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Abstract
For the equation

y(n) = yk , k > 1,n = 12, 13, 14,

the existence of positive solutions with non-power asymptotic behavior is proved,
namely

y = (x∗ – x)–αh(log(x∗ – x)), α =
n

k – 1
, x < x∗,

where x∗ is an arbitrary point, h is a positive periodic non-constant function on R.
To prove this result, the Hopf bifurcation theorem is used.
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Introduction
For the equation

y(n) = p
(
x, y, y′, . . . , y(n–)

)|y|k sgn y, n ≥ ,k > , ()

Kiguradze posed the problem on the asymptotic behavior of its positive solutions such
that

lim
x→x∗–

y(x) = ∞. ()

He found an asymptotic formula for these solutions to () with n =  (see []) and sup-
posed all such solutions to have power asymptotic behavior for other n, too. The problem
was solved for n =  and n =  []. For these n, it was proved that all such solutions behave
as

y(x) = C
(
x∗ – x

)–α(
 + o()

)
, x→ x∗ – , ()
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with

α =
n

k – 
, C =

(
α(α + ) · · · (α + n – )

p

) 
k–

, ()

p = const >  - is a limit of p(x, y, . . . , yn–) as x→ x∗ – , y → ∞, . . . , yn– → ∞.
So, the hypothesis of Kiguradze was confirmed in this case.
The existence of solutions satisfying () was proved for arbitrary n ≥ . For  ≤ n ≤ ,

an (n – )-parametric family of such solutions to equation () was proved to exist (see [],
[], Ch.I(.)).
For the equation

y(n) = yk , k > , ()

a negative answer to the conjecture of Kiguradze for large n was obtained. It was proved
[] that for any N and K > , there exist an integer n > N and k ∈ R,  < k < K , such that
equation () has a solution

y =
(
x∗ – x

)–αh
(
log

(
x∗ – x

))
, ()

where α is defined by (), h is a positive periodic non-constant function on R.
Still, it was not clear how large n should be for the existence of that type of solutions.

Preliminary results
Suppose the following conditions hold:
(A) The continuous positive function p(x, y, . . . , yn–) has a limit p = const >  as x →

x∗ – , y → ∞, . . . , yn– → ∞, and for some γ > , it holds

p(x, y, . . . , yn–) – p =O

((
x∗ – x

)γ +
n–∑
j=

y–γ

j

)
. ()

(B) For some K >  and μ >  in a neighborhood of x∗ for sufficiently large y, . . . , yn–,
z, . . . , zn–, it holds

∣∣p(x, y, . . . , yn–) – p(x, z, . . . , zn–)
∣∣ ≤ Kmax

j

∣∣y–μ
j – z–μ

j
∣∣. ()

Then equation () can be transformed (see [] or [], Ch.I(.)) by using the substitution

x∗ – x = e–t , y = (C + v)eαt , ()

where C and α are defined by (). The derivatives y(j), j = , , . . . ,n – , become

e(α+j)t · Lj
(
v, v′, . . . , v(j)

)
,

where v(j) = djv
dtj and Lj is a linear function with

Lj(, , . . . , ) = Cα(α + ) · · · (α + j – ) 	= 

and the coefficient of v(j) equal to .
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Thus () is transformed into

e(α+n)t · Ln
(
v, v′, . . . , v(n)

)
= (C + v)keαktp̃

(
t, v, v′, . . . , v(n–)

)
, ()

where the function p̃(t, v, . . . , vn–) is obtained from p(x, y, . . . , yn–) with x, y, . . . , yn–
properly expressed in terms of t, v, . . . , vn–. This function tends to p as t → ∞, v →
, . . . , v(n–) → .
Due to condition () for the function p(x, y, . . . , yn–), we obtain the following inequali-

ties for sufficiently large t and sufficiently small v, . . . , vn–, w, . . . ,wn–:

∣∣p̃(t, v, . . . , vn–) – p̃(t,w, . . . ,wn–)
∣∣

≤ Kmax
j

e–μ(α+j)t∣∣L–μ
j (v, . . . , vn–) – L–μ

j (w, . . . ,wn–)
∣∣.

Since Lj(, , . . . , ) 	= , the function L–μ
j is a C∞ one in a neighborhood of  and

∣∣p̃(t, v, . . . , vn–) – p̃(t,w, . . . ,wn–)
∣∣ ≤ Ke–μαt max

j
|vj –wj|

for some K > .
Solving () for v(n) and using formulae (), we obtain the equation

v(n) = (C + v)kp̃
(
t, v, v′, . . . , v(n–)

)
– pCk –

n–∑
j=

ajv(j), ()

where aj are the coefficients of the linear function Ln. Equation () can be written as

v(n) = kCk–pv –
n–∑
j=

ajv(j) + f (v) + g
(
t, v, v′, . . . , v(n–)

)
, ()

where

f (v) = po
(
(C + v)k –Ck – kCk–v

)
=O

(
v

)
as v→ ,

f ′(v) =O(v) as v→ ,

g(t, v, . . . , vn–) = (C + v)k
(
p̃(t, v, . . . , vn–) – p

)

=O

(
e–γ t +

n–∑
j=

e–γ (α+j)t

)
=O

(
exp

(
–γ min (α, )t

))

as t → ∞, v → , . . . , vn– → .

Besides, for sufficiently large t and sufficiently small v, . . . , vn–, w, . . . ,wn–, it holds

∣∣g(t, v, . . . , vn–) – g(t,w, . . . ,wn–)
∣∣

≤ ∣∣(C + v)k – (C +w)k
∣∣ · ∣∣p̃(t, v, . . . , vn–) – p

∣∣
+ (C +w)k

∣∣p̃(t, v, . . . , vn–) – p̃(t,w, . . . ,wn–)
∣∣

≤ Kmax
j

|wj – vj|e–min (γ ,μ)·min (α,)t .
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Suppose that V is the vector with coordinates Vj = v(j), j = , . . . ,n – . Then equation
() can be written as

dV
dt

= AV + F(V ) +G(t,V ), ()

where A is a constant n× nmatrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

    · · · 
    · · · 
    · · · 
· · · · · · · ·
    · · · 

–ã –a –a –a · · · –an–

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with

–ã = a – kck–p = a – kα(α + ) · · · (α + n – )

= a – (α + ) · · · (α + n – )(α + n)

and eigenvalues satisfying the equation

 = det(A – λE) = (–)n+
(
–ã – aλ – · · · – an–λn– – λn)

= (–)n+
(
(α + )(α + ) · · · (α + n) – (λ + α) · · · (λ + α + n – )

)
,

which is equivalent to

n–∏
j=

(λ + α + j) =
n–∏
j=

( + α + j). ()

The mappings F : Rn → Rn and G : R × Rn → Rn satisfy the following estimates as
t → ∞:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖F(V )‖ =O(‖V‖),
‖F ′

V (V )‖ =O(‖V‖),
‖G(t,V )‖ =O(e–βt),

‖G(t,V ) –G(t,W )‖ ≤ K‖V –W‖e–βt

()

with some constants β > , K > .

Lemma  [] Suppose that () holds and A is an arbitrary constant n× n matrix. Then
there exists a solution V (t) to equation () tending to zero as t → ∞.

Lemma  [] Let the conditions of Lemma  hold. If equation () has m roots with nega-
tive real part, then there exists an m-parametric family of solutions V (t) to equation ()
tending to zero as t → ∞.

http://www.advancesindifferenceequations.com/content/2013/1/220
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If equation () has a solutionV (t) tending to  as t → ∞ andV(t) is its first coordinate,
then the function

y(x) =
(
V

(
– log

(
x∗ – x

))
+C

) · (x∗ – x
)–α

with C and α defined by () is a solution to () such that () and () hold.

Theorem  [, ] Suppose that conditions (A) and (B) are satisfied. Then for such x∗ there
exists a solution to () with power asymptotic behavior ().

Investigating the signs of the real parts of the roots of equation (), by the Routh-
Hurwitz criterion, we can prove the following theorem.

Theorem  [, ] Suppose that  ≤ n ≤  and conditions (A) and (B) are satisfied. Then
there exists an (n–)-parametric family of solutions to equation ()with power asymptotic
behavior ().

Theorem  [, , ] Suppose that n =  or n =  in equation (), the continuous positive
function p(x, y, . . . , yn–) is Lipschitz continuous in y, . . . , yn– and has a limit p >  as
x → x∗ – , y → ∞, . . . , yn– → ∞. Then any positive solution to this equation with a
vertical asymptote x = x∗ has asymptotic behavior ().

To prove the main results of this article, we use the Hopf bifurcation theorem [].

Theorem (Hopf) Consider the α-parameterized dynamical system ẋ = Lαx + Qα(x) in a
neighborhood of  ∈ Rn with linear operators Lα and smooth enough functions Qα(x) =
O(|x|) as x → . Let λα and λ̄α be simple complex conjugated eigenvalues of the opera-
tors Lα . Suppose that Reλα̃ = Re λ̄α̃ =  for some α̃ and the operator Lα̃ has no other eigen-
values with zero real part.
If Re dλα

dα
(α̃) 	= , then there exist continuous mappings ε �→ α(ε) ∈ R, ε �→ T(ε) ∈ R, and

ε �→ b(ε) ∈ Rn defined in a neighborhood of  and such that α() = α̃, T() = π/ Imλα̃ ,
b() = , b(ε) 	=  for ε 	= , and the solutions to the problems

ẋ = Lα(ε)x +Qα(ε)(x), x() = b(ε)

are T(ε)-periodic and non-constant.

Main results
In this section, the result about the existence of solutions with non-power asymptotic
behavior is proved for equation () with n = , , .

Theorem  For n = , , , there exists k >  such that equation () has a solution y(x)
with

y(j)(x) =
(
x∗ – x

)–α–jhj
(
log

(
x∗ – x

))
,

j = , , . . . ,n – ,

where α is defined by () and hj are periodic positive non-constant functions on R.
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Proof To apply the Hopf bifurcation theorem, we investigate equation () with G(t,V ) ≡
 corresponding to the case of the constant function p and the roots of the algebraic
equation (). F is a vector function with all zero components F(V ) = (, . . . , ,Fn–(V )),
V = (V, . . . ,Vn–), and

Fn–(V ) =
(
(C +V)k –Ck – kCk–V

)
=O

(
V

), V → ,

d
dV

Fn–(V ) =O
(|V|

)
, V → .

If equation () has a pair of pure imaginary roots, we have to check other conditions of
this theorem and then apply it.

Proposition  For any integer n > , there exist α >  and q >  such that

n–∏
j=

(qi + α + j) =
n–∏
j=

( + α + j) ()

with i = –.

Remark  In the particular case n = , this result was obtained by Vyun [].

Proof Consider the positive functions ρn(α) and σn(α) defined for all α >  via the equa-
tions

n–∏
j=

(
ρn(α) + (α + j)

)
=

n–∏
j=

( + α + j) ()

and

n–∑
j=

arg
(
σn(α)i + α + j

)
= π ()

supposing arg z ∈ [, π ) for all z ∈C \ {}.
First, we prove the functions to be well defined for all α > .
The product

∏n–
j= (q + (α + j)) is continuous and strictly increasing as a function of

q > .
It tends to

∏n–
j= (α + j) <

∏n–
j= ( + α + j) as q →  and to +∞ as q → +∞. Hence, for

any α > , there exists a unique q >  such that
∏n–

j= (q + (α + j)) =
∏n–

j= ( + α + j).
In the same way, for any α > , the sum

∑n–
j= arg(qi + α + j) is a continuous function of

q >  strictly increasing from  to πn
 > π . So, there exists a unique q >  such that the

sum is equal to π .
Since both the product and the sum considered are C-functions with positive partial

derivative in q > , the implicit function theorem provides both ρn(α) and σn(α) to be
C-functions, too.
Now it is sufficient to prove the existence of α >  such that ρn(α) and σn(α) are equal

to the same value q, which makes the two sides of () be equal.
Compare the functions ρn(α) and σn(α) near the boundaries of their common domain.

http://www.advancesindifferenceequations.com/content/2013/1/220
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Equation () defining the function ρn(α) may be written as

n–∏
j=

(
 +

j
α

+
j

α +
(

ρn(α)
α

))
=

n–∏
j=

(
 +

j + 
α

)

.

This shows that ρn(α)
α

→  as α → +∞.
Equation () defining the function σn(α) may be written as

n–∑
j=

arctan
σn(α)

α

 + j
α

= π .

This shows that σn(α)
α

→ tan π
n >  as α → +∞. Thus, ρn(α) < σn(α) for sufficiently large α.

Now, to prove Proposition , it is sufficient to show that ρn(α) > σn(α) for sufficiently
small α. To compare the functions ρn(α) and σn(α) for small α > , we need some lemmas.

Lemma  For all α > , it holds ρn(α) < (α + n) – .

Proof Suppose that ρn(α) ≥ (α + n) –  for some α > . Then

n–∏
j=

(
ρn(α) + (α + j)

) ≥
n–∏
j=

(
(α + n) –  + (α + j)

)

>
n–∏
j=

(
(α + j + ) –  + (α + j)

)
=

n–∏
j=

(
 + (α + j)

).

This contradiction with the definition of ρn(α) completes the proof of Lemma . �

Lemma  For all α > , it holds ρn+(α) > ρn(α).

Proof According to the definition of ρn(α) by () and Lemma , we have

n∏
j=

(
ρn(α) + (α + j)

)
=

n–∏
j=

( + α + j) · (ρn(α) + (α + n)
)

<
n–∏
j=

( + α + j) · ((α + n) –  + (α + n)
)
<

n∏
j=

( + α + j).

In order to make the first and the last products be equal, we have to replace ρn(α) in the
first one by a greater value. This means that ρn+(α) > ρn(α) and Lemma  is proved. �

Lemma  For all α > , it holds σn+(α) < σn(α).

Proof According to the definition of σn(α) by (), we have

n∑
j=

arg
(
σn(α)i + α + j

)
= π + arg

(
σn(α)i + α + n

)
> π .

http://www.advancesindifferenceequations.com/content/2013/1/220
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In order to make the sum equal π , we have to replace σn(α) by a smaller value. So,
σn+(α) < σn(α) and Lemma  is proved. �

Due to Lemmas , ,  proved, it is sufficient now for the proof of Proposition  to show
that ρ(α) > σ(α) for sufficiently small α > .

Lemma  It holds ρ(α) >  for all sufficiently small α > .

Proof Straightforward exact calculations show that

lim
α→

∏
j=

(
 + (α + j)

)
=

∏
j=

(
 + j

)
= ,,,,, <  · 

and

lim
α→

∏
j=

( + α + j) = (!) = ,,,,, >  · .

So, for sufficiently small α > , we have

∏
j=

(
 + (α + j)

)
<  ·  <

∏
j=

( + α + j).

Hence, for these α, in order to avoid contradiction with the definition of ρ(α), the in-
equality ρ(α) >  is necessary. Lemma  is proved. �

Lemma  It holds σ(α) <  for sufficiently small α > .

Proof Consider the limit

lim
α→

∑
j=

arg(i + α + j)

= argi + arctan + arctan  + arctan


+ arctan



+

∑
j=

arctan

j

=
π


+ arctan


+

∑
j=

arctan

j

=
π


+ arctan

 +




 – 
 · 


+ arctan


 +




 – 
 · 


+ arctan


 +




 – 
 · 


+ arctan


 +




 – 
 · 



=
π


+ arctan



+ arctan



+ arctan


+ arctan




=
π


+ arctan

 +




 – 
 · 


+ arctan


 +




 – 
 · 


=
π


+ arctan + arctan



.
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Note that

tan

(
arctan + arctan




)
=

 + 


 –  · 


= –
,
,

.

Hence, arctan + arctan 
 >

π
 and

∑
j= arg(i+α + j) > π for sufficiently small α > .

Thus, for these α, we have σ(α) < , which completes the proof of Lemma . �

Now Proposition  is also proved. �

Proposition  For any α >  and any integer n > , all roots λ ∈ C to equation () are
simple.

Proof Since we consider a polynomial equation of degree n, it is sufficient to prove the
existence of n different roots to (). We will show that for any integer m such that –n <
m ≤ n, there exists μm ∈C satisfying

n–∏
j=

|μm + j| =
n–∏
j=

( + α + j) ()

and

n–∑
j=

arg(μm + j) =mπ ()

with arg z denoting the principal value of the argument lying in the open-closed interval
(–π ,π ]. Surely, all these n complex numbers μm are different. Those with evenm gener-
ate, via the relation λm + α = μm, just n different roots λm to ().
We begin to accomplish this plan by noting that the set of μ satisfying equation ()

with m =  is the real semi-axis (,+∞) containing a single point satisfying (), namely
μ =  + α.
Similarly, the set of μ satisfying equation () withm = n is the real unbounded interval

(–∞,  – n) containing a single point satisfying (), namely μn = α – n.
Now consider the cases  <m < n and the upper complex half-plane. For any ω > , the

smooth function

φω(r) =
n–∑
j=

arg(r +ωi + j) =
n–∑
j=

arccot
r + j
ω

monotonically decreases from nπ to  as r increases from –∞ to +∞. So, for any ω > 
and b ∈ (,nπ ), there exists a unique value r such that φω(r) = b. Due to the inequality
dφω

dr (r) < , the implicit function theorem provides the existence of the smooth functions
rm(ω) satisfying φω(rm(ω)) =mπ .
Note that if r ≤ –m, then r + j <  for all j <m and r +m ≤ . Hence,

lim
ω→+

n–∑
j=

arccot
r + j
ω

≥ lim
ω→+

m–∑
j=

arccot
r + j
ω

+ lim
ω→+

arccot

ω

=mπ +
π


>mπ

and such r cannot be the value of rm(ω) for sufficiently small ω > .

http://www.advancesindifferenceequations.com/content/2013/1/220
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Similarly, if r ≥  –m, then r + j >  for all j >m –  and r +m –  ≥ . Hence,

lim
ω→+

n–∑
j=

arccot
r + j
ω

≤ lim
ω→+

m–∑
j=

arccot
r + j
ω

+
π


+ lim

ω→+

n–∑
j=m

arccot
r + j
ω

≤ (m – )π +
π


+  <mπ

and such r cannot be the value of rm(ω) for sufficiently small ω > .
So, if ω >  is sufficiently small, then rm(ω) satisfies the inequality –m < rm(ω) <  –m

and thereby is negative.
Consider the product

∏n–
j= |rm(ω) +ωi + j| with  < m < n and investigate its behavior

for small ω > .
If j ≥ m, then for sufficiently small ω > , we have |rm(ω) + j| = rm(ω) + j < j and

n–∏
j=m

∣∣rm(ω) + j
∣∣ ≤

n–∏
j=m

j <
n–∏
j=m

( + j). ()

If j ≤ m – , then for sufficiently small ω > , we have |rm(ω) + j| = –rm(ω) – j <m – j =
 + (m –  – j)

m–∏
j=

∣∣rm(ω) + j
∣∣ ≤

m–∏
j=

∣∣ + (m –  – j)
∣∣ = m–∏

J=

( + J), J =m –  – j. ()

Combining () and (), we obtain, for sufficiently small ω > ,

n–∏
j=

∣∣rm(ω) + j
∣∣ < n–∏

j=

( + j),

and

n–∏
j=

∣∣rm(ω) +ωi + j
∣∣ < n–∏

j=

( + α + j).

As for large ω, the left-hand side of the above inequality evidently tends to +∞ as ω →
+∞ and hence is greater than its right-hand side for sufficiently large ω. By continuity
there exists ωm >  such that

n–∏
j=

∣∣rm(ωm) +ωmi + j
∣∣ = n–∏

j=

( + α + j).

Thus, we can take μm = rm(ωm) + ωmi ∈ C to satisfy () and () for  < m < n. For
–n <m < , we can take the conjugates μm = μ–m. Thus, the existence of all μm needed is
proved. This completes the proof of Proposition . �
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Lemma  If ≤ n≤ , α > , and q >  satisfy the polynomial equation

n–∏
j=

(
(α + j) + q

)
=

n–∏
j=

(α + j + ),

then α +  < q < α + .

Proof It can be proved in the same way for all nmentioned. We show this for n = .
First, compute the right-hand side of the equation:

∏
j=

(α + j + )

= α + α + ,α + ,α + ,,α

+ ,,α + ,,,α + ,,,α

+ ,,,,α + ,,,,α + ,,,,α

+ ,,,,,α + ,,,,,α

+ ,,,,,α

+ ,,,,,α + ,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,.

Now, estimate the left-hand side supposing q ≥ α +  > :

∏
j=

(
(α + j) + q

)

≥
∏
j=

(
(α + j) + α + 

)

≥ α + α + ,α + ,α + ,,α

+ ,,α + ,,,α + ,,,α

+ ,,,,α + ,,,,α + ,,,,α

+ ,,,,,α + ,,,,,α

+ ,,,,,α

+ ,,,,,α + ,,,,,α

+ ,,,,,,α + ,,,,,,α
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+ ,,,,,,α + ,,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,.

The difference of this polynomial and the previous one is equal to

∏
j=

(
(α + j) + α + 

)
–

∏
j=

(α + j + )

= α + ,α + ,α + ,,α + ,,α

+ ,,,α + ,,,α + ,,,α

+ ,,,,α + ,,,,α + ,,,,α

+ ,,,,,α + ,,,,,α

+ ,,,,,α + ,,,,,α

+ ,,,,,α + ,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,,α + ,,,,,α

+ ,,,,,,

which is positive for any α ≥ . This shows that the polynomial equation cannot be satis-
fied by α >  and q >  with q ≥ α + .
In the same way, compute

∏
j=

(α + j + ) –
∏
j=

(
(α + j) + α + 

)

= α + ,α + ,α + ,,α + ,,α

+ ,,,α + ,,,α + ,,,,α

+ ,,,,α + ,,,,α

+ ,,,,,α

+ ,,,,,α + ,,,,,α

+ ,,,,,α + ,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,α + ,,,,,.
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Hence,
∏

j=(α + j + ) >
∏

j=((α + j) + q) if α + ≥ q.
This contradiction yields α +  < q < α + . So, Lemma  is proved. �

The conditionRe dλα

dα
(α̃) 	=  needed for theHopf theorem, expressed explicitly bymeans

of the implicit function theorem, looks like

[ n–∑
j=

α + j
q + (α + j)

]

+

[ n–∑
j=

q
q + (α + j)

]

	=
n–∑
j=

α + j
q + (α + j)

n–∑
j=


 + α + j

.

Lemma  If  ≤ n≤ , α >  and  < q < α + , then

[ n–∑
j=

α + j
q + (α + j)

]

+

[ n–∑
j=

q
q + (α + j)

]

>
n–∑
j=

α + j
q + (α + j)

n–∑
j=


 + α + j

. ()

Proof Hereafter all sums and products with no limits indicated are over j = , , . . . ,n – .
Multiplying inequality () by U∗ =

∏
( + α + j) and then twice by V∗ =

∏
[q + (α + j)],

we obtain the following equivalent inequality provided α > :

U∗
[(∑

(α + j)Vj

)
+ q

(∑
Vj

)]
> V∗

∑
(α + j)Vj

∑
Uj ()

with the polynomials Uj = U∗
+α+j and Vj = V∗

q+(α+j) .
Put q = α+

+w , w > . Substituting this into inequality () and multiplying the result by
( +w)n–, we obtain another equivalent one:

U∗
[
( +w)

(∑
(α + j)Pj

)
+ (α + )

(∑
Pj

)]
> P∗ ·

∑
(α + j)Pj ·

∑
Uj ()

with P∗ =
∏
[α +  + ( +w)(α + j)] and Pj = P∗

α++(+w)(α+j) .
Both sides of inequality () are polynomials of α and w with non-negative integer co-

efficients. So, they can be computed exactly, with no rounding. This rather cumbersome
computation gives the following result for the difference of the left- and right-hand sides
of () expressed as

U∗
[
( +w)

(∑
(α + j)Pj

)
+ (α + )

(∑
Pj

)]

– P∗
∑

(α + j)Pj
∑

Uj =
n–∑
j=

�jα
j

()

with polynomials�j ∈R[w]. Straightforward though very cumbersome calculations show
that �n– = , and all other �j in () are polynomials with positive coefficients.
This completes the proof of Lemma . �
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To apply the Hopf bifurcation theorem, we need to check that equation () cannot
have more than a single pair of imaginary conjugated roots. It can be easily obtained by
considering equation ().
Now, the Hopf bifurcation theorem and the lemmas proved provide, for n = , , ,

the existence of a family αε >  such that equation () with α = α has imaginary roots
λ = ±qi and for sufficiently small ε, system () with α = αε has a periodic solution Vε(t)
with period Tε → T = π

q as ε → . In particular, the coordinateVε,(t) = v(t) of the vector
Vε(t) is also a periodic function with the same period. Then, taking into account (), we
obtain

y(x) =
(
C + v

(
– ln

(
x∗ – x

)))(
x∗ – x

)–α .

Put h(s) = C + v(–s), which is a non-constant continuous periodic and positive for suffi-
ciently small ε function and obtain the required equality

y(x) =
(
x∗ – x

)–αh
(
ln

(
x∗ – x

))
.

In the similar way, we obtain the related expressions for y(j)(x), j = , , . . . ,n – .
Theorem  is proved. �

Conclusions, concluding remarks and open problems
. Computer calculations give approximate values of α providing equation () to have

a pure imaginary root λ. They are, with corresponding values of k, as follows:
if n = , then α ≈ ., k ≈ .;
if n = , then α ≈ ., k ≈ .;
if n = , then α ≈ ., k ≈ ..

. Note that equation () has no pure imaginary roots if n≤ . So, the Hopf
bifurcation theorem cannot be applied, but it does not follow that Theorem 
cannot be proved for some n < .

. Equation () with n =  has solutions of type () with oscillatory h (see [, ]).
. If n ≥ , then the inequality needed for the Hopf bifurcation theorem Re dλα

dα
(α̃) 	= 

cannot be proved in the same way because the estimate q < α +  does not hold.
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