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Abstract
In this study, we consider the interval-valued integro-differential equations (IIDEs)
under generalized H-differentiability

Dg
HX(t) = F(t,X(t)) +

∫ t

t0

G(t, s,X(s))ds, X(t0) = X0 ∈ KC(R).

The global existence of solutions for interval-valued integro-differential equations
with initial conditions under generalized H-differentiability is studied. Theorems for
global existence of solutions are given and proved on [t0,∞). Some examples are
given to illustrate these results.
MSC: 34K05; 34K30; 47G20

Keywords: interval-valued differential equations; interval-valued integro-differential
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1 Introduction
The set-valued differential and integral equations are an important part of the theory of
set-valued analysis, and they play an important role in the theory and application of con-
trol theory; and they were first studied in  by De Blasi and Iervolino []. Recently,
set-valued differential equations have been studied by many scientists due to their appli-
cations in many areas. For the basic theory on set-valued differential and integral equa-
tions, the readers can be referred to the following books and papers [–] and references
therein. Integro-differential equations are encountered in many areas of science, where
it is necessary to take into account aftereffect or delay (for example, in control theory,
biology, ecology, medicine, etc. [–]). Especially, one always describes a model which
possesses hereditary properties by integro-differential equations in practice.
The interval-valued analysis and interval differential equations (IDEs) are the special

cases of the set-valued analysis and set-valued differential equations, respectively. Inmany
situations, whenmodeling real-world phenomena, information about the behavior of a dy-
namic system is uncertain and one has to consider these uncertainties to gain bettermean-
ing of full models. Interval-valued differential equation is a natural way to model dynamic
systems subject to uncertainties. Recently, many works have been done by several authors
in the theory of interval-valued differential equations (see, e.g., [–]). There are several
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approaches to the study of interval differential equations. One popular approach is based
on H-differentiability. The approach based on H-derivative has the disadvantage that it
leads to solutions which have an increasing length of their support. Recently, Stefanini
and Bede [] solved the above mentioned approach under strongly generalized differen-
tiability of interval-valued functions. In this case, the derivative exists and the solution of
an interval-valued differential equation may have decreasing length of the support, but
the uniqueness is lost. The paper of Stefanini and Bede was the starting point for the topic
of interval-valued differential equations (see [, ]) and later also for fuzzy differential
equations. Also, a very important generalization and development related to the subject
of the present paper is in the field of fuzzy sets, i.e., fuzzy calculus and fuzzy differential
equations under the generalized Hukuhara derivative. Recently, several works, e.g., [, ,
, –], have been done on set-valued differential equations, fuzzy differential equa-
tions and random fuzzy differential equations.
In [, , ] the authors presented interval-valued differential equations under gener-

alized Hukuhara differentiability which were given the following form:

X ′(t) = F
(
t,X(t)

)
, X(t) = X ∈ KC(R), t ∈ [t,T], (.)

where ′ denotes two kinds of derivatives, namely the classical Hukuhara derivative and the
second type Hukuhara derivative (generalized Hukuhara differentiability). The existence
and uniqueness of a Cauchy problem is then obtained under an assumption that the coef-
ficients satisfy a condition with the Lipschitz constant (see []). The proof is based on the
application of the Banach fixed point theorem. In [], under the generalized Lipschitz
condition, Malinowski obtained the existence and uniqueness of solutions to both kinds
of IDEs.
In this paper, we study two kinds of solutions to IIDEs. The different types of solutions to

IIDEs are generated by the usage of two different concepts of interval-valued derivative.
This direction of research is motivated by the results of Stefanini and Bede [], Mali-
nowski [, ] concerning deterministic IDEs with generalized interval-valued deriva-
tive.
This paper is organized as follows. In Section , we recall some basic concepts and no-

tations about interval analysis and interval-valued differential equations. In Section , we
present the global existence of solutions to the interval-valued integro-differential equa-
tions under two kinds of theHukuhara derivative. Finally, we give some examples for IIDEs
in Section .

2 Preliminaries
Let KC(Rn) be the space of nonempty compact and convex sets ofRn. The set of real inter-
vals will be denoted by KC(R). The addition and scalar multiplication in KC(R), we define
as usual, i.e., for A,B ∈ KC(R), A = [a–,a+], B = [b–,b+], where a– ≤ a+, b– ≤ b+, and λ ≥ ,
then we have

A + B =
[
a– + b–,a+ + b+

]
, λA =

[
λa–,λa+

] (
–λA =

[
λa+,λa–

])
.

Furthermore, let A ∈ KC(R), λ,λ,λ,λ ∈ R and λ,λ ≥ , then we have λ(λA) =
(λλ)A and (λ +λ)A = λA+λA. LetA,B ∈ KC(R) as above. Then the Hausdorffmetric
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H in KC(R) is defined as follows:

H(A,B) =max
{∣∣a– – b–

∣∣, ∣∣a+ – b+
∣∣}. (.)

We notice that (KC(R),H) is a complete, separable and locally compact metric space. We
define the magnitude and the length of A ∈ KC(R) by

H
(
A, {}) = ‖A‖ =max

{∣∣a–∣∣, ∣∣a+∣∣}, len(A) = a+ – a–,

respectively, where {} is the zero element of KC(R), which is regarded as one point. The
Hausdorff metric (.) satisfies the following properties:

H(A +C,B +C) =H(A,B) and H(A,B) =H(B,A),

H(A + B,C +D)≤ H(A,C) +H(B,D),

H(λA,λB) = |λ|H(A,B)

for all A,B,C,D ∈ KC(R) and λ ∈R. Let A,B ∈ KC(R). If there exists an interval C ∈ KC(R)
such that A = B + C, then we call C the Hukuhara difference of A and B. We denote the
interval C by A � B. Note that A � B 	= A + (–)B. It is known that A � B exists in the
case len(A) ≥ len(B). Besides that, we can see [, , , ] the following properties for
A,B,C,D ∈ KC(R):
- If A� B, A�C exist, then H(A� B,A�C) =H(B,C);
- If A� B, C �D exist, then H(A� B,C �D) =H(A +D,B +C);
- If A�B, A� (B+C) exist, then there exist (A�B)�C and (A�B)�C = A� (B+C);
- If A� B, A�C, C � B exist, then there exist (A� B)� (A�C) and
(A� B)� (A�C) = C � B.

Definition . [] We say that the interval-valued mapping X : [a,b] ⊂ R+ → KC(R) is
continuous at the point t ∈ [a,b] if for every ε >  there exists δ = δ(t, ε) >  such that, for
all s ∈ [a,b] such that |t – s| < δ, one has H(X(t),X(s))≤ ε.

The strongly generalized differentiability was introduced in [] and studied in [,
–].

Definition . Let X : [a,b]→ KC(R) and t ∈ [a,b]. We say that X is strongly generalized
differentiable at t if there exists Dg

HX(t) ∈ KC(R) such that
(i) for all h >  sufficiently small, ∃X(t + h)�X(t), ∃X(t)�X(t – h) and the limits

lim
h↘

H
(
X(t + h)�X(t)

h
,Dg

HX(t)
)
= , lim

h↘
H

(
X(t)�X(t – h)

h
,Dg

HX(t)
)
= ,

or
(ii) for all h >  sufficiently small, ∃X(t)�X(t + h), ∃X(t – h)�X(t) and the limits

lim
h↘

H
(
X(t)�X(t + h)

–h
,Dg

HX(t)
)
= , lim

h↘
H

(
X(t – h)�X(t)

–h
,Dg

HX(t)
)
= ,

or
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(iii) for all h >  sufficiently small, ∃X(t + h)�X(t), ∃X(t – h)�X(t) and the limits

lim
h↘

H
(
X(t + h)�X(t)

h
,Dg

HX(t)
)
= , lim

h↘
H

(
X(t – h)�X(t)

h
,Dg

HX(t)
)
= ,

or
(iv) for all h >  sufficiently small, ∃X(t)�X(t + h), ∃X(t)�X(t – h) and the limits

lim
h↘

H
(
X(t)�X(t + h)

–h
,Dg

HX(t)
)
= , lim

h↘
H

(
X(t)�X(t – h)

–h
,Dg

HX(t)
)
= 

(h at denominators means 
h ). In this definition, case (i) ((i)-differentiability for short) cor-

responds to the classicalH-derivative, so this differentiability concept is a generalization of
the Hukuhara derivative. In [], Stefanini and Bede considered four cases for the deriva-
tive. In this paper, we consider only the two first items of Definition .. In other cases,
the derivative is trivial because it is reduced to a crisp element.

Remark . [, ] If for intervals X,Y ,Z ∈ KC(R) there exist Hukuhara differences X �
Y , X � Z, then H(X � Y , {}) =H(X,Y ) and H(X � Y ,X � Z) =H(Y ,Z).

Let X,Y : [a,b]→ KC(R). We have (see []) some properties of Dg
H as follows:

(i) If X is (i)-differentiable, then it is continuous.
(ii) If X , Y are (i)-differentiable and λ ∈ R, then Dg

H (X + Y )(t) =Dg
HX(t) +Dg

HY (t),
Dg

H (λX)(t) = λDg
HX(t).

(iii) Let X be (i)-differentiable and assume that Dg
HX is integrable over [a,b]. Then we

have X(t) = X(a) +
∫ t
a D

g
HX(s)ds.

(iv) If X is (i)-differentiable on [a,b], then the real function t → len(X(t)) is
nondecreasing on [a,b].

(v) Let X be (ii)-differentiable and assume that Dg
HX is integrable over [a,b]. Then we

have X(a) = X(t) + (–)
∫ t
a D

g
HX(s)ds.

(vi) If X is (ii)-differentiable on [a,b], then the real function t → len(X(t)) is
nonincreasing on [a,b].

Corollary . (see, e.g., [, ]) Let X : [t,T] → KC(R) be given. Denote X(t) = [X–(t),
X+(t)] for t ∈ [t,T], where X–,X+ : [t,T] →R.

(i) If the mapping X is (i)-differentiable (i.e., classical Hukuhara differentiability) at
t ∈ [t,T], then the real-valued functions X–, X+ are differentiable at t and
Dg

HX(t) = [(X–)′(t), (X+)′(t)].
(ii) If the mapping X is (ii)-differentiable at t ∈ [t,T], then the real-valued functions X–,

X+ are differentiable at t and Dg
HX(t) = [(X+)′(t), (X–)′(t)].

Lemma. (see [, , ]) The interval-valued differential equationDg
HX(t) = F(t,X(t)),

X(t) = X ∈ KC(R), where F : [t,T] × KC(R) → KC(R) is supposed to be continuous, is
equivalent to one of the integral equations

X(t) = X +
∫ t

t
F
(
s,X(s)

)
ds, ∀t ∈ [t,T]
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or

X = X(t) + (–)
∫ t

a
F
(
s,X(s)

)
ds, ∀t ∈ [t,T]

on the interval [t,T] ∈ R, under the strong differentiability condition, (i) or (ii), respec-
tively.We notice that the equivalence between two equations in this lemmameans that any
solution is a solution for the other one.

We consider the Cauchy problem for IIDEs under the form

Dg
HX(t) = F

(
t,X(t)

)
+

∫ t

t
K

(
t, s,X(s)

)
ds, X(t) = X (.)

for all t ∈ [t,T], where F : I = [t,T]× KC(R) → KC(R) and K :D × KC(R) → KC(R) are
continuous interval-valued mappings on I , with D = {(t, s) ∈ I × I : t ≤ s ≤ t < T}.

Definition . A mapping X : [t,T] → KC(R) is called a solution to problem (.) on I
if and only if X is a continuous mapping on I and it satisfies one of the following interval-
valued integral equations:
(S) X(t) = X + (

∫ t
t
F(s,X(s))ds +

∫ t
t

∫ s
t
K(s,u,X(u))duds), t ∈ I , if X is

(i)-differentiable or (iii)-differentiable.
(S) X(t) = X � (–)(

∫ t
t
F(s,X(s))ds +

∫ t
t

∫ s
t
K(s,u,X(u))duds), t ∈ I , if X is

(ii)-differentiable or (iv)-differentiable.

Definition . Let X : [t,T] → KC(R) be an interval-valued function which is (i)-
differentiable. If X and its derivative satisfy problem (.), we say X is a (i)-solution of
problem (.).

Definition . Let X : [t,T] → KC(R) be an interval-valued function which is (ii)-
differentiable. If X and its derivative satisfy problem (.), we say X is a (ii)-solution of
problem (.).

Definition . A solution X : [t,T] → KC(R) is unique if supt∈[t,T]H(X(t),Y (t)) =  for
any mapping Y : [t,T] → KC(R) that is a solution to (.) on [t,T].

Theorem . (see []) Let F : I = [t,T]×KC(R)→ KC(R) and K :D×KC(R)→ KC(R)
be continuous interval-valued mappings on I . Suppose that there exists L >  such that

max
{
H

(
F(t,X),F(t,X)

)
,H

(
K(t, s,X),K(t, s,X)

)} ≤ LH(X,X)

for all t, s ∈ I , X,X ∈ KC(R). Then there exists the only local solution X to IIDE (.) on
some intervals [t,T] (T≤ T – t) for each case ((i)-solution and (ii)-solution).

3 Main results
In this section of the paper, we consider again the following initial value problem for the
interval-valued integro-differential equations (IIDEs) under the form

Dg
HX(t) = F

(
t,X(t)

)
+

∫ t

t
K

(
t, s,X(s)

)
ds, X(t) = X (.)

http://www.advancesindifferenceequations.com/content/2013/1/217
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for all t ∈ J = [t,∞), where F : J × KC(R) → KC(R) and K : D × KC(R) → KC(R) are
continuous interval-valued mappings on J , with D = {(t, s) ∈ J × J : t ≤ s ≤ t < ∞}.

Theorem . Assume that
(i) F(t,X), G(t, s,X) are locally Lipschitzian for all t, s ∈ J , X ∈ KC(R);
(ii) f ∈ C[J × [,∞), [,∞)] and k ∈ C[D × [,∞), [,∞)] are nondecreasing in x≥ ,

and the maximal solution r(t, t,x) of the scalar integro-differential equation

x′(t) = f
(
t,x(t)

)
+

∫ t

t
k
(
t, s,x(s)

)
ds, x(t) = x ≥ , (.)

exists throughout J ;
(iii) H(F(t,X), {})≤ f (t,H(X, {})), H(K(t, s,X), {})≤ k(t, s,H(X, {})) for all t, s ∈ J ,

X ∈ KC(R);
(iv) H(X(t, t,X), {})≤ r(t, t,x), H(X, {})≤ x.

Then the largest interval of the existence of any solution X(t, t,X) of (.) for each case
((i)-solution and (ii)-solution) such that H(X, {}) ≤ x is J . In addition, if r(t, t,x) is
bounded on J , then limt→∞ X(t, t,X) exists in (KC(R),H).

Proof Since the way of the proof is similar for both cases ((i)-solution and (ii)-solution),
we only prove case (i)-differentiability. By hypothesis (i), there exists a T > t such that the
unique (i)-solution of problem (.) exists on [t,T]. Let

S =
{
X(t) | X(t) is defined on [t,αX] and is the (i)-solution to (.)

}
.

Then S 	= ∅. Taking α = sup{αX | X(t) ∈ S}, clearly, there exists a unique (i)-solution of
problem (.) which is defined on [t,α) with H(X, {}) ≤ x. Next, we shall prove that
α = ∞. We suppose α < ∞ and define

m(t) =H
(
X

(
t, t,X, {})), t ≤ t < α.

Using assumptions (ii) and (iii), we have

D+m(t) = lim inf
t→+

H(X(t + h, t,X), {}) –H(X(t, t,X), {})
h

≤ lim inf
h→+

H(X(t + h, t,X),X(t, t,X))
h

= lim inf
h→+

H(X(t + h, t,X)�X(t, t,X), {})
h

=H
(
Dg

HX(t), {}) =H
(
F
(
t,X(t)

)
+

∫ t

t
K

(
t, s,X(s)

)
ds, {}

)

≤ H
(
F
(
t,X(t)

)
, {}) + ∫ t

t
H

(
K

(
t, s,X(s)

)
, {})ds

≤ f
(
t,m(t)

)
+

∫ t

t
k
(
t, s,m(s)

)
ds, t ≤ t < α,

http://www.advancesindifferenceequations.com/content/2013/1/217
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and m(t) = H(X, {}) ≤ x. Further, by assumption (iv), it follows that m(t) ≤ r(t, t,x),
t ≤ t < α. Next, we deduce that limt→α–X(t, t,X) exists in (KC(R),H). In fact, for any
t, t such that t ≤ t < t < α, we obtain

H
(
X(t, t,X),X(t, t,X)

)
=H

(
X +

∫ t
t
F(s,X(s))ds +

∫ t
t

∫ s
t
K(s,u,X(u))duds,

X +
∫ t
t
F(s,X(s))ds +

∫ t
t

∫ s
t
K(s,u,X(u))duds

)

≤ H
(∫ t

t
F
(
s,X(s)

)
ds +

∫ t

t

∫ s

t
K

(
s,u,X(u)

)
duds,

∫ t

t
F
(
s,X(s)

)
ds +

∫ t

t

∫ s

t
K

(
s,u,X(u)

)
duds

)

≤
∫ t

t
H

(
F
(
s,X(s)

)
, {})ds + ∫ t

t

∫ s

t
H

(
K

(
s,u,X(u)

)
, {})duds

≤
∫ t

t
f
(
s, r(s)

)
ds +

∫ t

t

∫ s

t
k
(
s,u, r(u)

)
duds =

∫ t

t
r′(s)ds = r(t) – r(t).

Since limt→α– r(t, t,x) exists and is finite, taking the limits as t, t → α –  and using
the completeness of (KC(R),H), it follows from the estimateH(X(t, t,X),X(t, t,X)) ≤
r(t) – r(t) that limt→α–X(t, t,X) exists in (KC(R),H). Now we define X(α) =
limt→α–X(t) and consider the IVP

Dg
HX(t) = F

(
t,X(t)

)
+

∫ t

t
K

(
t, s,X(s)

)
ds, X(α) = lim

t→α–
X(t). (.)

By the assumption (i) again, it follows that X(t) can be extended beyond α, which con-
tradicts our assumption. So, any (i)-solution of problem (.) exists on J = [t,∞), and so
α = ∞. �

Example . Consider the IIDE

Dg
HX(t) = a(t)X(t) +

∫ t

t
b(s)X(s)ds, X(t) = X, (.)

where we assume that a(t),b(t) : R+ → R
+ are continuous functions. We see that

F(t,X(t)) = a(t)X(t) and K(t, s,X(t)) = b(t)X(t) are locally Lipschitzian. If we let f (t,x(t)) =
a(t)x(t) and k(t, s,x(t)) = b(t)x(t), then x(t)≡  is an unique solution of

x′(t) = a(t)x(t) +
∫ t

t
b(s)x(s)ds, x(t) = ,

on [t,∞). Moreover, we see that H(a(t)X(t), {}) ≤ a(t)H(X(t), {}) = f (t,H(X(t), {}))
and H(b(t)X(t), {}) ≤ b(t)H(X(t), {}) = k(t, s,H(X(t), {})). Therefore, the solutions of
problem (.) are on [t,∞).

Employing the comparison Theorem ., we shall prove the following global existence
result.

http://www.advancesindifferenceequations.com/content/2013/1/217
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Theorem . Assume that
(i) F ∈ C[J ×KC(R),KC(R)], K ∈ C[D ×KC(R),KC(R)], F and K are bounded on

bounded sets, and there exists a local (i)-solution of (.) for every (t,X), t ≥ 
and X ∈ KC(R);

(ii) V ∈ C[J ×KC(R), [,∞)]; |V (t,A) –V (t,B)| ≤ LH(A,B), where L is the local
Lipschitz constant, for A,B ∈ KC(R), t ∈ J , V (t,A) → ∞ as H(A, {})→ ∞
uniformly for [t,T], for every T > t and for t ∈ J , A ∈ KC(R),

lim sup
h→+


h

[
V

(
t + h,A + h

{
F(t,A) +

∫ t

t
K(t, s,A)ds

})
–V (t,A)

]

≤ f
(
t,V (t,A)

)
+

∫ t

t
k
(
t, s,V (s,A)

)
ds,

where f ∈ C[J × [,∞),R], k ∈ C[D × [,∞),R];
(iii) The maximal solution r(t) = r(t, t,x) of the scalar integro-differential equation

x′(t) = f
(
t,x(t)

)
+

∫ t

t
k
(
t, s,x(s)

)
ds, x(t) = x ≥  (.)

exists on J and is positive whenever x > .
Then, for every X ∈ KC(R) such that V (t,X) ≤ x, problem (.) has a (i)-solution X(t)
on [t,∞), which satisfies the estimate

V
(
t,X(t)

) ≤ r(t, t,x), t ≥ t. (.)

Proof Let S denote the set of all functions X defined on JX = [t, cX) with values in KC(R)
such thatX(t) is a (i)-solution of problem (.) on JX andV (t,X(t)) ≤ r(t), t ∈ JX .We define
a partial order ≤ on S as follows: the relation X ≤ Y implies that JX ⊆ JY and Y (t) ≡ X(t)
on JX . We shall first show that S is nonempty. Indeed, by assumption (i), there exists a
(i)-solution X(t) of problem (.) defined on JX = [t, cX). Let X(t) = X(t, t,X) be any (i)-
solution of (.) existing on JX . Define k(t) = V (t,X(t)) so that k(t) = V (t,X)≤ x. Now,
for small h >  and using assumption (ii), we consider

k(t + h) – k(t)

= V
(
t + h,X(t + h)

)
–V

(
t,X(t)

)
≤ V

(
t + h,X(t + h)

)
+V

(
t + h,X(t) + h

{
F
(
t,X(t)

)
+

∫ t

t
K

(
t, s,X(s)

)
ds

})

–V
(
t + h,X(t) + h

{
F
(
t,X(t)

)
+

∫ t

t
K

(
t, s,X(s)

)
ds

})
–V

(
t,X(t)

)

≤ LH
(
X(t + h),X(t) + h

{
F
(
t,X(t) +

∫ t

t
K

(
t, s,X(s)

)
ds

)})

+V
(
t + h,X(t) + h

{
F
(
t,X(t)

)
+

∫ t

t
K

(
t, s,X(s)

)
ds

})
–V

(
t,X(t)

)
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using the Lipschitz condition in assumption (ii). Thus

D+k(t) ≡ lim sup
h→+


h
[
k(t + h) – k(t)

]
≤ D+V

(
t,X(t)

)
+ L lim sup

h→+


h
H

(
X(t + h),X(t) + h

{
F
(
t,X(t)

)
+

∫ t

t
K

(
t, s,X(s)

)
ds

})
.

Since


h
H

(
X(t + h),X(t) + h

{
F
(
t,X(t)

)
+

∫ t

t
K

(
t, s,X(s)

)
ds

})

=H
(
X(t + h)�X(t)

h
,F

(
t,X(t)

)
+

∫ t

t
K

(
t, s,X(s)

)
ds

)

and X(t) is any (i)-solution of (.), we find that

lim sup
h→+


h
H

(
X(t + h),X(t) + h

{
F
(
t,X(t)

)
+

∫ t

t
K

(
t, s,X(s)

)
ds

})

= lim sup
h→+

H
(
X(t + h)�X(t)

h
,F

(
t,X(t)

)
+

∫ t

t
K

(
t, s,X(s)

)
ds

)

=H
[
Dg

HX(t),F
(
t,X(t)

)
+

∫ t

t
K

(
t, s,X(s)

)
ds

]
= .

Therefore, we have the scalar integro-differential inequality

D+k(t) ≤ f
(
t,k(t)

)
+

∫ t

t
k
(
t, s,x(s)

)
ds, k(t) ≤ x.

According to Proposition . in [], we get the estimate

k(t)≤ r(t, t,x), t ∈ IX .

It follows that

V
(
t,X(t)

) ≤ r(t, t,x), t ∈ IX , (.)

where r(t) is the maximal solution of (.). This shows that X ∈ S, and so S is nonempty.
If (Xβ )β is a chain (S,≤), then there is a uniquely defined mapping Y on JY = [t, supβ cXβ

]
that coincides with Xβ on JXβ

. Clearly, Y ∈ S and therefore Y is an upper bound of (Xβ )β
in (S,≤). The proof of the theorem is completed if we show that cZ = ∞. Suppose that
it is not true, so that cZ < ∞. Since r(t) is assumed to exist on [t,∞), r(t) is bounded
on JZ . Since V (t,X(t)) → ∞ as H(X(t), {}) → ∞ uniformly in t on [t, cZ], the relation
V (t,X(t)) ≤ r(t) on JZ implies that H(Z(t), {}) is bounded on JZ . By assumption (i), this
shows that there is anM >  such that

max
{
H

(
F
(
t,X(t)

)
, {}),H(

K
(
t, s,X(t)

)
, {})} ≤ M, t ∈ JZ .
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We have, for all t, t ∈ JZ with t ≤ t,

H
(
Z(t),Z(t)

)
=H

(
X + (

∫ t
t
F(s,Z(s))ds +

∫ t
t

∫ s
t
K(s,u,Z(u))duds),

X + (
∫ t
t
F(s,Z(s))ds +

∫ t
t

∫ s
t
K(s,u,Z(u))duds)

)

≤
∫ t

t
H

(
F
(
s,Z(s)

)
, {})ds + ∫ t

t

∫ s

t
H

(
K

(
s,u,Z(u)

)
, {})duds

≤ M(t – t),

where t ≤ t < t. Hence, Z is Lipschitzian on JZ and consequently has a continuous ex-
tension Z on [t, cZ]. By continuity of Z, we get

Z(cZ) = X +
(∫ cZ

t
F
(
s,Z(s)

)
ds +

∫ cZ

t

∫ s

t
K

(
s,u,Z(u)

)
duds

)
.

This implies that Z(t) is a (i)-solution of problem (.) on [t, cZ] and, clearly,V (t,Z(t)) <
r(t), t ∈ [t, cZ]. Consider the problem

Dg
HX(t) = F

(
t,X(t)

)
+

∫ t

t
K

(
t, s,X(s)

)
ds, X(t) = Z(cZ).

The assumption of local existence implies that there exists a (i)-solution X(t) on [cZ , cZ +
δ), δ > . Define

Z(t) =

⎧⎨
⎩Z(t) for t ∈ [t, cZ],

X(t) for t ∈ [cZ , cZ + δ].

Therefore Z(t) is a (i)-solution of problem (.) on [t, cZ + δ), and, by repeating the argu-
ments that were used to obtain (.), we get V (t,Z(t))≤ r(t), t ∈ [t, cZ + δ). This contra-
dicts the maximality of Z, and hence cZ = +∞. The proof is complete. �

Corollary . Assume that
(i) F ∈ C[J ×KC(R),KC(R)], K ∈ C[D ×KC(R),KC(R)], F and K are bounded on

bounded sets, and there exists a local (ii)-solution of (.) for every (t,X), t ≥ 
and X ∈ KC(R);

(ii) V ∈ C[J ×KC(R), [,∞)]; |V (t,A) –V (t,B)| ≤ LH(A,B), where L is the local
Lipschitz constant, for A,B ∈ KC(R), t ∈ J , V (t,A) → ∞ as H(A, {})→ ∞
uniformly for [t,T], for every T > t and for t ∈ J , A ∈ KC(R),

lim sup
h→+


h

[
V

(
t + h,A� (–)h

{
F(t,A) +

∫ t

t
K(t, s,A)ds

})
–V (t,A)

]

≤ f
(
t,V (t,A)

)
+

∫ t

t
k
(
t, s,V (s,A)

)
ds,

where f ∈ C[J × [,∞),R], k ∈ C[D × [,∞),R];
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(iii) The maximal solution r(t) = r(t, t,x) of the scalar integro-differential equation

x′(t) = f
(
t,x(t)

)
+

∫ t

t
k
(
t, s,x(s)

)
ds, x(t) = x ≥ , (.)

exists on J and is positive whenever x > .
Then, for every X ∈ KC(R) such that V (t,X) ≤ x, problem (.) has a (ii)-solution X(t)
on [t,∞), which satisfies the estimate

V
(
t,X(t)

) ≤ r(t, t,x), t ≥ t. (.)

Proof One can obtain this result easily by using the methods as in the proof of Theo-
rem .. �

4 Some examples
In this section, we present some examples being simple illustrations of the theory of IIDEs.
We will consider IIDEs (.) with (i) and (ii) derivatives, respectively. For convenience,
from now on, we denote the solution of IIDE (.) with (i) derivative byX and the solution
with (ii) derivative by X.
Let us start the illustrations by considering the following interval-valued integro-

differential equation:

Dg
HX(t) = F(t) +

∫ t

t
k(t, s)X(s)ds, X(t) = X =

[
X–
 ,X

+

]
, t ∈ [t,T], (.)

where F : [t,T] → KC(R) is an interval-valued function (i.e., F(t) = [F–(t),F+(t)]), k(t, s)
is a real known function, and X ∈ KC(R). In equation (.), we shall solve it by two types
of the Hukuhara derivative, which are defined in Definition .. Consequently, based on
the type of differentiability, we have the following two cases.
Case : Suppose that X(t) in equation (.) is (i)-differentiable. By using Corollary .,

then we get Dg
HX(t) = [(X–(t))′, (X+(t))′]. Hence, we have the following:

⎧⎨
⎩(X–(t))′ = F–(t) +

∫ t
t
k(t, s)X(s)ds,

(X+(t))′ = F+(t) +
∫ t
t
k(t, s)X(s)ds,

(.)

where

k(t, s)X(s)ds =

⎧⎨
⎩k(t, s)X–(t), k(t, s)≥ ,

k(t, s)X+(t), k(t, s) < 

and

k(t, s)X(s)ds =

⎧⎨
⎩k(t, s)X+(t), k(t, s)≥ ,

k(t, s)X–(t), k(t, s) < .
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From (.), we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(X–(t))′ = F–(t) +
∫ t
t
k(t, s)X(s)ds,

(X+(t))′ = F+(t) +
∫ t
t
k(t, s)X(s)ds,

X–(t) = X–
 ,

X+(t) = X+
 .

(.)

Case : Suppose that X(t) in (.) is (ii)-differentiable, then we proceed as in Case .
Hence (.) can be rewritten in the sense of (ii)-differentiability as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(X+(t))′ = F–(t) +
∫ t
t
k(t, s)X(s)ds,

(X–(t))′ = F+(t) +
∫ t
t
k(t, s)X(s)ds,

X–(t) = X–
 ,

X+(t) = X+
 .

(.)

Example . Let us consider the following IIDE:

Dg
HX(t) =

∫ t


X(s)ds, X() = X = [–, ], t ∈ [,π/]. (.)

Case . From (.), we get

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(X–(t))′ =
∫ t
 X

–(s)ds,

(X+(t))′ =
∫ t
 X

+(s)ds,

X–() = –,

X+() = .

(.)

By solving IDEs (.), we obtain X(t) = [–(e
t+e–t )
 , (e

t+e–t )
 ], and this solution is shown in

Figure .

Figure 1 Solution of Example 4.1 in Case 1.

http://www.advancesindifferenceequations.com/content/2013/1/217
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Case . From (.), we get

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(X+(t))′ =
∫ t
 X

–(s)ds,

(X–(t))′ =
∫ t
 X

+(s)ds,

X–() = –,

x+() = .

(.)

By solving IDEs (.), we obtain X(t) = [– cos(t), cos(t)], and this solution is shown in
Figure .

Example . Let us consider the following IIDE:

Dg
HX(t) = [–, ] +

∫ t


X(s)ds, X() = X = [–, ], t ∈ [, .]. (.)

Case . We obtain X(t) = [–et , et], and this solution is shown in Figure .
Case . We obtain X(t) = [– cos(t) +  sin(t),  cos(t) –  sin(t)], and this solution is

shown in Figure .

Figure 2 Solution of Example 4.1 in Case 2.

Figure 3 Solution of Example 4.2 in Case 1.

http://www.advancesindifferenceequations.com/content/2013/1/217
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Figure 4 Solution of Example 4.2 in Case 2.

As we see in figures, the first type and second type Hukuhara differentiable interval-
valued solutions X behave in various ways, i.e., one can say that len(X(t)) in examples is
nondecreasing in time (see Figures  and ) and len(X(t)) in examples is nonincreasing in
time (see Figures  and ).

5 Conclusions and further work
From Example . to Example ., we notice that the solutions under the classical
Hukuhara derivative ((i)-differentiable) have increasing length of their values. Indeed, we
can see this in Figures  and . However, if we consider the second type Hukuhara deriva-
tive ((ii)-differentiable), the length of solutions changes. Under the second type Hukuhara
derivative, differentiable solutions have nonincreasing length of its values (see Figures 
and ). In [, ], authors introduced and studied new generalized differentiability con-
cepts for interval-valued functions. Our point is that the generalization of this concept
can be of great help in the dynamic study of interval-valued differential equations and
interval-valued integro-differential equations.
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