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Abstract
In this paper we use the idea of logarithmic density to define the concept of
logarithmic statistical convergence. We find the relations of logarithmic statistical
convergence with statistical convergence, statistical summability (H, 1) introduced by
Móricz (Analysis 24:127-145, 2004) and [H, 1]q-summability. We also give subsequence
characterization of statistical summability (H, 1).
MSC: 40A05; 40A30

Keywords: asymptotic density; logarithmic density; statistical convergence;
statistical summability (H, 1); logarithmic statistical convergence

1 Introduction and preliminaries
The concept of statistical summability (H , ), which is a generalization of statistical con-
vergence due to Fast [], has recently been introduced by Móricz []. In this paper we
use the idea of logarithmic density to define the concept of logarithmic statistical conver-
gence. We find its relation with statistical convergence and statistical summability (H , ).
We further define [H , ]q-summability and establish some inclusion relations.

Definition . Let N be the set of all natural numbers and let χE denote the charac-
teristic function of E ⊆ N. Put dn(E) = 

n
∑n

k= χE(k) and δn(E) = 
ln

∑n
k=

χE(k)
k for n ∈ N,

where ln =
∑n

k= /k (n = , , , . . .). The numbers d(E) = lim infn→∞ dn(E) and d̄(E) =
lim supn→∞ dn(E) are called the lower andupper asymptotic densityofE, respectively. Simi-
larly, the numbers δ(E) = lim infn→∞ δn(E) and δ̄(E) = limsupn→∞ δn(E) are called the lower
and upper logarithmic density of E, respectively. If d(E) = d̄(E) = d(E), then d(E) is called
the asymptotic density of E (δ(E) = δ̄(E) = δln(E) is called the logarithmic density of E, re-
spectively).
Note that for k = , ln =

∑n
k= /k = n and hence δln(E) reduces to d(E).

Now recall the concept of statistical convergence of real sequences (see Fast [] and
Fridy []).

Definition . A sequence x = (xk) is said to be statistically convergent to L if for every
ε > , d({k : |xk – L| ≥ ε}) = . That is,

lim
n


n

∣∣{k ≤ n : |xk – L| ≥ ε
}∣∣ = .
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Several extensions, variants and generalizations of this notion have been investigated by
various authors, namely [, –].

2 Logarithmic statistical convergence
In this section we define the logarithmic statistical convergence and [H , ]q-summability
and establish some inclusion relations.

Definition . A sequence x = (xk) is said to be logarithmic statistically convergent to L if
for every ε > , the set {k : |xk – L| ≥ ε} has logarithmic density zero. That is,

lim
n


ln

∣∣∣∣
{
k ≤ n :


k
|xk – L| ≥ ε

}∣∣∣∣ = . (.)

In this case we write stln-limx = L and we denote the set of all logarithmic statistically
convergent sequences by stln.

Remark . One can say that logarithmic statistical convergence is a special case of
weighted statistical convergence [] if pk = 

k . But this is not exactly true, since for
pk = 

k , Pn =
∑n

k= pk =
∑n

k= /k ≈ logn (n = , , , . . .), and consequently, the definition
of weighted statistical convergence gives that limn


ln |{k ≤ ln ≈ logn : 

k |xk – L| ≥ ε}| = .
So, one can see the difference between this and (.), i.e., in (.) the enclosed set has bigger
cardinality.

Definition . Let τn := l–n
∑n

k= xk/k, where ln =
∑n

k= /k ≈ logn (n = , , , . . .). We
say that x = (xk) is (H , )-summable to L if the sequence τ = (τn) converges to L, i.e.,
(H , )-limx = L.
If k =  then ln =

∑n
k= /k = n, and (H , )-summability is reduced to (C, )-summability.

Definition . A sequence x = (xk) is said to be [H , ]q-summable ( < q < ∞) to the limit
L if limn


ln

∑n
k=


k |xk – L|q = , and we write it as xk → L[H , ]q. In this case L is called the

[H , ]q-limit of x.
Let q = . If k =  then ln =

∑n
k= /k = n, [H , ]q-summability is reduced to strong (C, )-

summability. Also, [H , ]q-summability is a special case of [N̄ ,pn]q-summability (cf. [])
for pk = 

k .

Recently, Móricz [] has defined the concept of statistical summability (H , ) as follows.

Definition . A sequence x = (xk) is said to be statistically summable (H , ) to L if the
sequence τ = (τn) is statistically convergent to L, i.e., st-lim τ = L =H(st)-limx. We denote
by H(st) the set of all sequences which are statistically summable (H , ) and we call such
sequences statistically (H , )-summable sequences.

Remark . If x = (xk) is bounded, then st-limk→∞ xk = L implies (C, )-limk→∞ xk = L
(see []). The converse is obviously not true, e.g., x = (, , , , . . .) is (C, )-summable to 


but not statistically convergent. However, for bounded sequences, statistical convergence
to some number is equivalent to strong Cesàro summability to the same number. But for
logarithmic statistical convergence the situation is different (see []).
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Theorem . Statistical convergence implies logarithmic statistical convergence but con-
verse need not be true.

Proof It is well known that for each E ⊆ N, d(E) ≤ δ(E) ≤ δ̄(E) ≤ d̄(E) (see [], pp.-,
pp.-). Hence if d(E) exists, then also δln(E) exists and d(E) = δln(E). Hence statistical
convergence implies logarithmic statistical convergence.
Take Ek = {kk + ,kk + , . . . ,kk+} (k ∈ N) and E =

⋃∞
k= Ek . If E(n) = dn(E) for n ∈ N,

then

d̄(E)≥ lim sup
k→∞

E(kk+)
kk+

≥ lim sup
k→∞

kk+ – kk

kk+
= .

Hence d̄(E) = .
Since

∑
j∈En


j = lnk +O( 

kk
) (k ∈ N, k ≥ ), we get

δ̄(E)≤ lim
n→∞

∑n
k= lnk +O()∑nn+

j=

j

≤ lim
n lnn +O()

(n + ) lnn +O()
= .

Hence δln(E) =  and consequently d(E) = , i.e., d(E) does not exist. Define the sequence
x = (xk) by

xk =

{
 if k ∈ E,
 if k ∈N \ E.

Since δln(E) = , we have stln-limn→∞ xn = . But (C, )-limn→∞ xn does not exist because

n
∑n

m= xm = E(n)
n (n ∈N) and hence st-limn→∞ xn does not exist.

This completes the proof. �

3 Main results
In the following theorem we establish the relation between logarithmic statistical conver-
gence and Móricz’s statistical summability (H , ).

Theorem . If a sequence x = (xk) is bounded and logarithmic statistically convergent to
L then it is statistically summable (H , ) to L, but not conversely.

Proof Let x = (xk) be bounded and logarithmic statistically convergent to L. Write Kε :=
{k ∈ N : 

k |xk – L| ≥ ε}. Then

|τn – L| =
∣∣∣∣∣l–n

n∑
k=

xk/k – L

∣∣∣∣∣ =
∣∣∣∣∣l–n

n∑
k=


k
(xk – L)

∣∣∣∣∣ ≤ l–n
n∑
k=


k
|xk – L|

≤ l–n
∑
k∈Kε

|xk – L| ≤ l–n
(
sup
k

|xk – L|
)
Kε → 

as n → ∞, which implies that τn → L as n → ∞. That is, x is (H , )-summable to L and
hence statistically summable (H , ) to L.
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For converse, we consider the special case when k = , then ln = n as above. Consider the
sequence x = (xk) defined by

xk =

{
 if k is odd,
 if k is even.

Of course this sequence is not logarithmic statistically convergent. On the other hand, x
is (H , )-summable to  and hence statistically summable (H , ) to .
This completes the proof of the theorem. �

Remark . The above theorem is analogous to Theorem . of [] but this holds for any
bounded sequence.

In the next result we establish the inclusion relation between logarithmic statistical con-
vergence and [H , ]q-summability.

Theorem . (a) If  < q < ∞ and a sequence x = (xk) is [H , ]q-summable to the limit L,
then it is logarithmic statistically convergent to L.
(b) If (xk) is bounded and logarithmic statistically convergent to L, then xk → L[H , ]q.

Proof (a) If  < q < ∞ and xk → L[H , ]q, then

 ← l–n
n∑
k=


k
|xk – L|q ≥ l–n

n∑
k=|xk/k–L|≥ε


k
|xk – L|q

≥ εq

ln
|Kε |

as n→ ∞. That is, limn→∞ 
ln |Kε | =  and so δln(Kε) = , whereKε := {k ≤ n : 

k |xk –L| ≥ ε}.
Hence x = (xk) is logarithmic statistically convergent to L.
(b) Suppose that x = (xk) is bounded and logarithmic statistically convergent to L. Then,

for ε > , we have δln(Kε) = . Since x ∈ l∞, there exists M >  such that |xk – L| ≤ M
(k = , , . . .). We have

l–n
n∑
k=


k
|xk – L|q = 

ln

n∑
k=
k /∈Kε


k
|xk – L|q + 

ln

n∑
k=
k∈Kε


k
|xk – L|q = S(n) + S(n),

where

S(n) =

ln

n∑
k=
k /∈Kε


k
|xk – L|q and S(n) =


ln

n∑
k=
k∈Kε


k
|xk – L|q.

Now if k /∈ Kε then S(n) < εq. For k ∈ Kε , we have

S(n) ≤
(
sup |xk – L|)(|Kε |/ln

) ≤ M|Kε |/ln → 

as n→ ∞, since δln(Kε) = . Hence xk → L[H , ]q.
This completes the proof of the theorem. �
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Remark . The above theorem is analogous to Theorem . of [] but with less restric-
tions on the sequence x = (xk).

In the next result we characterize statistical summability (H , ) through the (H , )-
summable subsequences.

Theorem . A sequence x = (xk) is statistically summable (H , ) to L if and only if there
exists a set K = {k < k < · · · < kn < · · · } ⊆N such that δ(K) =  and (H , )-limxkn = L.

Proof Suppose that there exists a set K = {k < k < · · · < kn < · · · } ⊆ N such that δ(K) = 
and (H , )- limxkn = L. Then there is a positive integer N such that for n >N ,

|τn – L| < ε. (.)

Put Kε := {n ∈ N : |τkn – L| ≥ ε} and K ′ = {kN+,kN+, . . .}. Then δ(K ′) =  and Kε ⊆N–K ′,
which implies that δ(Kε) = . Hence x = (xk) is statistically summable (H , ) to L.
Conversely, let x = (xk) be statistically summable (H , ) to L. For r = , , , . . . , put Kr :=

{j ∈N : |τkj – L| ≥ /r} andMr := {j ∈ N : |τkj – L| < /r}. Then δ(Kr) =  and

M ⊃M ⊃ · · · ⊃Mi ⊃Mi+ ⊃ · · · (.)

and

δ(Mr) = , r = , , , . . . . (.)

Now we have to show that for j ∈ Mr , (xkj ) is (H , )-summable to L. Suppose that (xkj )
is not (H , )-summable to L. Therefore there is ε >  such that |τkj – L| ≥ ε for infinitely
many terms. LetMε := {j ∈ N : |τkj – L| < ε} and ε > /r (r = , , , . . .). Then

δ(Mε) = , (.)

and by (.), Mr ⊂ Mε . Hence δ(Mr) = , which contradicts (.) and therefore (xkj ) is
(H , )-convergent to L.
This completes the proof of the theorem. �

Similarly we can prove the following dual statement.

Theorem . A sequence x = (xk) is logarithmic statistically convergent to L if and only if
there exists a set K = {k < k < · · · < kn < · · · } ⊆N such that δln(K) =  and lim

xkn
n = L.
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