and uniqueness results are obtained for a single and multivalued case

for the following boundary value problem of fractional order differential equations with
nonlocal and fractional integral boundary conditions:

Dqu(t) = f
(
t,u(t)

)
,  < q ≤ , t ∈ (, ),

u() = u + g(u), u() = αIαu(η),  < η < ,
(.)

where g : C([, ],R) →R.
Recently, in [] the following boundary value problem of fractional differential equa-

tions with a fractional integral condition:

{
Dqu(t) = f (t,u(t),Dpu(t)),  < t < ,  < q ≤ ,  < p < ,
u() = , u′() = αIpu(),

(.)

was studied. Existence and uniqueness results are proved via Banach’s contraction princi-
ple and Leray-Schauder’s nonlinear alternative.
In [] existence and uniqueness results are investigated for the following bound-

ary value problem of fractional order differential equations with four-point nonlocal
Riemann-Liouville fractional integral boundary conditions:

Dqu(t) = f
(
t,u(t)

)
,  < q ≤ , t ∈ (, ),

u() = aIβu(η), u() = bIαu(σ ),
(.)

where  < α,β ≤  and  < η,σ < .
In this paper, we study a new class of three-point boundary value problems of fractional

order differential equations with nonlocal Riemann-Liouville fractional integral boundary
conditions. More precisely, we consider the nonlinear fractional differential equation

Dαu(t) = f
(
t,u(t)

)
,  < α ≤ ,  < t < T , (.)

subject to nonlocal fractional integral conditions

u(η) = , Iνu(T) ≡
∫ T



(T – s)ν–

�(ν)
u(s)ds = , (.)

where η ∈ (,T) is a given constant. The novelty of this boundary value problem lies in the
fact that instead of the value u(), which appeared in all the above mentioned boundary
value problems, we have the value u(η) for some η ∈ (,T).
The paper is organized as follows. In Section  we recall some preliminary facts that we

need in the sequel. In Section  we prove our main results. Some examples to illustrate
our results are presented in Section .
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2 Preliminaries
In this section we introduce some notations, definitions of fractional calculus [, ] and
present preliminary results needed in our proofs later.

Definition . The Riemann-Liouville fractional integral of order α >  of a function g ∈
L((,T),R) is defined by

Iαg(t) =
∫ t



(t – s)α–

�(α)
g(s)ds,

where � is the gamma function.

Definition . TheRiemann-Liouville fractional derivative of order α >  of a continuous
function g : (,∞) →R is defined by

Dαg(t) =


�(n – α)

(
d
dt

)n ∫ t



g(s)
(t – s)α–n+

ds,

where n = [α] + , [α] denotes the integral part of real number α, provided the right-hand
side is point-wise defined on (,∞).

Lemma . (see []) Let α >  and y ∈ C(,T) ∩ L(,T). Then the fractional differential
equation Dαy(t) =  has a unique solution

y(t) = ctα– + ctα– + · · · + cntα–n,

where ci ∈R, i = , , . . . ,n and n = [α] + .

Lemma . Suppose that η �= (α–)T
ν+α– ,  < α ≤ , ν >  and h ∈ AC[,T]. Then the problem

Dαx(t) = h(t),  < t < T , (.)

x(η) = , Iνx(T) = , η ∈ (,T), (.)

can be written as an integral equation

x(t) =
∫ t



(t – s)α–

�(α)
h(s)ds

–
(ν + α – )tα– – T(α – )tα–

(ν + α – )ηα–�(α)�

∫ η


(η – s)α–h(s)ds

+
tα– – ηtα–

(ν + α – )Tν+α–�(α – )�

∫ T


(T – s)ν+α–h(s)ds, (.)

where

� = η –
(α – )T
ν + α – 

. (.)

http://www.advancesindifferenceequations.com/content/2013/1/213
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Proof From (.) and Lemma ., we have

x(t) = ctα– + ctα– +
∫ t



(t – s)α–

�(α)
h(s)ds. (.)

The first condition of (.) implies

cηα– + cηα– = –
∫ η



(η – s)α–

�(α)
h(s)ds. (.)

Using the Riemann-Liouville fractional integral of order ν >  to (.) and applying
Dirichlet’s formula [, p.], we obtain

Iνx(t) =
c

�(ν)

∫ t


(t – s)ν–sα– ds +

c
�(ν)

∫ t


(t – s)ν–sα– ds

+


�(ν)�(α)

∫ t



∫ s


(t – s)ν–(s – ρ)α–h(ρ)dρ ds

= c
�(α)

�(ν + α)
tν+α– + c

�(α – )
�(ν + α – )

tν+α–

+


�(ν + α)

∫ t


(t – s)ν+α–h(s)ds.

The second condition of (.) implies

c
�(α)

�(ν + α)
Tν+α– + c

�(α – )
�(ν + α – )

Tα+ν– = –
∫ T



(T – s)ν+α–

�(ν + α)
h(s)ds. (.)

Solving the linear equations (.)-(.) for unknown constants c and c, we have

c = –


ηα–�(α)�

∫ η


(η – s)α–h(s)ds

+
�(ν + α – )

Tν+α–�(α – )�

∫ T



(T – s)ν+α–

�(ν + α)
h(s)ds

and

c =
T(α – )

(ν + α – )ηα–�(α)�

∫ η


(η – s)α–h(s)ds

–
η�(ν + α – )

Tν+α–�(α – )�

∫ T



(T – s)ν+α–

�(ν + α)
h(s)ds,

where constant � is defined by (.). Substituting constants c and c in (.), we ob-
tain (.). �

Let C = C([,T],R) denote the Banach space of all continuous functions from [,T] to
R endowed with the norm defined by ‖u‖ = supt∈[,T] |u(t)|. As in Lemma ., we define

http://www.advancesindifferenceequations.com/content/2013/1/213
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an operator A : C → C by

(Au)(t) =
∫ t



(t – s)α–

�(α)
f
(
s,u(s)

)
ds

–
(ν + α – )tα– – T(α – )tα–

(ν + α – )ηα–�(α)�

∫ η


(η – s)α–f

(
s,u(s)

)
ds

+
tα– – ηtα–

(ν + α – )Tν+α–�(α – )�

∫ T


(T – s)ν+α–f

(
s,u(s)

)
ds. (.)

It should be noticed that problem (.)-(.) has solutions if and only if the operator A has
fixed points.

3 Main results
We are in a position to establish our main results. In the following subsections, we prove
existence as well as existence and uniqueness results for BVP (.)-(.) by using a variety
of fixed point theorems.

3.1 Existence and uniqueness results via Banach’s fixed point theorem
In this subsection we give first an existence and uniqueness result for BVP (.)-(.) by
using Banach’s fixed point theorem.

Theorem . Assume that

(H) there exists a constant L >  such that |f (t,u) – f (t, v)| ≤ L|u – v| for each t ∈ [,T]
and u, v ∈R.

If


 := LTα

{


�(α + )
+

η(ν + (α – ))
(ν + α – )T�(α + )|�|

+
T + η

(ν + α – )(ν + α)�(α – )|�|
}
< , (.)

then problem (.)-(.) has a unique solution in [,T].

Proof We transform problem (.)-(.) into a fixed point problem, u = Au, where the
operator A is defined by (.). Obviously, fixed points of the operator A are solutions of
problem (.)-(.). Using the Banach contraction principle, we shall show that A has a
fixed point.
Setting supt∈[,T] |f (t, )| = M < ∞ and choosing r ≥ 
M

(–
)L , we show that ABr ⊂ Br ,
where Br = {x ∈ C : ‖x‖ ≤ r}. For x ∈ Br , we have

‖Au‖ ≤ sup
t∈[,T]

{∫ t



(t – s)α–

�(α)
∣∣f (s,u(s))∣∣ds

+
Tα–(ν + (α – ))

(ν + α – )ηα–�(α)|�|
∫ η


(η – s)α–

∣∣f (s,u(s))∣∣ds
+

Tα–(T + η)
(ν + α – )Tν+α–�(α – )|�|

∫ T


(T – s)ν+α–∣∣f (s,u(s))∣∣ds}

http://www.advancesindifferenceequations.com/content/2013/1/213
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≤ sup
t∈[,T]

{∫ t



(t – s)α–

�(α)
(∣∣f (s,u(s)) – f (s, )

∣∣ + ∣∣f (s, )∣∣)ds
+

Tα–(ν + (α – ))
(ν + α – )ηα–�(α)|�|

∫ η


(η – s)α–

(∣∣f (s,u(s)) – f (s, )
∣∣ + ∣∣f (s, )∣∣)ds

+
T + η

(ν + α – )Tν�(α – )|�|

×
∫ T


(T – s)ν+α–(∣∣f (s,u(s)) – f (s, )

∣∣ + ∣∣f (s, )∣∣)ds}

≤ (Lr +M) sup
t∈[,T]

{


�(α)

∫ t


(t – s)α– ds

+
Tα–(ν + (α – ))

(ν + α – )ηα–�(α)|�|
∫ η


(η – s)α– ds

+
T + η

(ν + α – )Tν�(α – )|�|
∫ T


(T – s)ν+α– ds

}

≤ (Lr +M)Tα

(


�(α + )
+

η(ν + (α – ))
(ν + α – )T�(α + )|�|

+
T + η

(ν + α – )(ν + α)�(α – )|�|
)

= (Lr +M)



L
≤ r,

which proves that ABr ⊂ Br .
Now let u, v ∈ C . Then, for t ∈ [,T], we have

∣∣(Au)(t) – (Av)(t)
∣∣

≤
∫ t



(t – s)α–

�(α)
∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣ds
+

Tα–(ν + (α – ))
(ν + α – )ηα–�(α)|�|

∫ η


(η – s)α–

∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣ds
+

Tα–(T + η)
(ν + α – )Tν+α–�(α – )|�|

×
∫ T


(T – s)ν+α–∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣ds
≤ L

∫ t



(t – s)α–

�(α)
∣∣u(s) – v(s)

∣∣ds
+

LTα–(ν + (α – ))
(ν + α – )ηα–�(α)|�|

∫ η


(η – s)α–

∣∣u(s) – v(s)
∣∣ds

+
L(T + η)

(ν + α – )Tν�(α – )|�|
∫ T


(T – s)ν+α–∣∣u(s) – v(s)

∣∣ds
≤ LTα

�(α + )
‖u – v‖ + LηTα–(ν + (α – ))

(ν + α – )�(α + )|�| ‖u – v‖

+
LTα(T + η)

(ν + α – )(ν + α)�(α – )|�| ‖u – v‖

http://www.advancesindifferenceequations.com/content/2013/1/213
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= LTα

{


�(α + )
+

η(ν + (α – ))
(ν + α – )T�(α + )|�|

+
T + η

(ν + α – )(ν + α)�(α – )|�|
}
‖u – v‖.

Therefore,

‖Au –Av‖ ≤ 
‖u – v‖.

From (.), A is a contraction. As a consequence of Banach’s fixed point theorem, we get
that A has a fixed point which is a unique solution of problem (.)-(.). �

Now we give another existence and uniqueness result for BVP (.)-(.) by using
Banach’s fixed point theorem and Hölder’s inequality.

Theorem . Suppose that the continuous function f satisfies the following assumption:

(H) |f (t,x) – f (t,x)| ≤ m(t)|x – x|, for t ∈ [,T], xi ∈R, i = ,  andm ∈ L

γ ([,T],R+),

γ ∈ (, ).

Denote ‖m‖ = (
∫ T
 |m(s)| 

γ ds)γ . If

‖m‖
�(α)

{
Tα–γ

(
 – γ

α – γ

)–γ

+
Tα–η–γ (ν + (α – ))

(ν + α – )|�|
(
 – γ

α – γ

)–γ

+
Tα–γ (T + η)(α – )

(ν + α – )|�|
(

 – γ

ν + α – γ

)–γ }
< ,

then boundary value problem (.)-(.) has a unique solution.

Proof For u, v ∈ C and for each t ∈ [,T], by Hölder’s inequality, we have

∣∣(Au)(t) – (Av)(t)
∣∣

≤
∫ t



(t – s)α–

�(α)
∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣ds
+

Tα–(ν + (α – ))
(ν + α – )ηα–�(α)|�|

∫ η


(η – s)α–

∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣ds
+

Tα–(T + η)
(ν + α – )Tν+α–�(α – )|�|

∫ T


(T – s)ν+α–∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣ds
≤

∫ t



(t – s)α–

�(α)
m(s)

∣∣u(s) – v(s)
∣∣ds

+
Tα–(ν + (α – ))

(ν + α – )ηα–�(α)|�|
∫ η


(η – s)α–m(s)

∣∣u(s) – v(s)
∣∣ds

+
Tα–(T + η)

(ν + α – )Tν+α–�(α – )|�|
∫ T


(T – s)ν+α–m(s)

∣∣u(s) – v(s)
∣∣ds

≤ 
�(α)

(∫ t



(
(t – s)α–

) 
–γ ds

)–γ (∫ t



(
m(s)

)/γ ds)γ

‖u – v‖

http://www.advancesindifferenceequations.com/content/2013/1/213
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+
Tα–(ν + (α – ))

(ν + α – )ηα–|�|�(α)

×
(∫ η



(
(η – s)α–

) 
–γ ds

)–γ (∫ η



(
m(s)

)/γ ds)γ

‖u – v‖

+
T + η

(ν + α – )Tν�(α – )|�|

×
(∫ T



(
(T – s)ν+α–) 

–γ ds
)–γ (∫ T



(
m(s)

)/γ ds)γ

‖u – v‖

≤ ‖m‖
�(α)

{
Tα–γ

(
 – γ

α – γ

)–γ

+
Tα–η–γ (ν + (α – ))

(ν + α – )|�|
(
 – γ

α – γ

)–γ

+
Tα–γ (T + η)(α – )

(ν + α – )|�|
(

 – γ

ν + α – γ

)–γ }
‖u – v‖.

It follows that A is a contraction mapping. Hence Banach’s fixed point theorem implies
that A has a unique fixed point which is the unique solution of problem (.)-(.). This
completes the proof. �

3.2 Existence result via Krasnoselskii’s fixed point theorem
Lemma . (Krasnoselskii’s fixed point theorem) [] Let M be a closed, bounded, convex
and nonempty subset of a Banach space X. Let A, B be the operators such that (a) Ax+By ∈
M whenever x, y ∈ M; (b) A is compact and continuous; (c) B is a contraction mapping.
Then there exists z ∈ M such that z = Az + Bz.

Theorem . Let f : [,T] × R → R be a continuous function satisfying (H). Moreover,
we assume that

(H) |f (t,u)| ≤ μ(t), ∀(t,u) ∈ [,T]×R, and μ ∈ C([,T],R+).

Then boundary value problem (.)-(.) has at least one solution on [,T] if

LTα

{
η(ν + (α – ))

(ν + α – )T�(α + )|�| +
T + η

(ν + α – )(ν + α)�(α – )|�|
}
< . (.)

Proof Letting supt∈[,T] |μ(t)| = ‖μ‖, we fix

r ≥ Tα‖μ‖
{


�(α + )

+
η(ν + (α – ))

(ν + α – )T�(α + )|�| +
T + η

(ν + α – )(ν + α)�(α – )|�|
}

and consider Br = {u ∈ C : ‖u‖ ≤ r}. We define the operators P andQ on Br as

(Pu)(t) =
∫ t



(t – s)α–

�(α)
f
(
s,u(s)

)
ds,

(Qu)(t) = –
(ν + α – )tα– – T(α – )tα–

(ν + α – )ηα–�(α)�

∫ η


(η – s)α–f

(
s,u(s)

)
ds

+
tα– – ηtα–

(ν + α – )Tν+α–�(α – )�

∫ T


(T – s)ν+α–f

(
s,u(s)

)
ds.

http://www.advancesindifferenceequations.com/content/2013/1/213
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For u, v ∈ Br , we find that

‖Pu +Qv‖

≤ Tα‖μ‖
{


�(α + )

+
η(ν + (α – ))

(ν + α – )T�(α + )|�| +
T + η

(ν + α – )(ν + α)�(α – )|�|
}

≤ r.

Thus, Pu +Qv ∈ Br . It follows from assumption (H) together with (.) that Q is a con-
traction mapping. Continuity of f implies that the operator P is continuous. Also, P is
uniformly bounded on Br as

‖Pu‖ ≤ Tα

�(α + )
‖μ‖.

Now we prove the compactness of the operator P .
We define sup(t,u)∈[,T]×Br |f (t,u)| = f <∞, and consequently we have

∣∣(Pu)(t) – (Pu)(t)
∣∣ = 

�(α)

∣∣∣∣
∫ t



[
(t – s)α– – (t – s)α–

]
f
(
s,u(s)

)
ds

+
∫ t

t
(t – s)α–f

(
s,u(s)

)
ds

∣∣∣∣
≤ f

�(α + )
∣∣tα – tα

∣∣,
which is independent of u. Thus, P is equicontinuous. So P is relatively compact on Br .
Hence, by the Arzelá-Ascoli theorem, P is compact on Br . Thus all the assumptions of
Lemma . are satisfied. So the conclusion of Lemma . implies that boundary value prob-
lem (.)-(.) has at least one solution on [,T]. �

3.3 Existence result via Leray-Schauder’s nonlinear alternative
Theorem. (Nonlinear alternative for single-valuedmaps) [] Let E be aBanach space,
C be a closed, convex subset of E,U be an open subset of C and  ∈U . Suppose that F :U →
C is a continuous, compact (that is, F(U) is a relatively compact subset of C) map. Then
either

(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (, ) with u = λF(u).

Theorem . Assume that

(H) there exists a continuous nondecreasing function ψ : [,∞) → (,∞) and a function
p ∈ L([,T],R+) such that

∣∣f (t,u)∣∣ ≤ p(t)ψ
(‖u‖) for each (t,u) ∈ [,T]×R;

(H) there exists a constantM >  such that

M
Tαψ(M)‖p‖L{ 

�(α+) +
η(ν+(α–))

(ν+α–)T�(α+)� + T+η

(ν+α–)(ν+α)�(α–)� }
> .

Then boundary value problem (.)-(.) has at least one solution on [,T].

http://www.advancesindifferenceequations.com/content/2013/1/213
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Proof We show that A maps bounded sets (balls) into bounded sets in C([,T],R). For a
positive number ρ , let Bρ = {u ∈ C([,T],R) : ‖u‖ ≤ ρ} be a bounded ball in C([,T],R).
Then for t ∈ [,T] we have

∣∣(Au)(t)∣∣ ≤ 
�(α)

∫ t


(t – s)α–

∣∣f (s,u(s))∣∣ds
+

Tα–(ν + (α – ))
(ν + α – )ηα–�(α)|�|

∫ η


(η – s)α–

∣∣f (s,u(s))∣∣ds
+

Tα–(T + η)
(ν + α – )Tν+α–�(α – )|�|

∫ T


(T – s)ν+α–∣∣f (s,u(s))∣∣ds

≤ ψ(‖u‖)
�(α)

∫ t


(t – s)α–p(s)ds

+
ψ(‖u‖)Tα–(ν + (α – ))
(ν + α – )ηα–�(α)|�|

∫ η


(η – s)α–p(s)ds

+
ψ(‖u‖)(T + η)

(ν + α – )Tν�(α – )|�|
∫ T


(T – s)ν+α–p(s)ds

≤ ψ(‖u‖)‖p‖L
�(α)

∫ T


(T – s)α– ds

+
ψ(‖u‖)‖p‖LTα–(ν + (α – ))

(ν + α – )ηα–�(α)|�|
∫ η


(η – s)α– ds

+
ψ(‖u‖)‖p‖L (T + η)

(ν + α – )Tν�(α – )|�|
∫ T


(T – s)ν+α– ds

≤ Tαψ(‖u‖)‖p‖L
�(α + )

+
ηψ(‖u‖)‖p‖LTα–(ν + (α – ))

(ν + α – )�(α + )|�|
+

Tαψ(‖u‖)‖p‖L (T + η)
(ν + α – )(ν + α)�(α – )|�|

= Tαψ(‖u‖)‖p‖L
{


�(α + )

+
η(ν + (α – ))

(ν + α – )T�(α + )|�|

+
T + η

(ν + α – )(ν + α)�(α – )|�|
}
.

Consequently,

‖Au‖ ≤ Tαψ(ρ)‖p‖L
{


�(α + )

+
η(ν + (α – ))

(ν + α – )T�(α + )|�|

+
T + η

(ν + α – )(ν + α)�(α – )|�|
}
.

Next we show that A maps bounded sets into equicontinuous sets of C([,T],R). Let
t, t ∈ [,T] with t < t and u ∈ Bρ . Then we have

∣∣(Au)(t) – (Au)(t)
∣∣

≤
∣∣∣∣ 
�(α)

∫ t


(t – s)α–

∣∣f (s,u(s))∣∣ds – 
�(α)

∫ t


(t – s)α–

∣∣f (s,u(s))∣∣ds∣∣∣∣
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+
(ν + α – )|tα– – tα– | + T(α – )|tα– – tα– |

(ν + α – )ηα–�(α)|�|
∫ η


(η – s)α–

∣∣f (s,u(s))∣∣ds
+

η|tα– – tα– | + |tα– – tα– |
(ν + α – )Tν+α–�(α – )|�|

∫ T


(T – s)ν+α–∣∣f (s,u(s))∣∣ds

≤
∣∣∣∣ 
�(α)

∫ t


(t – s)α–p(s)ψ(ρ)ds –


�(α)

∫ t


(t – s)α–p(s)ψ(ρ)ds

∣∣∣∣
+
(ν + α – )|tα– – tα– | + T(α – )|tα– – tα– |

(ν + α – )ηα–�(α)|�|
∫ η


(η – s)α–p(s)ψ(ρ)ds

+
η|tα– – tα– | + |tα– – tα– |
(ν + α – )Tν+α–�(α – )|�|

∫ T


(T – s)ν+α–p(s)ψ(ρ)ds.

Obviously the right-hand side of the above inequality tends to zero independently of
x ∈ Bρ as t – t → . As A satisfies the above assumptions, therefore it follows by the
Arzelá-Ascoli theorem that A : C([,T],R)→ C([,T],R) is completely continuous.
Let u be a solution. Then, for t ∈ [,T], and following similar computations as in the

first step, we have

∣∣u(t)∣∣ ≤ Tαψ
(‖u‖)‖p‖L

{


�(α + )
+

η(ν + (α – ))
(ν + α – )T�(α + )|�|

+
T + η

(ν + α – )(ν + α)�(α – )|�|
}
.

Consequently, we have

‖u‖
Tαψ(‖u‖)‖p‖L{ 

�(α+) +
η(ν+(α–))

(ν+α–)T�(α+)|�| +
T+η

(ν+α–)(ν+α)�(α–)|�| }
≤ .

In view of (H), there existsM such that ‖u‖ �=M. Let us set

U =
{
u ∈ C

(
[,T],R

)
: ‖u‖ <M

}
.

Note that the operator A : U → C([,T],R) is continuous and completely continuous.
From the choice of U , there is no u ∈ ∂U such that u = λAu for some λ ∈ (, ). Conse-
quently, by the nonlinear alternative of Leray-Schauder type (Theorem .), we deduce
that A has a fixed point u ∈ U which is a solution of problem (.)-(.). This completes
the proof. �

4 Examples
Example . Consider the following fractional integral boundary value problem:

D

 u(t) =

e–t

( + et)
· |u(t)|
 + |u(t)| , t ∈

(
,




)
, (.)

u
(



)
= , I


 u

(



)
= . (.)

Here α = /, ν = /, η = /, T = / and f (t,u) = (e–t/( + et))(|u|/( + |u|)) and � =
η – (α – )T/(ν +α – ) = / �= . Since |f (t,u) – f (t, v)| ≤ (/)|u– v|, then (H) is satisfied
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with L = /. We can show that

LTα

{


�(α + )
+

η[ν + (α – )]
(ν + α – )T�(α + )|�| +

η + T
(ν + α – )(ν + α)�(α – )|�|

}

=



(



) 

[



√

π
+




√
π

+



√

π

]
≈ . < .

Hence, by Theorem ., boundary value problem (.)-(.) has a unique solution on
[, /].

Example . Consider the following fractional integral boundary value problem:

D

 x(t) = t tan– x(t), t ∈

(
,




)
, (.)

x
(



)
= , I


 x

(



)
= . (.)

Set α = /, ν = /, η = /, T = /, f (t,x) = t tan– x and choose γ = (/) ∈ (, ). It
is easy to see that � = η – (α – )T/(ν +α – ) = / �= . Since |f (t,x) – f (t, y)| = t| tan– x–
tan– y| ≤ t|x–y|, then (H) is satisfied withm(t) = t ∈ L([, /],R+).We can show that

‖m‖ =
(∫ 




|s| ds

) 

≈ .

and

‖m‖
�(α)

{
Tα–γ

(
 – γ

α – γ

)–γ

+
η–γTα–[ν + (α – )]

(ν + α – )|�|
(
 – γ

α – γ

)–γ

+
Tα–γ (η + T)(α – )

(ν + α – )|�|
(

 – γ

ν + α – γ

)–γ }
≈ . < .

Hence, by Theorem ., boundary value problem (.)-(.) has a unique solution on
[, /].

Example . Consider the following fractional integral boundary value problem:

D

 x(t) =

t
π

sin(πx) +
(t + )x

 + x
, t ∈

(
,




)
, (.)

x
(



)
= , I


 x

(



)
= . (.)

Set α = /, ν = /, η = /, T = /, f (t,x) = (t/π ) sin(πx) + ((t + )x/( + x)). It is
easy to see that � = η – (α – )T/(ν + α – ) = / �= . Clearly,

∣∣f (t,x)∣∣ = ∣∣∣∣ t
π

sin(πx) +
(t + )x

 + x

∣∣∣∣ ≤ (t + )
(‖x‖


+ 

)
.
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Choosing p(t) = t + , ψ(‖x‖) = (‖x‖/) + , we obtain

M
Tα‖p‖L{ 

�(α+) +
η[ν+(α–)]

(ν+α–)T�(α+)|�| +
T+η

(ν+α–)(ν+α)�(α–)|�| }
>
M


+ ,

which implies that M > .. Hence, by Theorem ., boundary value problem
(.)-(.) has at least one solution on [, /].
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