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1 Introduction
In this paper, we study the following boundary value problem:

⎧⎨
⎩
–Dαx(t) ∈ F(t,x(t), –Dβx(t)),  < t < ,  < α ≤ ,

Dβx() =Dβ+x() = , Dβx() =
∫ 
 D

βx(s)dA(s),
(.)

where Dα is the standard Riemann-Liouville fractional derivative of order  < α ≤ ,  <
β < , α – β > , F : [, ]×R×R → P(R) is a multivalued map, P(R) is the family of all
subsets ofR,

∫ 
 D

βx(s)dA(s) denotes the Riemann-Stieltjes integral, and A is a function of
bounded variation.
The subject of fractional differential equations has evolved as an interesting and impor-

tant field of research in view of its numerous applications in physics, mechanics, chem-
istry, engineering (like traffic, transportation, logistics etc.), and so forth [–]. The tools
of fractional calculus have played a key role in improving the mathematical modeling of
many real world processes based on classical calculus. The nonlocal characteristic of a
fractional order differential operator distinguishes it from a classical integer-order differ-
ential operator. In fact, differential equations of arbitrary order are capable of describing
memory and hereditary properties of some important and useful materials and processes.
For some recent development on the topic, see [–] and the references cited therein.
On the other hand, the nonlocal condition given by a Riemann-Stieltjes integral is due to

Webb and Infante in [] and gives a unified approach tomanyBVPs. Since
∫ 
 D

βx(s)dA(s)
covers a multipoint BVP and an integral BVP as special cases, the fractional differential
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equations with the Riemann-Stieltjes integral condition were extensively studied by many
authors, see [, ].
The problems of type (.) are referred to as semipositone problems that arise naturally

in chemical reactor theory in the literature []. Recently, by SWOT analysis method, one
has found thatmanymathematical models arising from real estate asset securitization can
be interpreted by fractional-order differential or difference equations under suitable ini-
tial conditions or boundary conditions. The existence and uniqueness of solution of the
fractional-order mechanical model are important and useful. Especially, by examining the
numerical simulation and analysis of solution, one can undertake macroscopical analysis
and comparative research into advantages and disadvantages of real estate securitization
process and find that there may exist problems and risks with real estate asset securi-
tization, and then one can put forward optimizing the views on traditional risk control
process. In recent years, fractional-order models have been proved to be more accurate
than integer order models, i.e., there are more degrees of freedom in the fractional-order
models. Tao and Qian [] discussed the existence and uniqueness of positive solutions
for the following differential equation with nonlocal Riemann-Stieltjes integral condition
arising from the real estate asset securitization:

⎧⎨
⎩
–Dαx(t) = f (t,x(t), –Dβx(t)),  < t < ,  < α ≤ ,

Dβx() =Dβ+x() = , Dβx() =
∫ 
 D

βx(s)dA(s).
(.)

Mathematical models have been proven valuable in understanding the dynamics of HIV
infection [–]. Recently Perelson [] introduced fractional order into a model of HIV
infection.Motivated by theseHIVmodels, Yang [] considered the existence of nontrivial
solution for the fractional differential system

⎧⎪⎪⎨
⎪⎪⎩
–Dαx(t) = λf (t,x(t), –Dβx(t), y(t)), –Dγ y(t) = g(t,x(t)), t ∈ (, ),

Dβx() = , Dβx() =
∫ 
 D

βx(s)dA(s),

y() = , y() =
∫ 
 y(s)dB(s),

(.)

where λ is a parameter,  < γ < α ≤ ,  < α – β < γ ,  < β <  and A, B are functions of
bounded variation.
In the present paper, we are motivated by some recent papers [, , ], which consid-

ered problem (.) with F being single-valued and provided results on the existence and
nonexistence of positive solutions. Here we extend the results to cover the multivalued
case.
We establish existence results for problem (.), when the right-hand side is con-

vex as well as non-convex valued. The first result relies on the nonlinear alternative of
Leray-Schauder type. In the second result, we shall combine the nonlinear alternative of
Leray-Schauder type for single-valued maps with a selection theorem due to Bressan and
Colombo for lower semicontinuous multivalued maps with nonempty closed and decom-
posable values; while in the third result, we shall use the fixed point theorem for contrac-
tion multivalued maps due to Covitz and Nadler.
The paper is organized as follows. In Section  we recall some preliminary facts that we

need in the sequel, and in Section  we prove our main results. Examples illustrating the
obtained results are presented in Section .
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2 Preliminaries
In this section, we introduce notations, definitions and preliminary facts that will be used
in the remainder of this paper.
Let C([, ]) denote a Banach space of continuous functions from [, ] into R with the

norm ‖x‖ = supt∈[,] |x(t)|. Let L([, ],R) be the Banach space of measurable functions
x : [, ]→R which are Lebesgue integrable and normed by ‖x‖L =

∫ 
 |x(t)|dt.

For a normed space (X,‖ · ‖), let

Pcl(X) =
{
Y ∈P(X) : Y is closed

}
,

Pb(X) =
{
Y ∈P(X) : Y is bounded

}
,

Pcp(X) =
{
Y ∈P(X) : Y is compact

}
and

Pcp,c(X) =
{
Y ∈P(X) : Y is compact and convex

}
.

Let A,B ∈Pcl(X). The Pompeiu-Hausdorff distance of A, B is defined by

Hd(A,B) =max
{
sup
a∈A

d(a,B), sup
b∈B

d(A,b)
}
,

where d(A,b) = infa∈A d(a;b) and d(a,B) = infb∈B d(a;b).
A multivalued map G : X →P(X):
(i) is convex (closed) valued if G(x) is convex (closed) for all x ∈ X ;
(ii) is bounded on bounded sets if G(B) =

⋃
x∈BG(x) is bounded in X for all B ∈Pb(X)

(i.e., supx∈B{sup{|y| : y ∈G(x)}} <∞);
(iii) is called upper semicontinuous (u.s.c.) on X if, for each x ∈ X , the set G(x) is a

nonempty closed subset of X , and if, for each open set N of X containing G(x),
there exists an open neighborhoodN of x such that G(N) ⊆N ;

(iv) G is lower semicontinuous (l.s.c.) if the set {y ∈ X :G(y)∩ B 	= ∅} is open for any
open set B in E;

(v) is said to be completely continuous if G(B) is relatively compact for every
B ∈Pb(X);

(vi) is said to bemeasurable if, for every y ∈R, the function

t �→ d
(
y,G(t)

)
= inf

{|y – z| : z ∈G(t)
}

is measurable;
(vii) has a fixed point if there is x ∈ X such that x ∈G(x). The fixed point set of the

multivalued operator G will be denoted by FixG.

Definition . A multivalued operator N : X →Pcl(X) is called:
(a) γ -Lipschitz if and only if there exists γ >  such that

Hd
(
N(x),N(y)

) ≤ γd(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is γ -Lipschitz with γ < .

Definition . A multivalued map F : [, ]×R→P(R) is said to be Carathéodory if
(i) t �→ F(t,x) is measurable for each x ∈R;

http://www.advancesindifferenceequations.com/content/2013/1/216
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(ii) x �→ F(t,x) is upper semicontinuous for almost all t ∈ [, ].
Further, a Carathéodory function F is called L-Carathéodory if
(iii) for each α > , there exists ϕα ∈ L([, ],R+) such that

∥∥F(t,x)∥∥ = sup
{|v| : v ∈ F(t,x)

} ≤ ϕα(t)

for all ‖x‖ ≤ α and for a.e. t ∈ [, ].

For each x ∈ C([, ],R), define the set of selections of F by

SF ,x :=
{
v ∈ L

(
[, ],R

)
: v(t) ∈ F

(
t,x(t), –Dβx(t)

)
for a.e. t ∈ [, ]

}
.

We define the graph of G to be the set Gr(G) = {(x, y) ∈ X × Y , y ∈ G(x)} and recall two
useful results regarding closed graphs and upper-semicontinuity.

Lemma . [, Proposition .] If G : X → Pcl(Y ) is u.s.c., then Gr(G) is a closed subset
of X × Y ; i.e., for every sequence {xn}n∈N ⊂ X and {yn}n∈N ⊂ Y , if when n → ∞, xn → x∗,
yn → y∗ and yn ∈G(xn), then y∗ ∈G(x∗). Conversely, if G is completely continuous and has
a closed graph, then it is upper semicontinuous.

Lemma . [] Let X be a Banach space. Let F : [,T] × R → Pcp,c(X) be an L-
Carathéodorymultivaluedmapand let� be a linear continuousmapping from L([, ],X)
to C([, ],X). Then the operator

� ◦ SF : C
(
[, ],X

) →Pcp,c
(
C

(
[, ],X

))
, x �→ (� ◦ SF )(x) = �(SF ,x,y)

is a closed graph operator in C([, ],X)×C([, ],X).

Let us recall some basic definitions of fractional calculus [, ].

Definition . The Riemann-Liouville derivative of fractional order q is defined as

Dq
+g(t) =


�(n – q)

(
d
dt

)n ∫ t


(t – s)n–q–g(s)ds, n –  < q < n,n = [q] + ,

provided the integral exists, where [q] denotes the integer part of the real number q.

Definition . The Riemann-Liouville fractional integral of order q is defined as

Iq+g(t) =


�(q)

∫ t



g(s)
(t – s)–q

ds, q > ,

provided the integral exists.

Lemma . [] For q > , the general solution of the fractional differential equation
Dq

+x(t) =  is given by

x(t) = ctq– + ctq– + · · · + cntq–n,

where ci ∈R, i = , , . . . ,n (n = [q] + ).

http://www.advancesindifferenceequations.com/content/2013/1/216
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Lemma . [] () If x ∈ L(, ), ν > σ > , then

IνIσx(t) = Iν+σx(t), Dσ Iσx(t) = Iν–σx(t), Dσ Iσx(t) = x(t). (.)

() If ν > , σ > , then

Dνtσ– =
�(σ )

�(σ – ν)
tσ–ν–. (.)

In view of Lemma ., it follows that

Iq+D
q
+x(t) = x(t) + ctq– + ctq– + · · · + cntq–n (.)

for some ci ∈R, i = , , . . . ,n (n = [q] + ).
Let x(t) = Iβy(t), y(t) ∈ C[, ]. By standard discussion, one can easily reduce BVP (.)

to the following modified problem:

⎧⎨
⎩
–Dα–βy(t) ∈ F(t, Iβy(t), –y(t)),  < t < ,  < α ≤ ,

y() = y′() = , y() =
∫ 
 y(s)dA(s)

(.)

and BVP (.) is equivalent to BVP (.).

Lemma . [] Given y ∈ L([, ],R), then the unique solution of the problem

⎧⎨
⎩
Dα–βx(t) + y(t) = ,  < t < ,

x() = x′() = , x() = ,
(.)

is given by

x(t) =
∫ 


G(t, s)y(s)ds,

where G(t, s) is the Green function of BVP (.) and is given by

G(t, s) =

⎧⎨
⎩

[t(–s)]α–β–

�(α–β) ,  ≤ t ≤ s ≤ ,
[t(–s)]α–β––(t–s)α–β–

�(α–β) ,  ≤ s≤ t ≤ .
(.)

Lemma . For any t, s ∈ [, ], G(t, s) satisfies

tα–β–( – t)s( – s)α–β–

�(α – β)
≤ G(t, s)≤ s( – s)α–β–

�(α – β – )
. (.)

By Lemma ., the unique solution of the problem

⎧⎨
⎩
Dαx(t) = ,  < t < ,

x() = x′() = , x() = ,
(.)
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is tα–β–. Let

C =
∫ 


tα–β– dA(t) (.)

and define

GA(s) =
∫ 


G(t, s)dA(t),

as in [], we can get that the Green function for BVP (.) is given by

H(t, s) =
tα–β–

 – C GA(s) +G(t, s). (.)

Throughout the paper we always assume that the following holds.

(H) A is an increasing function of bounded variation such that G(s) ≥  for s ∈ [, ] and
 ≤ C < , where C is defined by (.).

Lemma . [] Let  < α – β ≤ . Assume that (H) holds. Then H(t, s) satisfies

 ≤ H(t, s)≤ 
( – C)�(α – β – )

. (.)

We end this section by recalling two well-known fixed point theorems which will be
used in the sequel, the nonlinear alternative of Leray-Schauder for multivalued maps and
Covitz and Nadler fixed point theorem.

Lemma . (Nonlinear alternative for Kakutani maps) [] Let E be a Banach space,
let C be a closed convex subset of E, U be an open subset of C and  ∈ U . Suppose that
F :U →Pc,cv(C) is an upper semicontinuous compact map. Then either

(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U and λ ∈ (, ) with u ∈ λF(u).

Lemma . [] Let (X,d) be a complete metric space. If N : X →Pcl(X) is a contraction,
then FixN 	= ∅.

3 Existence results
Now we are in a position to present our main results. The methods used to prove the
existence results are standard; however, their exposition in the framework of problem (.)
is new.

3.1 Convex case
Theorem . Assume that (H) holds. In addition we assume that:

(H) F : [, ] × R × R → P(R) is Carathéodory and has nonempty compact and convex
values;

http://www.advancesindifferenceequations.com/content/2013/1/216
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(H) there exist two continuous nondecreasing functions ψi : [,∞) → (,∞), i = , , and
a function p ∈ L([, ],R+) such that

∥∥F(t,x, y)∥∥P := sup
{|z| : z ∈ F(t,x, y)

} ≤ p(t)
(
ψ

(|x|) +ψ
(|y|))

for each (t,x, y) ∈ [, ]×R×R;
(H) there exists a constantM >  such that

M


(–C)�(α–β–) [ψ( M
�(β+) ) +ψ(M)]‖p‖L

> .

Then boundary value problem (.) has at least one solution on [, ].

Proof Define the operator F : C([, ],R)→P(C([, ],R)) by

F (x) =
{
h ∈ C

(
[, ],R

)
: h(t) =

∫ 


H(t, s)v(s)ds, v ∈ SF ,x

}
.

We will show that F satisfies the assumptions of the nonlinear alternative of Leray-
Schauder type. The proof consists of several steps. As the first step, we show that F is
convex for each x ∈ C([, ],R). This step is obvious since SF ,x,y is convex (F has convex
values), and therefore we omit the proof.
In the second step, we show that F maps bounded sets (balls) into bounded sets in

C([, ],R). For a positive number ρ , let Bρ = {x ∈ C([, ],R) : ‖x‖ ≤ ρ} be a bounded ball
in C([, ],R). Then, for each h ∈ F (x), x ∈ Bρ , there exists v ∈ SF ,x,y such that

h(t) =
∫ 


H(t, s)v(s)ds.

Then for t ∈ [, ], and notice that

∣∣Iβy(t)∣∣ =
∣∣∣∣ 
�(β)

∫ t


(t – s)β–y(s)ds

∣∣∣∣ ≤ ‖y‖
�(β + )

,

we have

∣∣h(t)∣∣ ≤
∫ 


H(t, s)

∣∣v(s)∣∣ds

≤ 
( – C)�(α – β – )

∫ 


p(s)

[
ψ

(∣∣Iβy(s)∣∣) +ψ
(∣∣y(s)∣∣)]ds

≤ 
( – C)�(α – β – )

∫ 


p(s)

[
ψ

( ‖y‖
�(β + )

)
+ψ

(‖y‖)
]

≤ 
( – C)�(α – β – )

[
ψ

( ‖y‖
�(β + )

)
+ψ

(‖y‖)
]∫ 


p(s)ds.

Thus,

‖h‖ ≤ 
( – C)�(α – β – )

[
ψ

(
ρ

�(β + )

)
+ψ(ρ)

]
‖p‖L .
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Now we show that F maps bounded sets into equicontinuous sets of C([, ],R). Let
t′, t′′ ∈ [, ] with t′ < t′′ and y ∈ Bρ . For each h ∈ F (y), we obtain

∣∣h(t′′) – h
(
t′
)∣∣ ≤

∫ 



∣∣H(
t′, s

)
–H

(
t′′, s

)∣∣∣∣v(s)∣∣ds

≤
∫ 



∣∣H(
t′, s

)
–H

(
t′′, s

)∣∣p(s)
[
ψ

(
ρ

�(β + )

)
+ψ(ρ)

]
ds.

Obviously the right-hand side of the above inequality tends to zero independently of
y ∈ Bρ as t′′ – t′ → . As F satisfies the above three assumptions, it follows by the Arzelá-
Ascoli theorem that F : C([, ],R) →P(C([, ],R)) is completely continuous.
In our next step, we show that F has a closed graph. Let yn → y∗, hn ∈ F (yn) and

hn → h∗. Thenwe need to show that h∗ ∈ F (y∗). Associatedwith hn ∈ F (yn), there exists
vn ∈ SF ,yn such that for each t ∈ [, ],

hn(t) =
∫ 


H(t, s)vn(s)ds.

Thus it suffices to show that there exists v∗ ∈ SF ,y∗ such that for each t ∈ [, ],

h∗(t) =
∫ 


H(t, s)v∗(s)ds.

Let us consider the linear operator � : L([, ],R)→ C([, ],R) given by

f �→ �(v)(t) =
∫ 


H(t, s)v(s)ds.

Observe that

∥∥hn(t) – h∗(t)
∥∥ =

∥∥∥∥
∫ 


H(t, s)

(
vn(s) – v∗(s)

)
ds

∥∥∥∥ → , as n→ ∞.

Thus, it follows by Lemma . that � ◦ SF is a closed graph operator. Further, we have
hn(t) ∈ �(SF ,yn ). Since yn → y∗, therefore, we have

h∗(t) =
∫ 


H(t, s)v∗(s)ds

for some v∗ ∈ SF ,y∗ .
Finally, we show that there exists an open set U ⊆ C([, ],R) with y /∈ F (y) for any

λ ∈ (, ) and all y ∈ ∂U . Let λ ∈ (, ) and y ∈ λF (y). Then there exists v ∈ L([, ],R)
with v ∈ SF ,y such that, for t ∈ [, ], we have

y(t) = λ

∫ 


H(t, s)v(s)ds

http://www.advancesindifferenceequations.com/content/2013/1/216
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and, using the computations of the second step above, we have

∣∣y(t)∣∣ ≤ 
( – C)�(α – β – )

∫ 


p(s)

[
ψ

(∣∣Iβy(s)∣∣) +ψ
(∣∣y(s)∣∣)]ds

≤ 
( – C)�(α – β – )

[
ψ

( ‖y‖
�(β + )

)
+ψ

(‖y‖)
]
‖p‖L .

Consequently, we have

‖y‖


(–C)�(α–β–) [ψ( ‖y‖
�(β+) ) +ψ(‖y‖)]‖p‖L

≤ .

In view of (H), there existsM such that ‖y‖ 	=M. Let us set

U =
{
y ∈ C

(
[, ],R

)
: ‖y‖ <M

}
.

Note that the operator F :U → P(C([, ],R)) is upper semicontinuous and completely
continuous. From the choice of U , there is no y ∈ ∂U such that y ∈ λF (y) for some λ ∈
(, ). Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma .), we
deduce thatF has a fixed point y ∈ U , which is a solution of problem (.). This completes
the proof. �

3.2 Non-convex case
In this subsection, we study the case when F is not necessarily convex-valued.

Definition . Let A be a subset of [, ]×R. A is L⊗B measurable if A belongs to the
σ -algebra generated by all sets of the form J × D, where J is Lebesgue measurable in
[, ] and D is Borel measurable in R.

Definition . A subsetA of L([, ],R) is decomposable if, for all u, v ∈A and measur-
able J ⊂ [, ] = J , the function uχJ + vχJ–J ∈A, where χJ stands for the characteristic
function of J .

Theorem . Assume that (H), (H), (H) and the following condition holds:

(H) F : [, ]×R×R →P(R) is a nonempty compact-valuedmultivaluedmap such that
(a) (t,x, y) �→ F(t,x, y) is L⊗B ⊗B measurable,
(b) (x, y) �→ F(t,x, y) is lower semicontinuous for each t ∈ [, ].

Then boundary value problem (.) has at least one solution on [, ].

Proof It follows from (H), (H) and Lemma . of [] that F is of l.s.c. type. Then,
from the selection theorem due to Bressan and Colombo [] for lower semicontinuous
maps with decomposable values, there exists a continuous function f : AC([, ],R) →
L([, ],R) such that f (x) ∈F (x) for all x ∈ C([, ],R).
Consider the problem

⎧⎨
⎩
–Dαx(t) = f (x(t)), t ∈ [, ],

Dβx() =Dβ+x() = , Dβx() =
∫ 
 D

βx(s)dA(s).
(.)

http://www.advancesindifferenceequations.com/content/2013/1/216
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Observe that if x ∈ AC([, ],R) is a solution of (.), then x is a solution to problem (.).
In order to transform problem (.) into a fixed point problem, we define the operator F

as

Fx(t) =
∫ 


H(t, s)f

(
x(s)

)
ds.

It can easily be shown that F is continuous and completely continuous and satisfies all
the conditions of the nonlinear alternative of Leray-Schauder type for single-valued maps
[]. The remaining part of the proof is similar to that of Theorem .. So we omit it. This
completes the proof. �

Now we prove our second existence result for problem (.) with a non-convex-valued
right-hand side by applying a fixed point theorem for amultivaluedmap due to Covitz and
Nadler [].

Theorem . Assume that the following conditions hold:

(H) F : [, ] × R × R → Pcp(R) is such that F(·,x, y) : [, ] → Pcp(R) is measurable for
each x ∈R;

(H) Hd(F(t,x, y),F(t, x̄, ȳ)) ≤ m(t)(|x – x̄| + |y – ȳ|) for almost all t ∈ [, ] and x, x̄, y, ȳ ∈R

with m ∈ L([, ],R+) and d(,F(t, , ))≤ m(t) for almost all t ∈ [, ].

Then boundary value problem (.) has at least one solution on [, ] if


( – C)�(α – β – )

(


�(β + )
+ 

)
‖m‖L < .

Proof We transform boundary value problem (.) into a fixed point problem. Define the
operator F : C([, ],R)→P(C([, ],R)) by

F (x) =
{
h ∈ C

(
[, ],R

)
: h(t) =

∫ 


H(t, s)v(s)ds, v ∈ SF ,x

}
.

We show that the operator F satisfies the assumptions of Lemma .. The proof will be
given in two steps.
Step . F (x) is nonempty and closed for every v ∈ SF ,x. Note that since the set-valued

map F(·,x(·), y(·)) is measurable with the measurable selection theorem (e.g., [, Theo-
rem III.]), it admits a measurable selection v : I → R. Moreover, by the assumption (H),
we have

∣∣v(t)∣∣ ≤ m(t) +m(t)
(∣∣y(t)∣∣ + ∣∣Iβy(t)∣∣) ≤ m(t) +m(t)

(


�(β + )
+ 

)∣∣y(t)∣∣,

i.e., v ∈ L([, ],R) and hence F is integrably bounded. Therefore, SF ,y 	= ∅.
To show that F (x) ∈ Pcl((C[, ],R)) for each x ∈ C([, ],R), let {un}n≥ ∈ F (x) be

such that un → u (n → ∞) in C([, ],R). Then u ∈ C([, ],R) and there exists vn ∈ SF ,xn
such that, for each t ∈ [, ],

un(t) =
∫ 


H(t, s)vn(s)ds.
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As F has compact values, we pass onto a subsequence (if necessary) to obtain that vn con-
verges to v in L([, ],R). Thus, v ∈ SF ,y and for each t ∈ [, ], we have

vn(t)→ v(t) =
∫ 


H(t, s)v(s)ds.

Hence, u ∈ F (x).
Step . ThemultivaluedmapF (x) is a contraction.We show that there exists δ <  such

that

Hd
(
F (x),F (x̄)

) ≤ δ‖x – x̄‖ for each x, x̄ ∈ AC([, ],R)
.

Let x, x̄ ∈ AC([, ],R) and h ∈ F (x). Then there exists v(t) ∈ F(t, y(t)) such that, for
each t ∈ [, ],

h(t) =
∫ 


H(t, s)v(s)ds.

By (H), we have

Hd
(
F(t,x, y),F(t, x̄, ȳ)

) ≤ m(t)
(∣∣x(t) – x̄(t)

∣∣ + ∣∣y(t) – ȳ(t)
∣∣).

So, there exists w(t) ∈ F(t, x̄(t), ȳ(t)) such that

∣∣v(t) –w(t)
∣∣ ≤ m(t)

(∣∣x(t) – x̄(t)
∣∣ + ∣∣y(t) – ȳ(t)

∣∣), t ∈ [, ].

Define U : [, ]→P(R) by

U(t) =
{
w ∈R :

∣∣v(t) –w(t)
∣∣ ≤ m(t)

(∣∣x(t) – x̄(t)
∣∣ + ∣∣y(t) – ȳ(t)

∣∣)}.
Since the multivalued operator U(t) ∩ F(t, x̄(t), ȳ(t)) is measurable (Proposition III. in
[]), there exists a function v(t) which is a measurable selection for U . So, v(t) ∈
F(t, x̄(t), ȳ(t)) and for each t ∈ [, ], we have |v(t)– v(t)| ≤ m(t)(|x(t)– x̄(t)|+ |y(t)– ȳ(t)|).
For each t ∈ [, ], let us define

h(t) =
∫ 


H(t, s)v(s)ds.

Thus,

∣∣h(t) – h(t)
∣∣ ≤

∫ 


H(t, s)

∣∣v(s) – v(s)
∣∣ds

≤ 
( – C)�(α – β – )

(


�(β + )
+ 

)
‖x – x̄‖

∫ 


m(s)ds.

Hence,

‖h – h‖ ≤ 
( – C)�(α – β – )

(


�(β + )
+ 

)
‖m‖L‖x – x̄‖.
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Analogously, interchanging the roles of x and x, we obtain

Hd
(
F (x),F (x̄)

) ≤ δ‖x – x̄‖ ≤ 
( – C)�(α – β – )

(


�(β + )
+ 

)
‖m‖L‖x – x̄‖.

Since F is a contraction, it follows by Lemma . that F has a fixed point x which is
a solution of (.). This completes the proof. �

4 Examples
In this section, we give two examples to show the applicability of our results.

Example . Consider the following fractional boundary value problem:
⎧⎨
⎩
–D/x(t) ∈ F(t,x(t), –D/x(t)), t ∈ [, ],

D/x() =D/x() = , D/x() =
∫ 
 D

/x(s)dA(s),
(.)

where

A(t) =

⎧⎪⎪⎨
⎪⎪⎩
, t ∈ [,  ),

, t ∈ [  ,

 ),

, t ∈ [  , ]

and F : [, ]×R×R →P(R) is a multivalued map given by

F(t,x, y) =
{
u ∈R : e–|x| –

|y|
 + |y| + sin t ≤ u≤  +

|x|
 + x

+ t + cos y
}
.

Thus BVP (.) becomes the four-point BVP
⎧⎨
⎩
–D/x(t) ∈ F(t,x(t), –D/x(t)), t ∈ [, ],

D/x() =D/x() = , D/x() =D/x(  ) +D/x(  ).
(.)

We have

 ≤ C =
∫ 


t/ dA(t) =

(



)/

+
(



)/

≈ .,

( – C)�(α – β – ) = .,

G(t, s) =

⎧⎨
⎩
G(t, s) = [t(–s)]/

�(/) ,  ≤ t ≤ s≤ ,

G(t, s) = [t(–s)]/–(t–s)/
�(/) ,  ≤ s≤ t ≤ 

and

GA(s) =

⎧⎪⎪⎨
⎪⎪⎩
G(  , s) + G(  , s),  ≤ s < 

 ,

G(  , s) + G(  , s),

 ≤ s < 

 ,

G(  , s) + G(  , s),

 ≤ s ≤ .

Thus GA(s)≥ ,  ≤ C <  and A(s) is increasing, so (H) holds.
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Moreover,

∥∥F(t,x, y)∥∥P := sup
{|v| : v ∈ F(t,x, y)

} ≤  + t ≤ , t ∈ [, ],x, y ∈R.

It is clear that F is convex, compact-valued and is of Carathéodory type. Let p(t) =  and
ψ(|x|) = , ψ(|y|) = , we get for t ∈ [, ], x, y ∈ R

∥∥F(t,x, y)∥∥P := sup
{|v| : v ∈ F(t,x, y)

} ≤ p(t)
(
ψ

(|x|) +ψ
(|y|))

and hence (H) holds.
Using the above values in the condition (H)

M


(–C)�(α–β–) [ψ( M
�(β+) ) +ψ(M)]‖p‖L

> ,

we find that

M > ..

Clearly, all the conditions of Theorem . are satisfied. Hence the conclusion of Theo-
rem . applies to problem (.).

Example . Consider the following fractional boundary value problem:
⎧⎨
⎩
–D/x(t) ∈ F(t,x(t), –D/x(t)), t ∈ [, ],

D/x() =D/x() = , D/x() =
∫ 
 D

/x(s)dA(s),
(.)

where A(t) as in Example . and

F(t,x, y) =
[
–�(t) –

sinx
( + t)

– ,–



]
∪

[
,




|y|
 + |y| + �(t)

]

and �,� ∈ L([, ],R+).
Then we have

sup
{|u| : u ∈ F(t,x, y)

} ≤  +


( + t)
+ �(t) + �(t),

Hd
(
F(t,x, y) – F(t, x̄, ȳ)

) ≤ 
( + t)

|x – x̄| + 


|y – ȳ|.

Let m(t) = 
(+t) +


 . Then

Hd
(
F(t,x, y) – F(t, x̄, ȳ)

) ≤ m(t)
(|x – x̄| + |y – ȳ|)

and


( – C)�(α – β – )

(


�(β + )
+ 

)
‖m‖L ≈ . < .

Hence all the assumptions of Theorem . are satisfied and by the conclusion of it, BVP
(.) has at least one solution on [, ].
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