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Abstract
A new fourth-order difference method for solving the system of two-dimensional
quasi-linear elliptic equations is proposed. The difference scheme referred to as
off-step discretization is applicable directly to the singular problems and problems in
polar coordinates. Also, new fourth-order methods for obtaining the first-order
normal derivatives of the solution are developed. The convergence analysis of the
proposed method is discussed in details. The methods are applied to many physical
problems to illustrate their accuracy and efficiency.
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1 Introduction
We consider the two-dimensional (D) quasi-linear elliptic partial differential equation
(PDE) of the type

a(x, y,u)uxx + b(x, y,u)uyy = f (x, y,u,ux,uy), ()

where (x, y) ∈ R = (, ) × (, ), with boundary ∂R (see Figure ), subject to the Dirichlet
boundary conditions given by

u(x, y) = v(x, y), (x, y) ∈ ∂R. ()

The PDEs of the type () with variable coefficients model many problems of physical sig-
nificance. For instance, the convection-diffusion and Burgers’ equations that represent the
transport phenomena, and the highly nonlinear Navier-Stokes’ (N-S) equations of motion
that describe themotion of fluid flow and represent the conservation of mass, momentum
and energy.
We make the following assumptions about the boundary value problem ():
(a) ab >  in R,
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Figure 1 Schematic representation of two dimensional nine point compact cell.

(b) u(x, y) ∈ C,
(c) a,b ∈ C,
(d) f is continuous,
(e) ∂f

∂u ≥ ,
(f ) | ∂f

∂ux | ≤ H ,
(g) | ∂f

∂uy | ≤ I ,
where H and I are positive constants and Cm is the set of all functions of x and y with
continuous partial derivatives up to orderm in the region R. The condition (a) guarantees
the ellipticity of equation (). Conditions (e), (f ) and (g) are the necessary conditions for
the existence and uniqueness of the solution of boundary value problem ()-() (see []).
A number of high order compact schemes have been reported for the linear ellip-

tic problems like Poisson’s equation and the convection diffusion equation (see [–]).
Ananthakrishnaiah and Saldanha [] framed a -point fourth-order compact scheme
for the solution of a scalar nonlinear elliptic PDE, which was later extended to a system
of equations by Saldanha []. The finite difference methods for solving the steady state
incompressible N-S equations vary considerably in terms of accuracy and efficiency. It has
been discovered that although central difference approximations are locally second-order
accurate, they often suffer from computational instability and the resulting solutions ex-
hibit non-physical oscillations. The upwind difference approximations, though computa-
tionally stable, are only first-order accurate and the resulting solutions exhibit the effects
of artificial viscosity. A number of high order compact schemes for the solution of the
N-S equations in stream function vorticity form in the Cartesian coordinates were pro-
posed in [–]. In , Mohanty [] proposed fourth-order difference methods for
D nonlinear elliptic boundary value problems with variable coefficients using only nine
grid points of a single computational cell. This method could be successfully applied to
the N-S model equations in polar coordinates. Later, Mohanty and Dey [] developed
the fourth-order accurate estimates of the first-order normal derivatives of the solution
viz (∂u/∂n). However, the methods [] and [] could not be directly applied to singular
elliptic problems, and they required suitable modifications at the points of singularity. In
this regard, Mohanty and Singh [] derived an off-step fourth-order discretization for
the solution of singularly perturbed two-dimensional nonlinear elliptic problems and the
estimates of (∂u/∂n), which were directly applicable to singular elliptic problems.
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In this article, we develop new off-step fourth-order discretizations for the solution of
the system of quasi-linear elliptic PDEs with variable coefficients, and the estimates of
(∂u/∂n), using the nine grid points of a single computational cell (see Figure ). The main
advantage of the proposedmethods is that they are directly applicable to the singular prob-
lems and the problems in polar coordinates, without any need of modifications, hence
reducing the manual and mechanical calculations reasonably.
An outline of the article is as follows: In Section , we discuss and derive the off-step

fourth-order compact discretization schemes for the solution of a nonlinear elliptic equa-
tion with variable coefficients and the estimates of (∂u/∂n). These methods are further
extended to the solution of the quasi-linear PDE given by ()-(). In Section , we estab-
lish the fourth-order convergence of the method for a scalar equation under appropriate
conditions. Further, in Section , the stability analysis of the steady state convection dif-
fusion equation is conducted. In Section , we generalize our methods for the system of
quasi-linear PDEs with variable coefficients, subject to the Dirichlet boundary conditions.
In Section , we implement the proposed methods over linear and nonlinear problems of
physical significance to illustrate and examine the accuracy of these methods. Section 
contains some concluding remarks about this article.

2 The off-step discretization and derivation
We first consider the following two-dimensional nonlinear elliptic PDE:

a(x, y)uxx + b(x, y)uyy = f (x, y,u,ux,uy) ()

for (x, y) ∈ R, subject to the Dirichlet boundary conditions given by ().
We superimpose on the domain R a rectangular grid with spacing h >  in both x and

y-directions. Let us introduce the following notations:
(a) Each grid point is given by (xl, ym) or simply (l,m) for xl = lh and ym =mh,

≤ l,m≤ N + , where (N + )h = .
Further, at each grid point (l,m), let:
(b) Ul,m and ul,m denote the exact and approximate values of u(xl, ym), respectively.
(c) fl,m = f (xl, ym,Ul,m,Uxl,m,Uyl,m).
(d) For S = a,b,U ,α,β and γ , let

Spq =
∂p+qS

∂xp ∂yq
, p,q = , , , . . . .

Then, for  ≤ l,m≤ N + , differential equation () can be written as

aU + bU = fl,m. ()

For the fourth-order discretization of PDE (), we simply follow the approach given by
Chawla and Shivakumar [].
We set the following approximations:

Ul± 
 ,m

= (Ul±,m +Ul,m)/, (.)

Ul,m± 

= (Ul,m± +Ul,m)/, (.)

http://www.advancesindifferenceequations.com/content/2013/1/223
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Uxl,m = (Ul+,m –Ul–,m)/(h), (.)

Uxl± 
 ,m

= (±Ul±,m ∓Ul,m)/(h), (.)

Uxl,m± 

= (Ul+,m± –Ul–,m± +Ul+,m –Ul–,m)/(h), (.)

Uyl,m = (Ul,m+ –Ul,m–)/(h), (.)

Uyl± 
 ,m

= (Ul±,m+ –Ul±,m– +Ul,m+ –Ul,m–)/(h), (.)

Uyl,m± 

= (±Ul,m± ∓Ul,m)/(h), (.)

Uxxl,m = (Ul+,m – Ul,m +Ul–,m)/
(
h

)
, (.)

Uxxl,m± = (Ul+,m± – Ul,m± +Ul–,m±)/
(
h

)
, (.)

Uyyl,m = (Ul,m+ – Ul,m +Ul,m–)/
(
h

)
, (.)

Uyyl±,m = (Ul±,m+ – Ul±,m +Ul±,m–)/
(
h

)
. (.)

Define

f l± 
 ,m

= f (xl± 

, ym,Ul± 

 ,m
,Uxl± 

 ,m
,Uyl± 

 ,m
), (.)

f l,m± 

= f (xl, ym± 


,Ul,m± 


,Uxl,m± 


,Uyl,m± 


). (.)

Let

Ul,m =Ul,m + ph(f l+ 
 ,m

+ f l– 
 ,m

) + ph(f l,m+ 

+ f l,m– 


)

+ phUxxl,m + phUyyl,m, (.)

Uxl,m =Uxl,m + qh(f l+ 
 ,m

– f l– 
 ,m

) + qh(Uyyl+,m –Uyyl–,m)

+ qhUxxl,m + qhUyyl,m, (.)

Uyl,m =Uyl,m + rh(f l,m+ 

– f l,m– 


) + rh(Uxxl,m+ –Uxxl,m–)

+ rhUxxl,m + rhUyyl,m, (.)

where pks, qks and rks (≤ k ≤ ) are the parameters to be suitably determined.
Finally, define

f l,m = f (xl, ym,Ul,m,Uxl,m,Uyl,m). ()

Then, at each internal grid point (l,m), differential equation () is discretized by

L[U] ≡ [
Iδx + Iδy + I

(
δxμyδy

)
+ I

(
δyμxδx

)
+ I

(
δxδ


y
)]
Ul,m

= h[Jf l+ 
 ,m

+ Jf l– 
 ,m

+ Jf l,m+ 

+ Jf l,m– 


– f l,m]

+ Tl,m;  ≤ l,m≤ N ()

http://www.advancesindifferenceequations.com/content/2013/1/223
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for Tl,m =O(h), where we denote

K = a/a, K = b/b,

I = a +


h(a + a – Ka – Ka),

I = b +


h(b + b – Kb – Kb),

I =


h(a –Ka), I =



h(b –Kb), I =



(a + b),

J =  – hK, J =  + hK, J =  – hK, J =  + hK

for δxUl = (Ul+/ –Ul–/) and μxUl = 
 (Ul+/ +Ul–/) being the central and average dif-

ference operators in x-direction etc.
Now, with the help of Taylor series expansion, it is easy to obtain

L[U] = h[Jfl+ 
 ,m

+ Jfl– 
 ,m

+ Jfl,m+ 

+ Jfl,m– 


– fl,m] +O

(
h

)
,  ≤ l,m≤ N . ()

Now, let

α =
∂f
∂U

, β =
∂f

∂Ux
, γ =

∂f
∂Uy

.

Using (.) and (.) and simplifying (.)-(.) by Taylor series expansions, we obtain

f l± 
 ,m

= fl± 
 ,m

+
h


T +O

(±h + h
)
, (.)

f l,m± 

= fl,m± 


+
h


T +O

(±h + h
)
, (.)

where

T = Uα +Uβ + (U + U)γ,

T = Uα + (U + U)β +Uγ.

Using equations (.), (.), simplifying (.)-(.) and (.)-(.), we obtain

Ul,m =Ul,m +
h


T +O

(
h

)
, (.)

Uxl,m =Uxl,m +
h


T +O

(
h

)
, (.)

Uyl,m =Uyl,m +
h


T +O

(
h

)
, (.)

where

T =
[
(p + p)a + p

]
U +

[
(p + p)b + p

]
U,

T = ( + qa)U + (qa + q)U + (qb + q)U + (qb + q)U,

T = ( + rb)U + (ra + r)U + (ra + r)U + (rb + r)U.

http://www.advancesindifferenceequations.com/content/2013/1/223
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Finally, from (), using (.)-(.), we obtain

f l,m = fl,m +
h


T +O

(
h

)
, ()

where

T = Tα + Tβ + Tγ.

Substituting approximations (.), (.) and () into (), and by the help of (), we ob-
tain

Tl,m =
h


(T – T – T) +O

(
h

)
. ()

Thus, for the proposed difference method () to be of fourth order, the coefficient of h in
() must be zero, and hence we have

T + T – T = .

Equating to zero the coefficients of each of α, β and γ, we obtain the values of the
unknown parameters as follows:

p = /(a), p = /(b), p = ( – a/b)/, p = ( – b/a)/,

q = /(a), q = ( – b/a)/, q = –a/(a), q = –b/(a),

r = /(b), r = ( – a/b)/, r = –a/(b), r = –b/(b)

thereby reducing Tl,m to O(h). Thus the difference method of O(h) for nonlinear PDE
() is given by () for the above values of parameters.
Now, we consider the numerical method of O(h) for the solution of D quasi-linear

elliptic equation (). In order to understand the concept to develop the method for the
quasi-linear case, we consider the following differential equation:

u′′ = f (x),  < x < . ()

A fourth-order method for differential equation () is given by

Ul– – Ul +Ul+ =
h


[
fl + hfxxl

]
+O

(
h

)
, ()

where Ul = u(xl), fl = f (xl) and fxxl = ∂fl
∂x .

Whenever the differential equation () is of the form u′′ = f (x,u), the evaluation of fxx is
difficult and formula () needs to be modified. Substituting hfxxl = fl+ – fl + fl– +O(h)
in (), we obtain the modified version of () due to Numerov as

Ul– – Ul +Ul+ =
h


[fl+ + fl– + fl] +O

(
h

)
, ()

where fl = f (xl,Ul). Note that () is consistent with the differential equation u′′ = f (x,u).

http://www.advancesindifferenceequations.com/content/2013/1/223
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Now,we use the above concept to derive the numericalmethod for quasi-linear equation
(). Since the coefficients are the functions of not only the independent variables x and
y but also of the dependent variable u, i.e., a = a(x, y,u) and b = b(x, y,u), the difference
scheme () cannot be applied directly as the first- and second-order derivatives of u are
unknown at the internal grid points. Thus further discretizations of ux, uy, uxx and uyy are
required in the method () without affecting its order. For this purpose, for S = a and b,
we use the following central differences:

S = (Sl+,m – Sl–,m)/h +O
(
h

)
, (.)

S = (Sl,m+ – Sl,m–)/h +O
(
h

)
, (.)

S = (Sl+,m – S + Sl–,m)/h +O
(
h

)
, (.)

S = (Sl,m+ – S + Sl,m–)/h +O
(
h

)
, (.)

where

S = S(xl, ym,Ul,m),

Sl±,m = S(xl±, ym,Ul±,m),

Sl,m± = S(xl, ym±,Ul,m±).

Upon substitution of the central differences (.)-(.) in the method (), it is easy to
verify that

I = a +


[al+,m + al–,m + al,m+ + al,m–]

–
(al,m+ – al,m–)(bl,m+ – bl,m–)

b
–
(al+,m – al–,m)

a
+O

(
h

)
,

I = b +


[bl+,m + bl–,m + bl,m+ + bl,m–]

–
(al+,m – al–,m)(bl+,m – bl–,m)

a
–
(bl,m+ – bl,m–)

b
+O

(
h

)
,

I =
(al,m+ – al,m–)


–

(
bl,m+ – bl,m–

b

)
a +O

(
h

)
,

I =
(bl+,m – bl–,m)


–

(
al+,m – al–,m

a

)
b +O

(
h

)
.

We observe that the truncation error Tl,m retains its orderO(h), and hence we obtain the
required numerical method of O(h) for the solution of quasi-linear elliptic PDE ().
After having determined the fourth-order approximations to the solution of equation

(), we now discuss the fourth-order numerical methods for the estimates of (∂u/∂x) and
(∂u/∂y). One may compute these values using the standard central differences:

uxl,m = (ul+,m – ul–,m)/(h), (.)

uyl,m = (ul,m+ – ul,m–)/(h). (.)

http://www.advancesindifferenceequations.com/content/2013/1/223
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It is found that the standard central differences (.) and (.) yield second-order ac-
curate results irrespective of whether fourth-order difference method () or standard dif-
ference scheme is used to solve PDE (). Thus, new difference methods for computing the
numerical values of (∂u/∂x) and (∂u/∂y) are developed, which are found to yield O(h)
accurate results when used in conjunction with the nine-point formula ().
At each grid point (l,m), we denote the exact and the approximate solutions of (∂u/∂x),

(∂u/∂y) by Uxl,m, Uyl,m and uxl,m, uyl,m, respectively. Then, following the techniques given
by Stephenson [], for l,m = ()N , we obtain

Uxl,m =

h

(μxδx)Ul,m +


a
(
aδx + bδy

)
Ul,m +

b
ha

(
δyμxδx

)
Ul,m

–
h

a
(f l+ 

 ,m
– f l– 

 ,m
) + T (x)

l,m, (.)

Uyl,m =

h

(μyδy)Ul,m +


b
(
aδx + bδy

)
Ul,m +

a
hb

(
δxμyδy

)
Ul,m

–
h

b
(f l,m+ 


– f l,m– 


) + T (y)

l,m. (.)

A simple Taylor series expansion would yield

Uxl,m =

h

(μxδx)Ul,m +


a
(
aδx + bδy

)
Ul,m +

b
ha

(
δyμxδx

)
Ul,m

–
h

a
(fl+ 

 ,m
– fl– 

 ,m
) +O

(
h

)
. ()

Then, using equations (.) and () in (.), we obtain T (x)
l,m =O(h). Similarly, we obtain

T (y)
l,m = O(h). Hence, equations (.)-(.) give the fourth-order approximation to the

first-order normal derivatives of the solution of nonlinear equation (). The numerical
methods (.)-(.) are applicable when the fourth-order numerical solutions of u are
known at each internal grid point. Further, the Dirichlet boundary conditions are given by
(). The difference method () for the determination of u can be easily expressed in tri-
block-diagonal matrix form, and the methods (.)-(.) for determination of (∂u/∂x)
and (∂u/∂y) can be expressed in diagonal matrices form, thus can be easily solved. The
proposedmethods (), (.) and (.) are directly applicable to singular elliptic problems
in the region R.
Now, for the two-dimensional quasi-linear elliptic equation (), using the approxima-

tions (.) and (.) in (.)-(.), we easily obtain

Uxl,m =

h

(μxδx)Ul,m +


ha
(
(al+,m – al–,m)δx + (bl+,m – bl–,m)δy

)
Ul,m

+
b

ha
(μxδx)δyUl,m –

h
a

(f l+ 
 ,m

– f l– 
 ,m

) + T (x)
l,m,  ≤ l,m≤ N , (.)

Uyl,m =

h

(μyδy)Ul,m +


hb
(
(al,m+ – al,m–)δx + (bl,m+ – bl,m–)δy

)
Ul,m

+
a

hb
(μyδy)δxUl,m –

h
b

(f l,m+ 

– f l,m– 


) + T (y)

l,m,  ≤ l,m≤ N , (.)

where T (x)
l,m and T (y)

l,m are of O(h).

http://www.advancesindifferenceequations.com/content/2013/1/223
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3 Convergence analysis
We consider the D nonlinear elliptic partial differential equation

Auxx + Buyy = f (x, y,u,ux,uy) ()

defined in the region R, subject to u(x, y) = v(x, y), (x, y) ∈ ∂R, where A,B >  are constants.
Then the difference method () for equation () is given by

[
Aδx + Bδy +

(A + B)


δxδ

y

]
ul,m

= h[f l+ 
 ,m

+ f l– 
 ,m

+ f l,m+ 

+ f l,m– 


– f l,m];  ≤ l,m≤ N . ()

Let, for each (l,m) such that ≤ l,m≤ N ,

Ml,m = h[f l+ 
 ,m

+ f l– 
 ,m

+ f l,m+ 

+ f l,m– 


– f l,m] + boundary values

and El,m = ul,m –Ul,m.
Also, for S =M,u,U ,T and E, let

S = [S,,S,, . . . ,SN ,,S,,S,, . . . ,SN ,, . . . ,S,N ,S,N , . . . ,SN ,N ]tN×,

where t denotes the transpose of the matrix.
Then, varying (l,m) such that  ≤ l,m ≤ N , equation () may be written in the matrix

form as

Du +M(u) = , ()

where

D =
[
K R K

]
N×N

(Tri-block diagonal matrix)

for

R =
[
–A + B (A + B) –A + B

]
N×N

(Tri-diagonal matrix)

and

K =
[
–(A + B)/ –B +A –(A + B)/

]
N×N

(Tri-diagonal matrix).

We assume here that B < A and A < B. Thus, all the diagonal entries of matrix D are
positive and all the off-diagonal entries are negative.
Since U is the exact solution vector, we have

DU +M(U) +T = , ()

where Tl,m =O(h) for each (l,m) such that  ≤ l,m≤ N .

http://www.advancesindifferenceequations.com/content/2013/1/223
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Now, let

f̂l± 
 ,m

= f (xl± 

, ym,ul± 

 ,m
,uxl± 

 ,m
,uyl± 

 ,m
) � f l± 

 ,m
,

f̂l,m± 

= f (xl, ym± 


,ul,m± 


,uxl,m± 


,uyl,m± 


) � f l,m± 


,

f̃l,m = f (xl, ym,ul,m,uxl,m,uyl,m) � f l,m.

We may write

f̂l± 
 ,m

– f l± 
 ,m

= (ul± 
 ,m

–Ul± 
 ,m

)G()
l± 

 ,m
+ (uxl± 

 ,m
–Uxl± 

 ,m
)H ()

l± 
 ,m

+ (uyl± 
 ,m

–Uyl± 
 ,m

)I()
l± 

 ,m
, (.)

f̂l,m± 

– f l,m± 


= (ul,m± 


–Ul,m± 


)G()

l,m± 

+ (uxl,m± 


–Uxl,m± 


)H ()

l,m± 


+ (uyl,m± 

–Uyl,m± 


)I()
l,m± 


, (.)

f̃l,m – f l,m = (ul,m –Ul,m)G()
l,m + (uxl,m –Uxl,m)H ()

l,m + (uyl,m –Uyl,m)I()l,m (.)

for suitable Q()
l± 

 ,m
, Q()

l,m± 

and Q()

l,m, where Q =G,H and I .
Also, for Q =H and I , we may write

Q()
l± 

 ,m
=Q()

l,m ± h

Q()

xl,m +O
(
h

)
, (.)

Q()
l,m± 


=Q()

l,m ± h

Q()

yl,m +O
(
h

)
(.)

and

G()
l± 

 ,m
=G()

l,m ±O(h), (.)

G()
l,m± 


=G()

l,m ±O(h). (.)

With the help of equations (.)-(.) and (.)-(.), we obtain

M(u) –M(U) = PE, ()

where P = (Pr,s) [≤ r ≤ N,  ≤ s≤ N] is the tri-block diagonal matrix with

P(m–)N+l,(m–)N+l = h
[
G()

l,m + G()
l,m – H ()

xl,m – I()yl,m – G()
l,m +H ()

l,mH
()
l,m + I()l,mI

()
l,m

]
+O

(
h

)
[ ≤ l ≤ N , ≤ m ≤ N],

P(m–)N+l,(m–)N+l± = h
[±H ()

l,m ±H ()
l,m ∓H ()

l,m
]
+
h


[
G()

l,m + H ()
xl,m –H ()

l,mH
()
l,m

]
+O

(
h

)
[ ≤ l ≤ N – ,  ≤ l ≤ N , ≤ m ≤ N],

P(m–)N+l,(m–±)N+l = h
[±I()l,m ± I()l,m ∓ I()l,m

]
+
h


[
G()

l,m + I()yl,m – I()l,mI
()
l,m

]
+O

(
h

)
[ ≤ l ≤ N , ≤ m ≤ N – ,  ≤ m ≤ N],

http://www.advancesindifferenceequations.com/content/2013/1/223
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P(m–)N+l,mN+l± =
h

[±H ()

l,m + I()l,m
]
+
h


[±H ()

yl,m ± I()xl,m ∓ I()l,mH
()
l,m ∓H ()

l,mI
()
l,m

]
+O

(
h

)
[≤ l ≤ N – ,  ≤ l ≤ N , ≤ m ≤ N – ],

P(m–)N+l,(m–)N+l± =
h

[±H ()

l,m – I()l,m
]
+
h


[∓H ()

yl,m ∓ I()xl,m ± I()l,mH
()
l,m ±H ()

l,mI
()
l,m

]
+O

(
h

)
[ ≤ l ≤ N – , ≤ l ≤ N , ≤ m≤ N].

Using relation (), from equations () and (), in the absence of round-off errors, we
obtain the error equation

(D + P)E = T. ()

Let R = R∪ ∂R and

G∗ = min
(x,y)∈R

∂f
∂U

and G∗ = max
(x,y)∈R

∂f
∂U

,

then

 <G∗ ≤ G()
l± 

 ,m
,G()

l,m± 

,G()

l,m ≤ G∗

and for Q =H and I , let

 <
∣∣Q()

l± 
 ,m

∣∣, ∣∣Q()
l,m± 



∣∣, ∣∣Q()
l,m

∣∣ ≤ Q

and

∣∣Q()
xl,m

∣∣ ≤ Q(),
∣∣Q()

yl,m
∣∣ ≤Q()

for some positive constants Q, Q() and Q().
Now, it is easy to verify that for sufficiently small h,

|P(m–)N+l,(m–)N+l| <  [≤ l ≤ N , ≤ m ≤ N],

|P(m–)N+l,(m–)N+l±| <  [ ≤ l ≤ N – , ≤ l ≤ N , ≤ m ≤ N],

|P(m–)N+l,(m–±)N+l| <  [ ≤ l ≤ N ,  ≤ m≤ N – , ≤ m ≤ N],

|P(m–)N+l,mN+l±| <  [ ≤ l ≤ N – ,  ≤ l ≤ N , ≤ m ≤ N – ],

|P(m–)N+l,(m–)N+l±| <  [ ≤ l ≤ N – ,  ≤ l ≤ N , ≤ m ≤ N].

Further, the directed graph ofD+P shows that it is an irreducible matrix (see Figure ).
The arrows indicate the paths i→ j for every nonzero entry (D+P)(i,j) of thematrixD + P.
For any ordered pair of nodes i and j, there exists a direct path (

–→
i, l), (

––→
l, l), . . . , (

––→
lk , j) con-

necting i to j. Hence, the graph is strongly connected. So, the matrix D + P is irreducible
(see Varga []).
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Figure 2 Directed graph ofD + P.

Let Sk denote the sum of the elements in the kth row of D + P, then for k =  and N , we
have

Sk = (A + B)/ + h
(
G()

k, + G()
k, – G()

k,
)
+
h

(bk + hck) +O

(
h

)
,

where

bk = ±H ()
k, ± H ()

k, + I()k, + I()k, ∓ H ()
k, – I()k, ,

ck = H ()
k,H

()
k, + I()k, I

()
k, – H ()

xk, – I()yk, ± H ()
yk, ± I()xk, ∓ I()k,H

()
k, ∓H ()

k, I
()
k, ,

S(N–)N+k = (A + B)/ + h
[
G()

k,N + G()
k,N – G()

k,N
]

+
h

[b(N–)N+k + hc(N–)N+k] +O

(
h

)
,

(.)

where

b(N–)N+k = ±H ()
k,N ± H ()

k,N – I()k,N – I()k,N ∓ H ()
k,N + I()k,N ,

c(N–)N+k = H ()
k,NH

()
k,N + I()k,NI

()
k,N – H ()

xk,N – I()yk,N

∓ H ()
yk,N ∓ I()xk,N ± I()k,NH

()
k,N ±H ()

k,NI
()
k,N .

(.)

For  ≤ q ≤ N – ,

S(q–)N+k = A + h
[
G()

k,q + G()
k,q – G()

k,q
]
+
h

[b(q–)N+k + hc(q–)N+k] +O

(
h

)
,

where

b(q–)N+k = ±H ()
k,q ± H ()

k,q ∓ H ()
k,q,

c(q–)N+k = –H ()
xk,q +H ()

k,qH
()
k,q.

(.)

http://www.advancesindifferenceequations.com/content/2013/1/223
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For  ≤ r ≤ N – ,

S(k–)N+r = B + h
[
G()

r,k + G()
r,k – G()

r,k
]
+
h

[b(k–)N+r + hc(k–)N+r] +O

(
h

)
,

where

b(k–)N+r = ±I()r,k ± I()r,k ∓ I()r,k ,

c(k–)N+r = –I()yr,k + I()r,k I
()
r,k .

(.)

And finally, for q = ()N – , r = ()N – ,

S(r–)N+q = h
[
G()

q,r + G()
q,r – G()

q,r
]
+O

(
h

)
. (.)

With the help of equations (.)-(.), we get

|bk| ≤ (H + I),

|ck| ≤ 
(
H + I

)
+ 

(
H () + I()

)
+ 

(
H () + I()

)
+ IH

for k = ,N , (N – )N +  and N,

|bk| ≤ H ,

|ck| ≤ H () +H

for k = (q – )N +  and qN ;  ≤ q ≤ N – ,

|bk| ≤ I,

|ck| ≤ I() + I

for k = r and (N – )N + r;  ≤ r ≤ N – .

It follows that for sufficiently small h,

Sk > hG∗

for k = ,N , (N – )N +  and N, (.)

Sk > hG∗

for k = (q – )N +  and qN ;  ≤ q ≤ N – , (.)

Sk > hG∗

for k = r and (N – )N + r;  ≤ r ≤ N – , (.)

S(r–)(N–)+q ≥ h
(
G∗ – G∗) > , assuming G∗ < G∗

for  ≤ q ≤ N –  and  ≤ r ≤ N – . (.)

Thus, for sufficiently small h, D + P is monotone. Hence (D + P)– exists and (D + P)– =
J– >  (see Henrici []), where

J = (Jr,s)
[
 ≤ r ≤ N and  ≤ s ≤N].
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Since

N∑
r=

Jp,rSr = ,  ≤ p≤ N

and G∗ > , from equations (.)-(.), with  ≤ p≤ N, it follows that

Jp,k ≤ 
Sk

<


hG∗[
k = ,N , (N – )N +  and N], (.)

N–∑
q=

Jp,kSk ≤ 
min≤q≤N– Sk

<


hG∗[
k = (q – )N +  and qN ,  ≤ q ≤ N – 

]
, (.)

N–∑
r=

Jp,k ≤ 
min≤r≤N– Sk

<


hG∗[
k = r and (N – )N + r,  ≤ r ≤ N – 

]
, (.)

N–∑
q=

N–∑
r=

Jp,k ≤ 
min≤q≤N–

≤r≤N–
Sk

≤ 
h(G∗ – G∗)

[
k = (r – )N + q,  ≤ q ≤ N –  and  ≤ r ≤ N – 

]
. (.)

Equation () may be written as

‖E‖ ≤ ‖J‖‖T‖, ()

where

‖J‖ = max
≤p≤N

[(
Jp, +

(N–)∑
q=

Jp,q + Jp,N

)
+

(N–∑
q=

Jp,(q–)N+ +
N–∑
q=

N–∑
r=

Jp,(q–)N+r +
N–∑
q=

Jp,qN

)

+

(
Jp,(N–)N+ +

N–∑
q=

Jp,(N–)N+q + Jp,N

)]
. ()

Using equations (.)-(.) in equation (), from () we obtain, for sufficiently small h,

‖E‖ ≤ O
(
h

)
. ()

This establishes the convergence of the fourth-order difference method () (with n = )
for the scalar elliptic equation ().

4 Stability analysis
We consider the steady state two-dimensional convection-diffusion equation

uxx + uyy = βux, (x, y) ∈ R, ()

http://www.advancesindifferenceequations.com/content/2013/1/223
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where β = (/ε) >  is a constant, with ε (the perturbation parameter) being the ratio of
convective velocity to the diffusion coefficient.
Applying the difference scheme () with Tl,m =  to the above equation and letting τ =

(βh/) > , which is called the cell Reynolds number, we obtain

(
 + τ )ul,m
= ( + τ )ul–,m– + ul,m– + ( – τ )ul+,m– + 

(
 – τ + τ )ul–,m

+ 
(
– + τ + τ )ul+,m + ( + τ )ul–,m+ + ul,m+ + ( – τ )ul+,m+. ()

The above is a system of N number of linear equations in N number of unknowns,
which may be expressed in the matrix form as Au = B, where

A =
[
P Q P

]
N×N

(Tri-block-diagonal matrix),

P =
[
 + τ   – τ

]
N×N

(Tri-diagonal matrix),

Q =
[
( – τ + τ ) –( + τ ) (– + τ + τ )

]
N×N

(Tri-diagonal matrix),

B :N ×  matrix consisting of boundary values.

Now, applying the Jacobi iteration method to the above system of equations, we obtain

(
 + τ )u(s+)l,m

= ( + τ )u(s)l–,m– + u(s)l,m– + ( – τ )u(s)l+,m– + 
(
 – τ + τ )u(s)l–,m

+ 
(
– + τ + τ )u(s)l+,m + ( + τ )u(s)l–,m+ + u(s)l,m+ + ( – τ )u(s)l+,m+, ()

where s = , , , . . . .
We examine the stability of () by assuming that an error ε

(s)
l,m exists at each grid point

(l,m) at the sth iteration. We analyze the behavior of the error ε
(s)
l,m by assuming it to be of

the form

ε
(s)
l,m = ξ sAlBm sin

(
πal
N

)
sin

(
πbm
N

)
,  ≤ a,b≤ N , ()

where A and B are arbitrary constants and ξ is the propagating factor which determines
the rate of growth or decay of the errors. The necessary and sufficient condition for the
iterative method to be stable is |ξ | < .
Using () in (), the propagating factor for the Jacobi iteration method is obtained as

ξJ =
[( – τ ) cos(πb

N ) –  + τ + τ ]/[( + τ ) cos(πb
N ) +  – τ + τ ]/ cos(πa

N ) +  cos(πb
N )

 + τ  ,

 ≤ a,b ≤ N . ()

Thus, the Jacobi Iteration method is stable for those values of τ such that |ξJ | < .
Similarly, applying the Gauss-Siedal iteration method to () and assuming the error at

each grid point (l,m) at the sth iteration to be of the form (), the corresponding propa-
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gation factor ξGS is given by the equation

η – 
[
ψ + φ( – τ + τ )( – τ ) cos

(
πb
N

)]
η

+ 
[
ψ –

(
 – τ + τ )(– + τ + τ )φ –

(
 – τ ) cos(πb

N

)
φ

]
η

– φ( + τ )
(
– + τ + τ ) cos(πb

N

)
= ,  ≤ a,b≤ N , ()

where η = ξ /
GS , φ = cos( πa

N )
+τ and ψ = cos( πb

N )
+τ .

Thus, theGauss-Siedal iterationmethod is stable for those values of τ such that |ξGS| < .

5 Generalisation of the abovemethods
We now extend our methods to the system of D quasi-linear elliptic PDEs of the form:

a(i)u(i)xx + b(i)u(i)yy = f (i),  ≤ i≤ n ()

for (x, y) ∈ R, with each a(i) = a(i)(x, y,u(),u(), . . . ,u(n)), b(i) = b(i)(x, y,u(),u(), . . . ,u(n)) and
f (i) = f (i)(x, y,u(),u(), . . . ,u(n),u()x ,u()x , . . . ,u(n)x ,u()y ,u()y , . . . ,u(n)y ), subject to the Dirichlet
boundary conditions given by

u(i)(x, y) = v(i)(x, y). ()

We assume U (i)
l,m and u(i)l,m to be the exact and approximate values of u(i)(xl, ym) respec-

tively. For each i = ()n, letting f (i)l,m = f (i)(xl, ym,U ()
l,m,U

()
l,m, . . . ,U

(n)
l,m,U

()
xl,m,U

()
xl,m, . . . ,U

(n)
xl,m,

U ()
yl,m,U

()
yl,m, . . . ,U

(n)
yl,m), we set the following approximations:

U (i)
l± 

 ,m
=

(
U (i)

l±,m +U (i)
l,m

)
/, (.)

U (i)
l,m± 


=

(
U (i)

l,m± +U (i)
l,m

)
/, (.)

U (i)
xl,m =

(
U (i)

l+,m –U (i)
l–,m

)
/(h), (.)

U (i)
xl± 

 ,m
=

(±U (i)
l±,m ∓U (i)

l,m
)
/(h), (.)

U (i)
xl,m± 


=

(
U (i)

l+,m± –U (i)
l–,m± +U (i)

l+,m –U (i)
l–,m

)
/(h), (.)

U (i)
yl,m =

(
U (i)

l,m+ –U (i)
l,m–

)
/(h), (.)

U (i)
yl± 

 ,m
=

(
U (i)

l±,m+ –U (i)
l±,m– +U (i)

l,m+ –U (i)
l,m–

)
/(h), (.)

U (i)
yl,m± 


=

(±U (i)
l,m± ∓U (i)

l,m
)
/(h), (.)

U (i)
xxl,m =

(
U (i)

l+,m – U (i)
l,m +U (i)

l–,m
)
/
(
h

)
, (.)

U (i)
xxl,m± =

(
U (i)

l+,m± – U (i)
l,m± +U (i)

l–,m±
)
/
(
h

)
, (.)

U (i)
yyl,m =

(
U (i)

l,m+ – U (i)
l,m +U (i)

l,m–
)
/
(
h

)
, (.)

U (i)
yyl±,m =

(
U (i)

l±,m+ – U (i)
l±,m +U (i)

l±,m–
)
/
(
h

)
. (.)
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Define

f (i)l± 
 ,m

= f (i)
(
xl± 


, ym,U

()
l± 

 ,m
,U ()

l± 
 ,m

, . . . ,U (n)
l± 

 ,m
,U ()

xl± 
 ,m

,

U ()
xl± 

 ,m
, . . . ,U (n)

xl± 
 ,m

,U ()
yl± 

 ,m
,

U ()
yl± 

 ,m
, . . . ,U (n)

yl± 
 ,m

)
, (.)

f (i)l,m± 

= f (i)

(
xl, ym± 


,U ()

l,m± 

,U ()

l,m± 

, . . . ,U (n)

l,m± 

,U ()

xl,m± 

,

U ()
xl,m± 


, . . . ,U (n)

xl,m± 

,U ()

yl,m± 

,

U ()
yl,m± 


, . . . ,U (n)

yl,m± 


)
. (.)

Further, let

U
(i)
l,m =U (i)

l,m +
h

a(i)

(
f (i)l+ 

 ,m
+ f (i)l– 

 ,m
)
+

h

b(i)

(
f (i)l,m+ 


+ f (i)l,m– 



)

+
h



(
 –

a(i)
b(i)

)
U (i)

xxl,m +
h



(
 –

b(i)
a(i)

)
U (i)

yyl,m, (.)

U
(i)
xl,m =U (i)

xl,m +
h

a(i)

(
f (i)l+ 

 ,m
– f (i)l– 

 ,m
)
+
h


(
 –

b(i)
a(i)

)(
U (i)

yyl+,m –U (i)
yyl–,m

)

–
ha(i)
a(i)

U (i)
xxl,m –

hb(i)
a(i)

U (i)
yyl,m, (.)

U
(i)
yl,m =U (i)

yl,m +
h

b(i)

(
f (i)l,m+ 


– f (i)l,m– 



)
+
h


(
 –

a(i)
b(i)

)(
U (i)

xxl,m+ –U (i)
xxl,m–

)

–
ha(i)
b(i)

U (i)
xxl,m –

hb(i)
b(i)

U (i)
yyl,m (.)

and finally, we define

f
(i)
l,m = f (i)

(
xl, ym,U

()
l,m,U

()
l,m, . . . ,U

(n)
l,m,U

()
xl,m,U

()
xl,m, . . . ,U

(n)
xl,m,

U
()
yl,m,U

()
yl,m, . . . ,U

(n)
yl,m

)
. ()

Then, at each internal grid point (l,m), the fourth-order off-step discretization to each
differential equation of system () is given by

L
[
U (i)] ≡ [

I(i) δx + I(i) δy + I(i)
(
δxμyδy

)
+ I(i)

(
δyμxδx

)
+ I(i)

(
δxδ


y
)]
U (i)

l,m

= h
[
J (i) f (i)l+ 

 ,m
+ J (i) f (i)l– 

 ,m
+ J (i) f (i)l,m+ 


+ J (i) f (i)l,m– 


– f

(i)
l,m

]
+ T (i)

l,m;  ≤ l,m≤ N ()
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for T (i)
l,m =O(h), where we denote

K (i)
 =

(
a(i)l+,m – a(i)l–,m

)
/ha(i), K (i)

 =
(
b(i)l,m+ – b(i)l,m–

)
/hb(i),

I(i) = a(i) +


[
a(i)l+,m + a(i)l–,m + a(i)l,m+ + a(i)l,m–

]

–
(a(i)l,m+ – a(i)l,m–)(b

(i)
l,m+ – b(i)l,m–)

b(i)
–
(a(i)l+,m – a(i)l–,m)

a(i)
+O

(
h

)
,

I(i) = b(i) +


[
b(i)l+,m + b(i)l–,m + b(i)l,m+ + b(i)l,m–

]

–
(a(i)l+,m – a(i)l–,m)(b

(i)
l+,m – b(i)l–,m)

a(i)
–
(b(i)l,m+ – b(i)l,m–)

b(i)
+O

(
h

)
,

I(i) =
(a(i)l,m+ – a(i)l,m–)


–

(b(i)l,m+ – b(i)l,m–

b(i)

)
a(i) +O

(
h

)
,

I(i) =
(b(i)l+,m – b(i)l–,m)


–

(a(i)l+,m – a(i)l–,m
a(i)

)
b(i) +O

(
h

)
,

I(i) =


(
a(i) + b(i)

)
,

J (i) =  – hK (i)
 , J (i) =  + hK (i)

 , J (i) =  – hK (i)
 , J (i) =  + hK (i)

 .

After the fourth-order approximate solution to system () is determined upon solv-
ing the tri-block diagonal system of equations (), it is easy to see that the fourth-order
estimates of (∂u(i)/∂n) can be explicitly obtained using the following discretizations:

U (i)
xl,m =


h

(μxδx)U (i)
l,m +


ha(i)

((
a(i)l+,m – a(i)l–,m

)
δx +

(
b(i)l+,m – b(i)l–,m

)
δy

)
U (i)

l,m

+
b(i)

ha(i)
(μxδx)δyU

(i)
l,m

–
h

a(i)

(
f (i)l+ 

 ,m
– f (i)l– 

 ,m
)
+ T (i,x)

l,m ,  ≤ l,m≤ N , (.)

U (i)
yl,m =


h

(μyδy)U (i)
l,m +


hb(i)

((
a(i)l,m+ – a(i)l,m–

)
δx +

(
b(i)l,m+ – b(i)l,m–

)
δy

)
U (i)

l,m

+
a(i)

hb(i)
(μyδy)δxU

(i)
l,m

–
h

b(i)

(
f (i)l,m+ 


– f (i)l,m– 



)
+ T (i,y)

l,m ,  ≤ l,m≤ N , (.)

where T (i,x)
l,m and T (i,y)

l,m are of O(h).

6 Computational implementation
We implement the proposed method over three linear and seven nonlinear problems, in-
cluding a quasi-linear problem, in Cartesian and polar coordinates. The exact solutions of
the problems are given. The right-hand side functions and the Dirichlet boundary condi-
tions are determined using the exact solutions. The system of linear difference equations is

http://www.advancesindifferenceequations.com/content/2013/1/223


Mohanty and Setia Advances in Difference Equations 2013, 2013:223 Page 19 of 29
http://www.advancesindifferenceequations.com/content/2013/1/223

solved using the block iterative method and the system of nonlinear difference equations
by the Newton-Raphsonmethod (see Hageman and Young [], Kelly [] and Saad []).
The iterations are terminated once the absolute error tolerance ≤– has been reached.
All the computations are done using MATLAB programming language.

Example  (Convection-diffusion equation)

uxx + uyy = βux,  < x, y <  ()

subject to the Dirichlet boundary conditions given by

u(x, ) = ,

u(x, ) =  for  < x < ,

u(, y) = sinπy,

u(, y) =  sinπy for  < y < .

The solution u to the above equation and its first-order derivatives ux and uy at the point
(., .) are listed in Table  for β =  and . Figure  gives the plot of the numerical
solution to Example .

Example  (Poisson’s equation in r-θ plane)

urr +
α

r
ur +


r
uθθ =G(r, θ ),  < r, θ < . ()

At α =  and , the above equation represents D Poisson’s equation in cylindrical and
spherical coordinates, respectively. The exact solution is u = r cos(πθ ).
Themaximum absolute errors (MAE) in u, ux and uy are listed in Table  for α =  and .

Figure  gives the plots of the exact and numerical solutions to Example .

Example  (Poisson’s equation in r-z plane)

urr +
α

r
ur + uzz =G(r, z),  < r, z < . ()

Table 1 Example 1: convection diffusion equation (51) at the point (0.5, 0.5)

h Proposed O(h4)-methods O(h2)-Methods
β = 10 β = 50 β = 10 β = 50

1/8 u 6.4316(–01) 9.0714(–01) 6.4284(–01) Diverges
ux –5.0091(–01) –1.8812(–01) –5.1892(–01) Diverges
uy 1.0190(–12) 1.8459(–13) –1.1529(–12) Diverges

1/16 u 6.4286(–01) 9.0637(–01) 6.4275(–01) 9.0666(–01)
ux –5.0104(–01) –1.7821(–01) –5.0464(–01) –1.7790(–01)
uy 2.2231(–12) 4.5889(–15) –3.1806(–12) 3.4461(–13)

1/32 u 6.4284(–01) 9.0637(–01) 6.4281(–01) 9.0644(–01)
ux –5.0105(–01) –1.7821(–01) –5.0190(–01) –1.7808(–01)
uy 4.4296(–12) 6.8094(–15) –6.4109(–12) 1.7764(–15)

1/64 u 6.4284(–01) 9.0637(–01) 6.4283(–01) 9.0639(–01)
ux –5.0105(–01) –1.7821(–01) –5.0126(–01) –1.7818(–01)
uy 8.5484(–12) 4.7370(–15) –1.2545(–11) 1.4211(–14)
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Figure 3 Numerical solutions of 2D convection diffusion equation at (0.5, 0.5).

Table 2 Example 2: Poisson’s equations (52) in r-θ plane

h Proposed O(h4)-methods O(h4)-Methods discussed
in [16, 17]

α = 1 α = 2 α = 1 α = 2

1/8 u 2.3294(–06) 4.6091(–06) 4.2944(–06) 6.8672(–06)
ur 8.1179(–06) 1.6529(–05) 8.8246(–06) 4.2834(–05)
uθ 3.9153(–04) 6.2317(–04) 4.4823(–04) 8.6298(–04)

1/16 u 1.4731(–07) 2.9153(–07) 2.7278(–07) 4.4629(–06)
ur 9.7119(–07) 1.8818(–06) 8.1105(–07) 3.0421(–06)
uθ 2.8537(–05) 4.5514(–05) 3.2188(–05) 6.3244(–05)

1/32 u 9.2898(–09) 1.8373(–08) 1.8642(–08) 3.2187(–07)
ur 7.9264(–08) 1.5078(–07) 7.0243(–08) 2.2424(–07)
uθ 1.9185(–06) 3.0633(–06) 2.3156(–06) 4.4341(–06)

1/64 u 5.8207(–10) 1.1480(–09) 1.1022(–09) 1.9068(–08)
ur 5.5941(–09) 1.0553(–08) 5.8124(–09) 1.4172(–08)
uθ 1.2425(–07) 1.9850(–07) 1.5510(–07) 2.7012(–07)

Figure 4 Exact and numerical solutions of 2D Poisson’s equation in polar coordinates.
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Table 3 Example 3: Poisson’s equations (53) in r-z plane

h Proposed O(h4)-methods O(h4)-Methods discussed
in [16, 17]

α = 1 α = 2 α = 1 α = 2

1/8 u 1.6604(–06) 2.8030(–06) 2.8604(–06) 4.2166(–06)
ur 1.0721(–05) 1.0390(–05) 2.1444(–05) 1.9833(–05)
uz 2.3486(–05) 3.6014(–05) 3.6218(–05) 4.8412(–05)

1/16 u 1.0530(–07) 1.7649(–07) 1.9884(–07) 2.6261(–07)
ur 8.1375(–07) 8.1496(–07) 1.1721(–06) 1.0104(–06)
uz 1.6895(–06) 2.5690(–06) 2.7520(–06) 3.8224(–06)

1/32 u 6.6915(–09) 1.1082(–08) 1.1645(–08) 1.6224(–08)
ur 5.6905(–08) 5.8312(–08) 8.2169(–07) 7.6186(–08)
uz 1.1430(–07) 1.7298(–07) 1.6644(–07) 2.3242(–07)

1/64 u 4.2259(–10) 6.9292(–10) 7.0120(–10) 8.8844(–10)
ur 4.5970(–09) 7.3664(–09) 5.0210(–08) 4.5458(–09)
uz 7.4703(–09) 1.1278(–08) 8.9744(–09) 1.4242(–08)

Figure 5 Exact and numerical solutions of 2D Poisson’s equation with cylindrical symmetry.

At α = , the above represents the two-dimensional Poisson’s equation in cylindrical
polar coordinates in r-z plane. The exact solution is u = cosh r cosh z.
The MAE in u, ux and uy are listed in Table  for α =  and . Figure  gives the plots of

the exact and numerical solutions to Example .

Example  (Burger’s equation)

ε(uxx + uyy) = u(ux + uy) + g(x, y),  < x, y < . ()

The exact solution is u = ex sin(πy
 ). The MAE in u, ux and uy are listed in Table  for

ε = ., . and ..

Example  (Nonlinear elliptic equation)

(
 + x

)
uxx +

(
 + y

)
uyy = αu(ux + uy) + f (x, y),  < x, y <  ()

with the exact solution u = ex sin(πy). The MAE for u, ux and uy are given in Table  for
various values of α.
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Table 4 Example 4: Burger’s equation (54)

h Proposed O(h4)-methods O(h4)-Methods discussed in [16, 17]
ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.1 ε = 0.01 ε = 0.001

1/16 u 2.0616(–05) 2.4785(–04) 2.5130(–03) 4.4185(–05) 4.8266(–04) 3.9282(–03)
ux 1.2837(–04) 2.5155(–03) 1.5332(–02) 2.5208(–04) 2.8427(–03) 2.5834(–02)
uy 1.6447(–04) 1.3841(–03) 1.5891(–02) 3.0162(–04) 2.7129(–03) 2.4345(–02)

1/32 u 1.2695(–06) 1.7462(–05) 1.4391(–04) 2.9287(–06) 3.4324(–05) 2.8411(–04)
ux 1.6905(–05) 2.0866(–04) 1.6390(–03) 1.9812(–05) 2.2186(–04) 2.6928(–03)
uy 1.1825(–05) 8.9167(–05) 1.0726(–03) 2.1441(–05) 2.0412(–04) 1.8184(–03)

1/64 u 7.9012(–08) 1.1296(–06) 1.0375(–05) 1.8119(–07) 2.1204(–06) 2.1686(–05)
ux 1.5530(–06) 1.4118(–05) 2.4812(–04) 1.2124(–06) 1.3016(–05) 2.8928(–04)
uy 8.0908(–07) 6.2655(–06) 5.4500(–05) 1.2888(–06) 1.2162(–05) 1.1421(–04)

Table 5 Example 5: nonlinear equation (55)

h Proposed O(h4)-methods O(h4)-Methods discussed in [16, 17]
α = 1 α = 10 α = 25 α = 1 α = 10 α = 25

1/16 u 6.6498(–06) 1.4642(–04) 4.8477(–04) 7.6488(–06) 2.4122(–04) 5.6678(–04)
ux 9.4134(–05) 1.3702(–03) 3.1661(–03) 1.1012(–04) 2.3816(–03) 4.0465(–03)
uy 3.0028(–04) 2.5306(–03) 5.9721(–03) 3.8149(–04) 3.6296(–03) 6.8764(–03)

1/32 u 4.1944(–07) 9.1279(–06) 2.9675(–05) 4.8894(–07) 1.5158(–03) 3.6654(–05)
ux 6.6876(–06) 1.3007(–04) 4.3732(–04) 7.2724(–06) 2.2244(–04) 3.8975(–04)
uy 2.0286(–05) 1.7751(–04) 4.1266(–04) 2.6261(–05) 2.4890(–04) 4.8243(–04)

1/64 u 2.6367(–08) 5.6914(–07) 1.8430(–06) 3.0189(–08) 9.2284(–07) 2.2056(–06)
ux 4.4521(–07) 1.0153(–05) 4.3173(–05) 4.8484(–07) 1.8446(–05) 3.6698(–05)
uy 1.3205(–06) 1.1963(–05) 2.8454(–05) 1.6185(–06) 1.5177(–05) 3.0125(–05)

Table 6 Example 6: quasi-linear equation (56)

h Proposed O(h4)-methods O(h4)-Methods discussed in [16, 17]
α = 1 α = 5 α = 10 α = 1 α = 5 α = 10

1/16 u 2.5631(–05) 3.8351(–05) 3.0062(–04) 4.5664(–05) 5.8820(–05) 4.9462(–04)
ux 8.7514(–04) 7.1537(–04) 2.0151(–03) 1.1016(–03) 9.1939(–04) 4.0466(–03)
uy 2.7052(–03) 2.0435(–03) 1.5589(–03) 4.8022(–03) 3.9944(–03) 3.6699(–03)

1/32 u 1.7057(–06) 2.2772(–06) 1.8240(–05) 3.3186(–06) 4.6368(–06) 3.6864(–05)
ux 6.4279(–05) 5.7402(–05) 1.7046(–04) 7.6298(–05) 7.8946(–05) 2.7284(–04)
uy 1.9020(–04) 1.3883(–04) 1.0118(–04) 3.5122(–04) 2.6674(–04) 2.4468(–04)

1/64 u 1.0974(–07) 1.4068(–07) 1.1322(–06) 1.9961(–07) 2.8254(–07) 2.2892(–06)
ux 4.4614(–06) 3.9908(–06) 1.2621(–05) 4.4324(–06) 4.5540(–06) 1.6884(–05)
uy 1.2825(–05) 9.0687(–06) 6.3754(–06) 2.3255(–05) 1.6243(–05) 1.4882(–05)

Example  (Quasi-linear elliptic equation)

uxx +
(
 + u

)
uyy = αu(ux + uy) + f (x, y),  < x, y < . ()

The exact solution is u = ex cos(πy). The MAE in u, ux and uy are tabulated in Table .

Example  (D steady-state Navier Stokes’ model equations in Cartesian coordinates)


Re

(uxx + uyy) = uux + vuy + f (x, y),  < x, y < , (.)


Re

(vxx + vyy) = uvx + vvy + g(x, y),  < x, y < , (.)
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Table 7 Example 7: Navier Stokes’ model equations (57.1)-(57.2) in Cartesian coordinates

h Proposed O(h4)-methods O(h4)-Methods discussed in [16, 17]
Re = 10 Re = 10 Re = 10 Re = 10 Re = 10 Re = 10

1/16 u 3.8170(–05) 7.9117(–04) 1.1370(–02) 4.2172(–05) 8.1235(–04) 1.4212(–02)
v 2.0205(–05) 8.1179(–04) 1.6068(–02) 2.3785(–05) 8.4455(–04) 1.9872(–02)
ux 9.4014(–04) 9.2254(–03) 4.4590(–01) 9.5679(–04) 9.6926(–03) 4.9810(–01)
vx 3.5771(–04) 4.5339(–03) 1.1926(–01) 3.8239(–04) 4.9830(–03) 1.5879(–01)
uy 3.8631(–04) 4.4359(–03) 1.3652(–01) 4.1432(–04) 4.8792(–03) 1.7652(–01)
vy 1.0075(–03) 2.4480(–02) 7.1490(–01) 1.4087(–03) 2.8880(–02) 7.5451(–01)

1/32 u 2.4148(–06) 4.4070(–05) 6.8308(–04) 2.7868(–06) 4.7602(–05) 7.6880(–04)
v 1.2680(–06) 4.6982(–05) 1.9517(–03) 1.5742(–06) 4.9852(–05) 1.9702(–03)
ux 6.2750(–05) 8.3740(–04) 1.5182(–02) 6.4690(–05) 8.6220(–04) 1.8886(–02)
vx 2.5272(–05) 2.9250(–04) 5.9531(–03) 2.7160(–05) 3.2280(–04) 6.6122(–03)
uy 2.4588(–05) 3.9206(–04) 1.5925(–02) 2.7893(–05) 4.2185(–04) 1.6120(–02)
vy 6.3855(–05) 1.5382(–03) 9.7499(–02) 6.7984(–05) 1.8790(–03) 9.8242(–02)

1/64 u 1.5149(–07) 2.6562(–06) 5.3901(–05) 1.7044(–07) 2.9885(–06) 5.8280(–05)
v 7.9504(–08) 3.0175(–06) 1.0199(–04) 8.4324(–08) 3.3046(–06) 1.2692(–04)
ux 4.0049(–06) 6.1189(–05) 1.8824(–03) 4.0049(–06) 6.2772(–05) 2.1982(–03)
vx 1.6940(–06) 4.2246(–05) 4.0036(–04) 1.6944(–06) 4.4468(–05) 4.3322(–04)
uy 1.5415(–06) 3.1024(–05) 1.1633(–03) 1.5416(–06) 3.3386(–05) 1.2284(–03)
vy 4.0005(–06) 9.5734(–05) 6.4802(–03) 4.0003(–06) 1.1248(–04) 6.5748(–03)

where Re >  is a constant called the Reynolds number. The exact solution is u =
sin(πx) sin(πy), v = cos(πx) cos(πy). The MAE in u, v, ux, vx, uy and vy are tabulated in
Table  for Re = ,  and . Figure  gives the plots of the exact and numerical solu-
tions.

Example  (D steady-state Navier Stokes’ model equations in polar coordinates)
(a) In spherical polar coordinates in r-θ plane:


Re

(
urr +


r
uθθ +


r
ur +

cot θ

r
uθ –


r
vθ –


r
u –

 cot θ
r

v
)

= uur +

r
vuθ –


r
v +H(r, θ ),  < r, θ < , (.)


Re

(
vrr +


r
vθθ +


r
vr +

cot θ

r
vθ +


r
uθ –

cos ecθ
r

v
)

= uvr +

r
vvθ +


r
uv + I(r, θ ),  < r, θ < . (.)

The exact solution is given by u = r cos θ , v = –r sin θ .
(b) In cylindrical polar coordinates in r-θ plane:


Re

(
urr +


r
uθθ +


r
ur –


r
vθ –


r
u
)

= uur +

r
vuθ –


r
v +H(r, θ ),  < r, θ < , (.)


Re

(
vrr +


r
vθθ +


r
vr +


r
uθ –


r
v
)

= uvr +

r
vvθ +


r
uv + I(r, θ ),  < r, θ < . (.)

http://www.advancesindifferenceequations.com/content/2013/1/223


Mohanty and Setia Advances in Difference Equations 2013, 2013:223 Page 24 of 29
http://www.advancesindifferenceequations.com/content/2013/1/223

Figure 6 Exact and numerical solutions of the 2D Navier Stokes’ model equations in Cartesian
coordinates.

The exact solution is given by u = r sin θ , v = r cos θ .
(c) In cylindrical polar coordinates in r-z plane:


Re

(
urr +


r
ur + uzz –


r
u
)
= uur + vuz +H(r, z),  < r, z < , (.)


Re

(
vrr +


r
vr + vzz

)
= uvr + vvz + I(r, z),  < r, z < . (.)

The exact solution is given by u = r sinh z, v = –r cosh z.
Here Re >  is called the Reynolds number. TheMAE for u, v and their first order normal

derivatives are tabulated in Tables - for various values Re. Figures , ,  give a com-
parison of the plots of the exact and the numerical solutions to Example (a), (b) and (c)
respectively.

7 Concluding remarks
The existing fourth-order nine-point difference methods of [] for the numerical solu-
tion of the system of second-order quasi-linear D elliptic equations () require a special
treatment to handle the numerical scheme at singular points. This is because of the ap-
pearance of terms, for instance, /(rl–) for problems in polar coordinates, which would
require modification at the singular point l =  since r = . Also, these methods fail to
compute if it is difficult to differentiate the singular coefficients twice. In this article, using

http://www.advancesindifferenceequations.com/content/2013/1/223


Mohanty and Setia Advances in Difference Equations 2013, 2013:223 Page 25 of 29
http://www.advancesindifferenceequations.com/content/2013/1/223

Table 8 Example 8(a): Navier-Stokes’ model equations (58.1)-(58.2) in spherical polar
coordinates in r-θ plane

h Proposed O(h4)-methods O(h4)-Methods discussed in [16, 17]
Re = 10 Re = 100 Re = 500 Re = 10 Re = 100 Re = 500

1/4 u 4.0350(–03) 4.7668(–02) 1.0430(–01) 4.6880(–03) 5.3210(–02) 2.1678(–01)
v 2.8464(–03) 2.4988(–02) 8.0180(–02) 3.6584(–03) 3.0824(–02) 8.8249(–02)
ur 1.9901(–01) 6.1644(–01) 3.5356(+00) 2.7257(–01) 6.9552(–01) 4.3682(+00)
vr 4.8578(–02) 2.7314(–01) 2.0524(+00) 5.6682(–02) 3.5231(–01) 2.8934(+00)
uθ 1.4393(–02) 3.7298(–01) 2.0017(+00) 2.2692(–02) 4.5332(–01) 2.8126(+00)
vθ 1.1827(–02) 1.9936(–01) 1.0787(+00) 1.9770(–02) 2.7658(–01) 1.8655(+00)

1/8 u 4.5574(–04) 6.9580(–03) 2.4922(–02) 5.0324(–04) 7.3214(–03) 2.9911(–02)
v 1.9624(–04) 2.9897(–03) 1.5191(–02) 2.4454(–04) 3.4789(–03) 1.9923(–02)
ur 5.2907(–02) 8.0040(–02) 3.8376(–01) 5.7709(–02) 8.5140(–02) 4.3673(–01)
vr 1.2219(–02) 5.8063(–02) 3.1326(–01) 1.7912(–02) 6.3360(–02) 3.6623(–01)
uθ 1.7268(–03) 3.4954(–02) 2.1949(–01) 2.2862(–03) 3.9459(–02) 2.6444(–01)
vθ 1.5710(–03) 3.6024(–02) 2.0974(–01) 2.0017(–03) 4.1420(–02) 2.5479(–01)

1/16 u 2.6553(–05) 6.3235(–04) 2.4796(–03) 3.0355(–05) 6.6532(–04) 2.7697(–03)
v 1.2965(–05) 3.0081(–04) 1.0288(–03) 1.5569(–05) 3.3180(–04) 1.3288(–03)
ur 1.5887(–02) 1.5849(–02) 3.2901(–02) 1.9788(–02) 1.8948(–02) 3.5109(–02)
vr 3.1718(–03) 5.0558(–03) 3.4203(–02) 3.4817(–03) 5.3855(–03) 3.7302(–02)
uθ 1.2981(–04) 3.3899(–03) 2.5863(–02) 1.5189(–04) 3.6998(–03) 2.8368(–02)
vθ 3.2230(–04) 2.5193(–03) 1.7076(–02) 3.5032(–04) 2.8391(–03) 2.0670(–02)

Table 9 Example 8(b): Navier Stokes’ model equations (59.1)-(59.2) in cylindrical polar
coordinates in r-θ plane

h Proposed O(h4)-methods O(h4)-Methods discussed in [16, 17]
Re = 10 Re = 102 Re = 103 Re = 10 Re = 102 Re = 103

1/8 u 4.4475(–04) 6.6056(–03) 7.5996(–03) 5.2574(–04) 7.4650(–03) 8.3699(–03)
v 1.0410(–03) 9.8564(–03) 2.0399(–02) 1.8014(–03) 1.1565(–02) 2.8993(–02)
ur 1.7262(–02) 1.8388(–01) 2.1841(+00) 2.5161(–02) 2.6883(–01) 2.9148(+00)
vr 4.9755(–03) 6.1014(–02) 7.2226(–01) 5.7557(–03) 6.9410(–02) 8.0622(–01)
uθ 1.2928(–03) 3.3229(–02) 4.5802(–01) 2.0829(–03) 4.1922(–02) 5.3208(–01)
vθ 3.9255(–03) 5.8311(–02) 7.3893(–01) 4.7552(–03) 6.6113(–02) 8.1398(–01)

1/16 u 2.9587(–05) 8.6235(–04) 1.9389(–03) 3.2785(–05) 9.1532(–04) 2.4983(–03)
v 6.6121(–05) 8.9744(–04) 3.6708(–03) 1.1060(–04) 9.3447(–04) 4.1807(–03)
ur 3.9255(–03) 1.2938(–02) 1.6487(–01) 4.4552(–03) 1.7839(–02) 2.1784(–01)
vr 1.2397(–03) 2.3329(–03) 1.3852(–01) 1.7793(–03) 2.8923(–03) 1.8258(–01)
uθ 2.0856(–04) 4.2820(–03) 2.4711(–02) 2.5658(–04) 4.6028(–03) 2.9117(–02)
vθ 2.9023(–04) 3.8973(–03) 5.1940(–02) 3.4320(–04) 4.3379(–03) 5.5094(–02)

1/32 u 1.9121(–06) 6.3020(–05) 3.8183(–04) 2.0111(–06) 6.7022(–05) 4.1381(–04)
v 4.1297(–06) 5.7202(–05) 4.9547(–04) 6.8267(–06) 6.0204(–05) 5.2745(–04)
ur 1.0017(–03) 1.0079(–03) 1.0309(–02) 1.3711(–03) 1.3978(–03) 1.3903(–02)
vr 3.1016(–04) 5.6969(–04) 1.1942(–02) 3.4512(–04) 5.9868(–04) 1.4249(–02)
uθ 2.0374(–05) 3.4688(–04) 4.4415(–03) 2.3298(–05) 3.7896(–04) 4.7514(–03)
vθ 2.4112(–05) 2.4622(–04) 3.2665(–03) 2.7452(–05) 2.7225(–04) 3.5560(–03)

the same number of grid points, we have derived a new stable method of accuracy four,
which instead involves the terms like /(rl–/), and hence is more convenient to imple-
ment at singular points. Thus, the proposed numerical method is directly applicable to
an elliptic equation in polar coordinates, and we do not require any fictitious points for
computation, which is the main highlight of our work. We have also derived fourth-order
compact difference methods for the normal derivatives of the solution to the concerned
problem. Also, we have compared our methods with the existing fourth-order numerical
methods and found that our methods produce better results.
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Table 10 Example 8(c): Navier-Stokes’ model equations (60.1)-(60.2) in cylindrical polar
coordinates in r-z plane

h Proposed O(h4)-methods O(h4)-Methods discussed in [16, 17]
Re = 10 Re = 102 Re = 103 Re = 10 Re = 102 Re = 103

1/8 u 1.2914(–04) 1.1797(–03) 1.1198(–03) 2.0419(–04) 1.9997(–03) 1.9891(–03)
v 2.4545(–04) 1.4028(–03) 2.5592(–03) 3.2445(–04) 2.1820(–03) 3.2295(–03)
ur 6.7822(–03) 5.7549(–02) 5.6655(–01) 7.5228(–03) 6.5945(–02) 6.4556(–01)
vr 6.1035(–03) 5.5251(–02) 5.3119(–01) 6.8530(–03) 6.3152(–02) 6.1911(–01)
uz 4.7567(–04) 8.1710(–03) 8.9576(–02) 5.5765(–04) 8.8017(–03) 9.6675(–02)
vz 1.0385(–03) 1.8142(–02) 2.0159(–01) 1.4583(–03) 2.6241(–02) 2.8951(–01)

1/16 u 8.8980(–06) 2.0869(–04) 3.3219(–04) 1.2192(–05) 2.5968(–04) 3.8912(–04)
v 1.4720(–05) 1.6494(–04) 4.2371(–04) 1.9882(–05) 2.1594(–04) 4.7173(–04)
ur 5.4068(–04) 5.6217(–03) 4.8410(–02) 6.2860(–04) 6.1712(–03) 5.3014(–02)
vr 5.1521(–04) 4.6938(–03) 4.4798(–02) 5.6125(–04) 5.1839(–03) 4.9897(–02)
uz 9.6347(–05) 1.0593(–03) 7.7984(–03) 1.0743(–04) 1.5395(–03) 8.2489(–03)
vz 8.3467(–05) 1.1512(–03) 1.5110(–02) 8.8634(–05) 1.6215(–03) 2.0011(–02)

1/32 u 1.1626(–06) 1.6762(–05) 8.1323(–05) 7.4808(–07) 1.9267(–05) 8.4323(–05)
v 9.0095(–07) 8.7775(–06) 8.2463(–05) 1.1469(–06) 9.0577(–06) 8.5364(–05)
ur 1.1979(–04) 5.7479(–04) 5.8667(–03) 1.3778(–04) 6.0974(–04) 6.1764(–03)
vr 3.7573(–05) 3.4598(–04) 3.3449(–03) 4.0375(–05) 3.7895(–04) 3.6947(–03)
uz 1.9249(–05) 1.7590(–04) 4.3780(–04) 2.2942(–05) 2.0095(–04) 4.6086(–04)
vz 1.0944(–05) 8.8478(–05) 8.8297(–04) 1.2448(–05) 9.1874(–05) 9.1792(–04)

Figure 7 Exact and numerical solutions of Navier Stokes’ model equations in spherical polar
coordinates in r-θ plane.

http://www.advancesindifferenceequations.com/content/2013/1/223


Mohanty and Setia Advances in Difference Equations 2013, 2013:223 Page 27 of 29
http://www.advancesindifferenceequations.com/content/2013/1/223

Figure 8 Exact and numerical solutions of Navier Stokes’ model equations in cylindrical polar
coordinates in r-θ plane.
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Figure 9 Exact and numerical solutions of Navier Stokes’ model equations in cylindrical polar
coordinates in r-z plane.
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