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Abstract
In this paper, we extend Hartley and Hartley-Hilbert transformations (HT and HHT,
respectively) to a certain space of tempered distributions. We then establish a certain
convolution theorem for the HHT. The convolution theorem, obtained in this way, has
been shown to possess a factorization property of Fourier convolution type. Proving
the new convolution theorem for the HHT, by the usual convolution product, the
transform is investigated on a certain space of Boehmians. Its properties of linearity
and convergence are also discussed in the context of Boehmian spaces.
MSC: Primary 54C40; 14E20; secondary 46E25; 20C20

Keywords: distributions; test function; HH transform; Boehmians

1 Test function spaces and distributions
The idea of specifying a function not by its values but by its behavior as a functional on
some space of testing functions is a concept that is quite familiar to scientists and en-
gineers through their experience with the classical Fourier and Laplace transformations.
Test functions, onwhich distributions operate, cannot in general bewritten down in an ex-
plicit form. The advantage of distributions over classical functions is that the distribution
concept provides a better mechanism for analyzing certain physical phenomena than the
function concept does because, for one reason, various entities such as the delta function
δ can be correctly described as a distribution but not as a function. Furthermore, physical
quantities that can be adequately represented as a function can also be characterized as a
distribution. In addition, distributions attain an infinite number of derivatives and those
derivatives always exist, which is not applied to functions.
The space of testing functions, denoted by D, consists of all complex-valued functions

ϕ that are infinitely smooth and zero outside some finite interval. The set of continuous
linear forms (conjugates or dual space) on D constitutes a space of distributions, denoted
by D′.
A distribution f inD′ can be represented, corresponding to f (t), through the convergent

integral

〈f ,ϕ〉 = 〈
f (t),ϕ(t)

〉 �=
∫ ∞

–∞
f (t)ϕ(t)dt.

The space of complex-valued smooth functions is denoted by E and its dual space is de-
noted by E ′.
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By S we denote the space of all complex-valued functions ϕ that are infinitely smooth
and are such that as |t| → ∞, they and their partial derivatives decay to zero faster than
all powers of |t|–. Elements of S are called testing functions of rapid descents. S is indeed
a linear space.
If φ ∈ S , then its partial derivatives are in S . In fact,D is dense in S and S is dense in E .

The dual space of S is called the space of tempered distributions and denoted by S ′ with a
property that E ′ ⊂ S ′ ⊂D′, E ′ being the (conjugate of E ) space of distributions of compact
support. For the convergence on D, E and S and their topologies, we refer to [, ].

2 HT and HHT of tempered distributions
2.1 Introduction to HT and HH transforms
TheHartley transform (HT) was introduced originally byHartley  as an integral trans-
form with a number of properties similar to those of the Fourier transform (FT). The HT
of a function over R is a real function defined by [, ]

(Hf )(x) =
∫ ∞

–∞
f (y)

(
cos(xy) + sin(xy)

)
dy ()

or

(Hf )(x) =
∫ ∞

–∞
f (y)

(
cos(πxy) + sin(πxy)

)
dy. ()

Some properties of HT are:
(i) Shift: (Hf (y – yo))(x) = cos(πxyyo)(Hf )(x) + sin(πxyo)(Hf )(–x).
(ii) Modulation: H(cos(πxoy)f (y))(x) = 

Hf (x – xo) + 
Hf (x – xo).

(iii) Derivative: H( d
dy f (y))(x) = –πx(Hf )(–x).

(iv) Convolution: The convolution theorem of HT is given as

(
H(f ∗ g)(t)

)
(x) =



(
(Hf )(x)(Hg)(x) + (Hf )(–x)(Hg)(x)

)

+


(
(Hf )(x)(Hg)(–x) – (Hf )(–x)(Hg)(x)

)
. ()

The Hilbert transform via the Hartley transform, the Hartley-Hilbert transform (HHT),
is defined by []

(HHf )(x) �=

π

∫ ∞



(
Hof (y) cos(xy) + Hef (y) sin(xy)

)
dy, ()

where

Hof (y) =
Hf (y) – Hf (–y)


, Hef (y) =

Hf (y) + Hf (–y)


()

are the odd and even components of the HT.
The HHT, which permits some attractive applications in geophysics and signal process-

ing, has been extended to a specific space of generalized functions (Boehmian spaces)
in [].
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2.2 First convolution theorem of HHT
Convolutions of integral transforms which possess the factorization property of Fourier
convolution type have become of interest to many authors and have been applied to solv-
ing systems of integral equations. In [], we studied the convolution theorem for HHT
in some detail. In this paper we make the idea more precise. We define some gener-
alized convolution of HHT that permits a factorization property of Fourier convolution
type.
Let U be a linear space and V be a commutative algebra on the field K. Let T ∈ L(U, ·) be

a linear operator from U to V. A bilinear map � : U× U :→ U is called the convolution for
T if T(�(f , g)) = T(f )T(g) for any f , g ∈ U. The image �(f , g) is denoted by f � g .

Theorem . (First convolution theorem of HHT) Let HHf , HHg be the HHTs of f and g ,
respectively, then

HH(f � g)(x) = (HHf )(x)(HHg)(x), ()

where

(f � g)(t) =
∫ ∞



(
f (t)Hog(η) cos(xη) + f (t)Heg(η) sin(xη)

)
dη.

Proof Under the hypothesis of the theorem, we write

(HHf )(x)(HHg)(x)

=
∫ ∞



((
Hof

)
(ξ ) cos(xξ ) +

(
Hef

)
(ξ ) sin(xξ )

)
dξ

×
∫ ∞



((
Hog

)
(η) cos(xη) +

(
Heg

)
(η) sin(xη)

)
dη

=
∫ ∞



(∫ ∞



(
Hof (ξ )Hog(η) cos(xη) + Hog(ξ )Heg(η) sin(xη)

)
dη

)
cosxξ dξ

+
∫ ∞



(∫ ∞



(
Hef (ξ )Hog(η) cos(xη) + Hof (ξ )Heg(η) sin(xη)

)
dη

)
sinxξ dξ ,

which can be written as

(HHf )(x)(HHg)(x) =
∫ ∞



(
A(ξ ) cos(xξ ) + B(ξ ) sin(xξ )

)
dξ ,

where

A(ξ ) =
∫ ∞



(
Hof (ξ )Hog(η) cos(xη) + Hof (ξ )Heg(η) sin(xη)

)
dη

and

B(ξ ) =
∫ ∞



(
Hef (ξ )Hog(η) cos(xη) + Hof (ξ )Heg(η) sin(xη)

)
dη.
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Then, with a simple modification, we get

A(ξ ) =
∫ ∞

–∞

(∫ ∞



(
f (t)Hog(η) cos(xη) + f (t)Heg(η) sin(xη)

)
dη

)
sin(tξ )dξ

=
∫ ∞

–∞
(f � g)(t) sin(tξ )dξ ,

where

(f � g)(t) =
∫ ∞



(
f (t)Hog(η) cos(xη) + f (t)Heg(η) sin(xη)

)
dη. ()

Similarly, we proceed for B(ξ ) to get B(ξ ) = He(f � g)(ξ ), f � g is the integral equation given
in ().
Hence the theorem. �

Theorem . Let f , g and h be L functions, then:
(i) HH(f � g) = HH(g � f ).
(ii) HH((f � g) � h) = HH(f � (g � h)) = HH(g � (f � h)) = HH(h � (f � g)).
(iii) HH(f � (g + h)) = HH(f � g) + HH(f � h).
(iv) HH(f + (g � h)) = HH((f + g) � (f � h)).

Proof (i) Let f , g ∈ L. By the aid of Theorem ., we get

HH(f � g)(x) = (HHf )(x)(HHg)(x) = (HHg)(x)(HHf )(x) = HH(g � f )(x).

Proof of (ii) is analogous to that of the first part.
(iii) Let f , g ∈ L, then using the definition of HHT and that of �, we get

HH
(
f � (g + h)

)
(x)

=

π

∫ ∞



(
Ho(f � (g + h)

)
(y) cos(xy) + He(f � (g + h)

)
(y) sin(xy)

)
dy

=

π

∫ ∞



(
Ho(f � g + f � h)(y) cos(xy) + He(f � g + f � h)(y) sin(xy)

)
dy.

Hence, the properties of HT odd and even parts, Ho, He, and that of the integral operator∫
imply that HH(f � (g + h))(x) = HH(f � g + f � h)(x).
Proof of (iv) is analogous to that given for part (ii).
This completes the proof. �

Next is a straightforward corollary of Theorem ..

Corollary . Let f , g and h be L functions, then:
(i) f � g = g � f .
(ii) (f � g) � h = f � (g � h).
(iii) f � (g + h) = f � g + f � h.
(iv) f + (g � h) = (f + g) � (f � h).
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2.3 HT and HHT of distributions
In this subsection we discuss HT and HHT on a tempered distribution space.

Theorem . If f is in S , then Hf is also in S .

Proof If f ∈ S , then HT certainly exists. Differentiating, in the ordinary sense, the right-
hand side of the integral equation

(Hf )(x) =
∫ ∞

–∞
f (ξ )

(
cos(xξ ) + sin(xξ )

)
dξ ()

with respect to x yields

d
dx

(Hf )(x) =
∫ ∞

–∞
ξ f (ξ )

(
cos(xξ ) – sin(xξ )

)
dξ . ()

This is because the right-hand side of () converges uniformly for each x.
Indeed, integrating by partsm times and by the fact that

dm

dmξ

(
ξ kf (ξ )

) → 

as ξ → ∞ for eachm ∈ N∪ {}, we get
∣∣∣∣xm dk

dkx
(Hf )(x)

∣∣∣∣ ≤
∫ ∞

–∞

∣∣∣∣ dm

dmξ

(
ξ kf (ξ )

)∣∣∣∣dξ . ()

Since f ∈ S , the integral on the right-hand side of () is bounded by constants, say Amk .
Hence

∣∣∣∣xm dk

dkx
(Hf )(x)

∣∣∣∣ ≤ Amk , –∞ < x < ∞

for every pair of non-negative m and k. This completes the proof. �

Corollary . If f is in S , then Hof and Hef are in S .

Corollary . If f is in S , then HHf is also in S .

Proof By Corollary ., Hof ,Hef ∈ S . Thus, the linearity of S and the fact that
∫

φ(ξ )dξ ∈
S for every φ ∈ S imply HHf ∈ S .
Let f ∈ S ′, then, by the aid of Corollary . and Corollary ., we are led to the following

definitions:

〈
Hf (x),ϕ(x)

〉
=

〈
f (x),Hϕ(x)

〉
()

and

〈
HHf (x),ϕ(x)

〉
=

〈
f (x),HHϕ(x)

〉
. ()

http://www.advancesindifferenceequations.com/content/2013/1/222
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The right-hand sides of () and () are well defined and, therefore, from the left-hand
sides of () and (), we get that

Hf (x),HHf (x) ∈ S ′

for each f ∈ S ′.
This can be stated in similar words as: HT and HHT of tempered distributions are tem-

pered distributions. �

Corollary . If φ ∈ S , then (Hφ)(HHφ) ∈ S .

Theorem . Let f ∈ S ′, then Hf and HHf are both linear mappings from S ′ into S ′.

Proof Let f , g ∈ S ′and ϕ ∈ S , α ∈ R be arbitrary, then

〈
αH(f + g)(x),ϕ(x)

〉
=

〈
α(f + g)(x),Hϕ(x)

〉
= α

〈
f (x),Hϕ(x)

〉
+ α

〈
g(x),Hϕ(x)

〉
= α

〈
Hf (x),ϕ(x)

〉
+ α

〈
Hg(x),ϕ(x)

〉
.

Similarly, we proceed for HHf , ∀f ∈ S ′. Hence the theorem. �

3 Generalized distributions
One of the youngest generalizations of functions, and more particularly of distributions,
is the theory of Boehmians. The name Boehmian space is given to all objects defined by
an abstract construction similar to that of field of quotients. The construction applied to
function spaces yields various spaces of generalized functions.
For a linear space Y and a subspace X of Y, assume that to all pairs (f ,φ), (g,ψ) of el-

ements, f , g ∈ Y, φ,ψ ∈ X, the products f ∗ φ, g ∗ ψ are assigned such that the following
conditions are satisfied:
() φ ∗ ψ ∈ X and φ ∗ ψ = ψ ∗ φ.
() (f ∗ φ) ∗ ψ = f ∗ (φ ∗ ψ).
() (f + g) ∗ φ = f ∗ φ + g ∗ φ

() k(f ∗ φ) = (kf ) ∗ φ = f ∗ (kφ), k ∈ R.
Let � be a family of sequences from X such that for f , g ∈ Y then:
() If (εn) ∈ � and f ∗ εn = g ∗ εn, n = , , . . . , then f = g .
() (εn), (τn) ∈ � ⇒ (εn ∗ τn) ∈ �.

The elements of � are called delta sequences.
Consider the class A of pairs of sequences defined by

A =
{(
(fn), (εn)

)
: (fn) ⊆ YN, (εn) ∈ �

}

for each n ∈ N.
The pair ((fn), (εn)) ∈ A is said to be quotient of sequences, denoted by fn

εn
, if

fn ∗ εm = fm ∗ εn, ∀n,m ∈ N.

http://www.advancesindifferenceequations.com/content/2013/1/222


Al-Omari and Kılıçman Advances in Difference Equations 2013, 2013:222 Page 7 of 14
http://www.advancesindifferenceequations.com/content/2013/1/222

Two quotients of sequences fn
εn

and gn
τn

are said to be equivalent, fn
εn

∼ gn
τn
, if

fn ∗ εm = gm ∗ τn, ∀n,m ∈ N.

The relation ∼ is an equivalent relation on A and hence splits A into equivalence classes.
The equivalence class containing fn

εn
is denoted by [ fn

εn
]. These equivalence classes are called

Boehmians and the space of all Boehmians is denoted by B(Y,X,�,∗), see [].
The sum and multiplication by a scalar of two Boehmians can be defined in a natural

way

[
fn
εn

]
+

[
gn
τn

]
=

[
fn ∗ τn + gn ∗ εn

εn ∗ τn

]

and

a
[
fn
εn

]
=

[
afn
εn

]
, a being a complex number.

The operation ∗ and differentiation are defined by [ fn
εn
]∗ [ gn

τn
] = [ fn∗gn

εn∗τn
] andDα[ fn

εn
] = [D

α fn
εn

].
Many times, Y is equipped with the notion of convergence. The intrinsic relationship be-
tween the notion of convergence and the product ∗ are given by:
() If fn → f as n→ ∞ in Y and, φ ∈ X is any fixed element, then

fn ∗ φ → f ∗ φ in Y as n→ ∞.

() If fn → f as n→ ∞ in Y and (εn) ∈ �, then fn ∗ εn → f in Y as n→ ∞.
The operation ∗ is extended to B(Y,X,�,∗)× X by the following definition.

Definition . If [ fn
εn
] ∈ B(Y,X,�,∗) and φ ∈ X, then [ fn

εn
] ∗ φ = [ fn∗φ

εn
].

In B(Y,X,�,∗), two types of convergence, δ and � convergence, are defined as follows.

Definition . A sequence of Boehmians (βn) in B(Y,X,�,∗) is said to be δ-convergent
to a Boehmian β in B(Y,X,�,∗), denoted by βn

δ→ β , if there exists a delta sequence (εn)
such that (βn ∗ εn), (β ∗ εn) ∈ Y, ∀k,n ∈ N, and

(βn ∗ εk) → (β ∗ εk) as n→ ∞, in Y, for every k ∈ N.

The following lemma is equivalent to the statement of δ-convergence.

Lemma . βn
δ→ β (n→ ∞) in B(Y,X,�,∗) if and only if there are fn,k , fk ∈ Y and εk ∈ �

such that βn = [ fn,k
εk
], β = [ fk

εk
] and for each k ∈ N,

fn,k → fk as n→ ∞ in Y.

Definition . A sequence of Boehmians (βn) in B(Y,X,�,∗) is said to be �-convergent
to a Boehmian β in B(Y,X,�,∗), denoted by βn

�→ β , if there exists an (εn) ∈ � such that
(βn – β) ∗ εn ∈ Y, ∀n ∈ N, and (βn – β) ∗ εn →  as n → ∞ in Y. See, for example, [, –]
and [].
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4 The spaces B1(S ′,S ,�,∗) and B2(�1,�2,�3,•)
Theorem . (Second convolution theorem of HHT) Let f and g be L functions, then

HH(f ∗ g)(x) = HH
(
H–(Hf Hg)

)
(x),

where ∗ is the usual convolution product of f and g , see [].

Proof Using the definition of HHT implies

HH(f ∗ g)(x) =
∫ ∞



(
A(ξ ) cos(xξ ) + B(ξ ) sin(xξ )

)
dξ ()

with A(ξ ) = Ho(f ∗ g)(ξ ) and B(ξ ) = He(f ∗ g)(ξ ).
Fubini’s theorem implies

A(ξ ) =
∫ ∞

–∞
f (z)

∫ ∞

–∞
g(t – z) sin(tξ )dt dz.

The substitution t – z = y and the fact

sin(y + z)ξ = sin(yξ ) cos(zξ ) + cos(yξ ) sin(zξ )

imply

A(ξ ) = Hef (ξ )Hof (ξ ) + Hof (ξ )Hef (ξ ). ()

Invoking

Hef (ξ ) =
Hf (ξ ) + Hf (–ξ )


, Hof (ξ ) =

Hf (ξ ) – Hf (–ξ )


,

Heg(ξ ) =
Hg(ξ ) + Hg(–ξ )


, Hog(ξ ) =

Hg(ξ ) – Hg(–ξ )


in () then multiplying and canceling similar quantities yield

A(ξ ) = (Hf Hg)(ξ ) + (Hf Hg)(–ξ ) = H
(
H–(Hf Hg)

)
(z) + H

(
H–(Hf Hg)

)
(–z) ()

or

A(ξ ) = He(H–(Hf Hg)
)
(ξ ). ()

Similarly, we proceed for B(ξ ) to get

B(ξ ) = Ho(H–(Hf Hg)
)
(ξ ). ()

Hence, invoking () and () in (), our theorem follows. �

http://www.advancesindifferenceequations.com/content/2013/1/222
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Denote by B(S ′,S ,�,∗) the usual Boehmian space with the convolution product ∗ as
an operation, S ′ as a group, S as a subgroup of S ′ (S dense in S ′) and, � as the collection
of delta sequences from S such that

�

∫
δn(x)dx = ,

�

∫ ∣∣δn(x)∣∣dx < M,  < M ∈ R,

� supp δn(x)→  as n→ ∞.

Let us consider another space of Boehmians:
Denote by � the space of HHTs of distributions from S ′. Indeed, � is also a subspace

of S ′ by (). A member ξn ∈ � is said to converge in � to a value ξ if there are τn, τ ∈ S ′

such that τn reaches τ for large values of n.
Also, denote by � the set of HHTs of test functions from S , then � is a subspace of �

by Corollary .. In similar notations � = HH�.
Next, let us consider an operation • :� × � → � defined by

•(ξ ,φ)(x) = HH
(
H–(Hξ ∗Hφ∗))(x) ()

for ξ = HHξ ∗, φ = HHφ∗.

Theorem . Let ξ ∈ � and φ ∈ �, then for ξ = HHξ ∗ and φ = HHφ∗,

•(ξ ,φ) = HH
(
ξ ∗ ∗ φ∗).

Proof For every ξ ∈ �, φ ∈ �, we get

•(ξ ,φ)(x) = HH
(
H–(Hξ ∗Hφ∗))(x)

= HH
(
ξ ∗ ∗ φ∗)(x), ()

where ξ = HHξ ∗, φ = HHφ∗. This proves the theorem. �

Theorem . Let φ,φ ∈ �, then •(φ,φ) = •(φ,φ).

Proof Using () we get

•(φ,φ)(x) = HH
(
H–(Hφ∗

Hφ∗

))
(x),

where φ = HHφ∗
 , φ = HHφ∗

 .
By () and Theorem ., we get

•(φ,φ)(x) = HH
(
φ∗
 ∗ φ∗


)
(x)

= HH
(
φ∗
 ∗ φ∗


)
(x)

= HH
(
H–(Hφ∗

Hφ∗

))
(x) = •(φ,φ)(x).

Hence the theorem. �

http://www.advancesindifferenceequations.com/content/2013/1/222
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Theorem . Let ξ, ξ, ξn, ξ ∈ � and φ ∈ �, then:
(i) •(kξ,φ)(x) = •(ξ,kφ)(x) = k(•(ξ,φ)(x)), k ∈ R.
(ii) •(ξ + ξ,φ)(x) = •(ξ,φ)(x) + •(ξ,φ)(x).
(iii) •(ξn,φ)(x)→ •(ξ ,φ)(x) as n→ ∞.

Proof (i) The linearity of HHTs and () implies

•(kξ ,φ)(x) = HH
(
H–(kHξ ∗Hφ∗))(x)

= HH
(
H–(Hξ ∗(kHφ∗)))(x)

= HH
(
H–(Hξ ∗H

(
kφ∗)))(x), by the linearity of HT

= •(ξ ,kφ)(x).

Similarly,

•(kξ ,φ)(x) = k
(•(ξ,φ)(x)).

The proof of (ii) and (iii) follows from simple computations. The proof is therefore com-
pleted. �

Theorem . Let (αn), (εn) ∈ �, then •(αn, εn) ∈ �.

Proof For (αn), (εn) ∈ �,

•(αn, εn)(x) = HH
(
H–(Hα∗

nHε∗
n
))
(x)

= HH
(
α∗
n ∗ ε∗

n
)
(x).

Since α∗
n ∗ ε∗

n ∈ �, we get

•(αn, εn)(x) ∈ HH�.

The proof is completed. �

Theorem . Let ξ ∈ �, φ,φ ∈ �, then

•(•(ξ ,φ),φ
)
(x) = •(

ξ ,•(φ,φ)
)
(x).

Proof Follows from similar computations to those above.
In detail, for φ = HHφ∗

 , φ = HHφ∗
 and ξ = HHξ ∗, we see that

•(•(ξ ,φ),φ
)
(x) = HH

(•(ξ ,φ)∗∗φ∗

)
(x)

= HH
((
HH

(
ξ ∗ ∗ φ∗


))∗ ∗ φ∗


)
(x)

= HH
((

ξ ∗ ∗ φ∗

) ∗ φ∗


)
(x)

= HH
(
ξ ∗ ∗ (

φ∗
 ∗ φ∗


))
(x)

http://www.advancesindifferenceequations.com/content/2013/1/222
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= HH
(
ξ ∗ ∗ (

φ∗
 ∗ φ∗


))
(x)

= •(•ξ , (φ,φ)
)
(x).

Hence our theorem is completely proved. �

Theorem . Let ξ, ξ ∈ � and (δn) ∈ � and •(ξ, δn)(x) = •(ξ, δn)(x), then ξ = ξ.

Proof Assume that •(ξ, δn)(x) = •(ξ, δn)(x), then

HH
(
H–(Hξ ∗

 Hδ∗
n
))
(x) = HH

(
Hξ ∗

Hδ∗
n
)
(x).

Hence, HH(ξ ∗
 ∗ δ∗

n)(x) = HH(ξ ∗
 ∗ δ∗

n)(x). Allowing n → ∞ implies

HH
(
ξ ∗

)
= HH

(
ξ ∗

)
.

Hence ξ = ξ. This completes the proof. �

Theorem . Let (δn) ∈ � and ξ ∈ �, then

•(ξ , δn) → ξ as n→ ∞.

Proof Since ξ ∈ �, (δn) ∈ �, there are ξ ∗ ∈ S , δ∗
n ∈ � such that HHξ ∗ = ξ and δn = HHδ∗

n .
Hence

•(ξ , δn)(x) = HH
(
H–(Hξ ∗Hδ∗

n
))
(x)

= HH
(
ξ ∗ ∗ δ∗

n
)
(x)→ HHξ ∗ = ξ

as n→ ∞ since δ∗
n ∈ �.

Thus the theorem. �

The Boehmian space B(�,�,�,•) is completely established.
A typical element in B(�,�,�,•) is given as

[
HHfn
HHφn

]
.

The concept of quotients of sequences is justified by

•(HHfn,HHφm) = HH
(
H–(HfnHφm)

)
= HH(fn ∗ φm)

= HH(fm ∗ φn)

= HH
(
H–(HfmHφn)

)
= •(HHfm,HHφn).

Hence, •(HHfn,HHφm) = •(HHfm,HHφn).
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Two quotients HHfn
HHφn

and HHgn
HHτn

are said to be equivalent in the sense of B(�,�,�,•) if

•(HHfn,HHτm) = •(HHgm,HHφn).

Sum and multiplication by a scalar of two Boehmians can be defined in a natural way

[
HHfn
HHφn

]
+

[
HHgn
HHτn

]
=

[
HHfn • HHτn + HHgn • HHφn

HHφn • HHτn

]

and

A
[
HHfn
HHφn

]
=

[AHHfn
HHφn

]
, A being a complex number.

The operation • and differentiation are defined by

[
HHfn
HHφn

]
•

[
HHgn
HHτn

]
=

[
HHfn • HHgn
HHφn • HHτn

]

and

Dα

[
HHfn
HHφn

]
=

[DαHHfn
HHφn

]
.

5 HHT of Boehmians
Let us define the EHHT of a Boehmian [ HHfnHHφn

] ∈ B(S ′,S ,�,∗) by

�

[
HHfn
HHφn

]
=

[
HHfn
HHφn

]
∈ B(�,�,�,•). ()

It is clear that EHHT is well defined.

Theorem . EHHT is linear.

Theorem . EHHT is one-to-one.

Theorem . EHHT is continuous with respect to δ convergence.

Proof Let βn
δ→ β in B(S ′,S ,�,∗) as n → ∞. We show that �βn → �β in B(�,�,

�,•) as n→ ∞.
For each βn,β ∈ B(S ′,S ,�,∗) we, by [], can find fn,k , fk ∈ S ′ such that

βn =
[
fn,k
φk

]

and β = [ fk
φk
] and fn,k → fk as n→ ∞, ∀k ∈ N.

The continuity of HHTs implies

HHfn,k → HHfk as n→ ∞ in �,
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Al-Omari and Kılıçman Advances in Difference Equations 2013, 2013:222 Page 13 of 14
http://www.advancesindifferenceequations.com/content/2013/1/222

and hence

HHfn,k
HHφk

∼ HHfk
HHφk

.

Thus,

βn =
[
HHfn,k
HHφk

]
→ β

[
HHfk
HHφk

]
as n→ ∞ in β(�,�,�,•).

The proof is completed. �

Theorem . EHHTs are continuous with respect to � convergence.

Proof Let βn
�→ β in B(S ′,S ,�,∗) as n → ∞, then there are fn ∈ S ′ and φn ∈ � such that

(βn – β) ∗ φn =
[
fn ∗ φk

φk

]

and fn →  as n → ∞. Hence, by Theorem .,

HH
(
(βn – β) ∗ φn

)
= HH

[
fn ∗ φk

φk

]

=
[
HH(fn ∗ φk)

HHφk

]
� HHfn → ∞ as n→ ∞.

Hence the theorem. �

Remark . Let β = [ HHfnHHδn
] ∈ B(�,�,�,•), then it is so natural to define the inverse

HHT of β as

�–β =
[
fn
δn

]

in the space B(S ′,S ,�,∗).

It is of interest to see that the inverse transform �– preserves all the above properties
that � does such as linearity, one-to-one and continuity of �– with respect to conver-
gence in B(S ′,S ,�,∗). Proofs are avoided.
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