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Abstract
Under the assumptions thatW(n, x) is indefinite sign and subquadratic as |x| → +∞
and L(n) satisfies

lim inf|n|→+∞

[
|n|ν–2 inf|x|=1(L(n)x, x)

]
> 0

for some constant ν < 2, we establish a theorem on the existence of infinitely many
homoclinic solutions for the second-order self-adjoint discrete Hamiltonian system

�[
p(n)�u(n – 1)

]
– L(n)u(n) +∇W(n,u(n)) = 0,

where p(n) and L(n) areN ×N real symmetric matrices for all n ∈ Z, and p(n) is
always positive definite.
MSC: 39A11; 58E05; 70H05

Keywords: homoclinic solution; discrete Hamiltonian system; subquadratic; critical
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1 Introduction
Consider the second-order self-adjoint discrete Hamiltonian system

�[
p(n)�u(n – )

]
– L(n)u(n) +∇W

(
n,u(n)

)
= , (.)

where n ∈ Z, u ∈ R
N , �u(n) = u(n + ) – u(n) is the forward difference, p,L : Z → R

N×N

andW : Z×R
N →R,W (n,x) is continuously differentiable in x for every n ∈ Z.

As usual, we say that a solution u(n) of system (.) is homoclinic (to ) if u(n) →  as
n→ ±∞. In addition, if u(n) �≡  then u(n) is called a nontrivial homoclinic solution.
The existence and multiplicity of nontrivial homoclinic solutions for problem (.) have

been extensively investigated in the literature with the aid of critical point theory and vari-
ational methods; see, for example, [–]. Most of them treat the case where W (n,x) is
superquadratic as |x| → ∞.
Compared to the superquadratic case, as far as the author is aware, there are a few pa-

pers [, , ] concerning the case where W (n,x) has subquadratic growth at infinity.
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Specifically, [] and [] dealt with the existence andmultiplicity of homoclinic solutions
for (.) under the following assumptions on L:

(L∗) L(n) is anN ×N real symmetric positive definite matrix for all n ∈ Z and there exists
a constant β >  such that

(
L(n)x,x

) ≥ β|x|, ∀(n,x) ∈ Z×R
N ;

(Lν ) L(n) is anN ×N real symmetric positive definite matrix for all n ∈ Z and there exists
a constant ν <  such that

lim inf|n|→+∞

[
|n|ν– inf|x|=

(
L(n)x,x

)]
> ,

respectively. In the above two cases, since L(n) is positive definite, the variational func-
tional associated with system (.) is bounded from below, techniques based on the genus
properties have been well applied. In particular, Clark’s theorem is an efficacious tool to
prove the existence and multiplicity of homoclinic solutions for system (.). However, if
L(n) is not global positive definite on Z, the problem is far more difficult as  is a saddle
point rather than a local minimum of the variational functional, which is strongly indefi-
nite and it is not easy to obtain the boundedness of the Palais-Smale sequence. In a recent
paper [], based on a new direct sum decomposition of the ‘work space’, Tang and Lin
proved the following theorem by using a linking theorem which was developed in [].

Theorem . [] Assume that p(n) is an N ×N real symmetric positive definite matrix
for all n ∈ Z, L and W satisfy the following assumptions:

(L′
ν ) L(n) is an N × N real symmetric matrix for all n ∈ Z and there exists a constant

ν <  such that

lim inf|n|→+∞

[
|n|ν– inf|x|=

(
L(n)x,x

)]
> ;

(W) there exist constants max{, /( – ν)} < γ < γ <  and a,a ≥  such that

∣∣W (n,x)
∣∣ ≤ a|x|γ + a|x|γ , ∀(n,x) ∈ Z×R

N ;

(W) there exists a function ϕ ∈ C([, +∞), [, +∞)) such that

∣∣∇W (n,x)
∣∣ ≤ ϕ

(|x|), ∀(n,x) ∈ Z×R
N ,

where ϕ(s) =O(sγ–) as s→ +, max{, /( – ν)} < γ < ;
(W) there exist constants b > , b,b ≥  and max{, /( – ν)} < γ < γ < γ <  such

that

W (n,x) –∇W (n,x)≥ b|x|γ – b|x|γ – b|x|γ , ∀(n,x) ∈ Z×R
N ;

(W) there exist constants b > , b,b ≥  and max{, /( – ν)} < γ < γ < γ <  such
that

W (n,x)≥ b|x|γ – b|x|γ – b|x|γ , ∀(n,x) ∈ Z×R
N ;

http://www.advancesindifferenceequations.com/content/2013/1/228
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(W) W (n, –x) =W (n,x), ∀(n,x) ∈ Z×R
N .

Then system (.) possesses infinitely many nontrivial homoclinic solutions.

We remark that the condition ‘positive definite’ is removed in (L′
ν ), i.e., L(n) is not re-

quired to be global positive definite on Z. The main goal of this paper is to weaken condi-
tions (W), (W), (W) and (W) of Theorem . under assumption (L′

ν ).
To state our result, we first introduce the following assumptions:

(W′) there exist constants σi ∈ [,  – ν), ai ≥  and max{, ( + σi)/( – ν)} < γi <  with
i = ,  such that

∣∣W (n,x)
∣∣ ≤

∑
i=

ai
(
 + |n|σi)|x|γi , ∀(n,x) ∈ Z×R

N ;

(W′) there exist two constantsmax{, (+σi)/(– ν)} < γi+ < , i = ,  and two functions
ϕ,ϕ ∈ C([, +∞), [, +∞)) such that

∣∣∇W (n,x)
∣∣ ≤

∑
i=

(
 + |n|σi)ϕi

(|x|), ∀(n,x) ∈ Z×R
N ,

where ϕi(s) =O(sγi+–) as s→ +, i = , ;
(W′) there exist constants b > , b ≥  and  < γ < γ <  such that

W (n,x) –∇W (n,x)≥ b|x|γ – b|x|γ , ∀(n,x) ∈ Z×R
N ;

(W′) there exist constants b > , b ≥  and  < γ < γ <  such that

W (n,x)≥ b|x|γ – b|x|γ , ∀(n,x) ∈ Z×R
N .

We are now in a position to state the main result of this paper.

Theorem . Assume that p(n) is an N × N real symmetric positive definite matrix for
all n ∈ Z, L and W satisfy (L′

ν ), (W′), (W′), (W′), (W′) and (W). Then system (.)
possesses infinitely many nontrivial homoclinic solutions.

2 Preliminaries
In what follows, we always assume that p(n) is a real symmetric positive definite matrix
for all n ∈ Z. As done in [], we define

l(n) = inf
x∈RN ,|x|=

(
L(n)x,x

)
(.)

and

Z
 =

{
n ∈ Z : l(n) ≤ 

}
, Z

 =
{
n ∈ Z : l(n) > 

}
. (.)

Then by (L′
ν ), l(n) is bounded from below and so Z

 is a finite set and

l∗ :=min
{
l(n) : n ∈ Z

} > . (.)

http://www.advancesindifferenceequations.com/content/2013/1/228
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Define

L̃(n) =

⎧⎨
⎩
l∗IN , n ∈ Z

,

L(n), n ∈ Z
;

l̃(n) =

⎧⎨
⎩
l∗, n ∈ Z

,

l(n), n ∈ Z
.

(.)

Then, it follows from (.), (.), (.) and (.) that

(
L̃(n)x,x

) ≥ l̃(n)|x| ≥ l∗|x|, ∀(n,x) ∈ Z×R
N . (.)

Let

S =
{{
u(n)

}
n∈Z : u(n) ∈R

N ,n ∈ Z
}
,

E =
{
u ∈ S :

∑
n∈Z

[(
p(n + )�u(n),�u(n)

)
+

(
L̃(n)u(n),u(n)

)]
< +∞

}
,

and for u, v ∈ E, let

(u, v) =
∑
n∈Z

[(
p(n + )�u(n),�v(n)

)
+

(
L̃(n)u(n), v(n)

)]
.

Then E is a Hilbert space with the above inner product, and the corresponding norm is

‖u‖ =
{∑
n∈Z

[(
p(n + )�u(n),�u(n)

)
+

(
L̃(n)u(n),u(n)

)]}/

, u ∈ E.

As usual, for ≤ q < +∞, set

lq
(
Z,RN )

=
{{

u(n)
}
n∈Z : u(n) ∈R

N ,n ∈ Z,
∑
n∈Z

∣∣u(n)∣∣q < +∞
}

and

l∞
(
Z,RN )

=
{{

u(n)
}
n∈Z : u(n) ∈R

N ,n ∈ Z, sup
n∈Z

∣∣u(n)∣∣ < +∞
}
,

and their norms are defined by

‖u‖q =
(∑

n∈Z

∣∣u(n)∣∣q
)/q

, ∀u ∈ lq
(
Z,RN )

;

‖u‖∞ = sup
n∈Z

∣∣u(n)∣∣, ∀u ∈ l∞
(
Z,RN )

,

respectively.

Lemma . [, Lemma .] For u ∈ E, one has

‖u‖∞ ≤ 
√(l∗ + α)l∗

‖u‖, (.)

where α = inf{(p(n)x,x) : n ∈ Z,x ∈R
N , |x| = }.

http://www.advancesindifferenceequations.com/content/2013/1/228
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Set

b(u, v) =
∑
n∈Z

[(
p(n + )�u(n),�v(n)

)
+

(
L(n)u(n), v(n)

)]
, ∀u, v ∈ E. (.)

Lemma . [, Lemma .] Suppose that L satisfies (L′
ν ). Then

(i) b(u, v) is a bilinear function on E, and there exists a constant C >  such that

∣∣b(u, v)∣∣ ≤ C‖u‖‖v‖, ∀u, v ∈ E; (.)

(ii)

b(u,u) = ‖u‖ –
∑
n∈Z

((
L̃(n) – L(n)

)
u(n),u(n)

)
, ∀u ∈ E. (.)

By (L′
ν ), there exist an integer N >max{|n| : n ∈ Z

} andM >  such that

|n|ν– inf|x|=
(
L(n)x,x

) ≥ M, |n| ≥ N,

which implies

|n|ν–(L(n)x,x) ≥ M|x|, |n| ≥ N,x ∈R
N . (.)

Lemma . Suppose that L satisfies (L′
ν ). Then, for σ ∈ [, – ν) and  ≤ q ∈ ((+σ )/(–

ν), ), E is compactly embedded in lq(Z,RN );moreover,

∑
|n|>N

(
 + |n|σ )∣∣u(n)∣∣q ≤ K(σ ,q)

Nκ
‖u‖q, ∀u ∈ E,N ≥ N (.)

and

∑
n∈Z

(
 + |n|σ )∣∣u(n)∣∣q ≤

[( ∑
|n|≤N

(
 + |n|σ )/(–q)[l̃(n)]–q/(–q)

)– q

+
K(σ ,q)
Nκ

]
‖u‖q,

∀u ∈ E,N ≥ N, (.)

where

κ =
( – ν)q – ( + σ )


> , K(σ ,q) = 

[
( – q)

( – ν)q – ( + σ )

]– q

M–q/

 . (.)

Proof Let r = [( – ν)q – ( + σ )]/( – q). Then r > . For u ∈ E and N ≥ N, it follows
from (.), (.) and the Hölder inequality that

∑
|n|>N

(
 + |n|σ )∣∣u(n)∣∣q ≤ 

(∑
|n|>N

|n|–[(–ν)q–σ ]/(–q)
)– q


(∑

|n|>N
|n|–ν

∣∣u(n)∣∣
) q



= 
(∑

|n|>N
|n|–(r+)

)– q

(∑

|n|>N
|n|–ν

∣∣u(n)∣∣
) q
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Lin Advances in Difference Equations 2013, 2013:228 Page 6 of 14
http://www.advancesindifferenceequations.com/content/2013/1/228

≤ 
(


rNr

)– q

[


M

∑
|n|>N

(
L(n)u(n),u(n)

)] q


≤ +(–q)/

Mq/
 r(–q)/Nκ

‖u‖q

=
K(σ ,q)
Nκ

‖u‖q.

This shows that (.) holds. Hence, from (.), (.) and the Hölder inequality, one has

∑
n∈Z

(
 + |n|σ )∣∣u(n)∣∣q

=
∑

|n|≤N

(
 + |n|σ )∣∣u(n)∣∣q + ∑

|n|>N

(
 + |n|σ )∣∣u(n)∣∣q

≤
( ∑

|n|≤N

(
 + |n|σ )/(–q)[l̃(n)]–q/(–q)

)– q

( ∑

|n|≤N

l̃(n)
∣∣u(n)∣∣

) q

+
K(σ ,q)
Nκ

‖u‖q

≤
( ∑

|n|≤N

(
 + |n|σ )/(–q)[l̃(n)]–q/(–q)

)– q
 ‖u‖q + K(σ ,q)

Nκ
‖u‖q.

This shows that (.) holds.
Finally, we prove that E is compactly embedded in lq(Z,RN ). Let {uk} ⊂ E be a bounded

sequence. Then by (.), there exists a constant 	 >  such that

‖uk‖∞ ≤ 
√(l∗ + α)l∗

‖uk‖ ≤ 	, k ∈N. (.)

Since E is reflexive, {uk} possesses a weakly convergent subsequence in E. Passing to a
subsequence if necessary, it can be assumed that uk ⇀ u in E. It is easy to verify that

lim
k→∞

uk(n) = u(n), ∀n ∈ Z. (.)

For any given number ε > , we can choose Nε >  such that

q–K(σ ,q)
Nκ

ε

{[ 
√(

l∗ + α
)
l∗	

]q + ‖u‖q
}
< ε. (.)

It follows from (.) that there exists k ∈N such that

∑
|n|≤Nε

∣∣uk(n) – u(n)
∣∣q < ε for k ≥ k. (.)

On the other hand, it follows from (.), (.) and (.) that

∑
|n|>Nε

∣∣uk(n) – u(n)
∣∣q ≤ q–

∑
|n|>Nε

(∣∣uk(n)∣∣q + ∣∣u(n)∣∣q)

≤ q–K(σ ,q)
Nκ

ε

(‖uk‖q + ‖u‖q
)

http://www.advancesindifferenceequations.com/content/2013/1/228
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≤ q–K(σ ,q)
Nκ

ε

{[ 
√(

l∗ + α
)
l∗	

]q + ‖u‖q
}

≤ ε, k ∈N. (.)

Since ε is arbitrary, combining (.) with (.), we get

‖uk – u‖qq =
∑
n∈Z

∣∣uk(n) – u(n)
∣∣q →  as k → ∞.

This shows that {uk} possesses a convergent subsequence in lq(Z,RN ). Therefore, E is
compactly embedded in lq(Z,RN ) for  ≤ q ∈ (( + σ )/( – ν), ). �

Lemma . Suppose that L and W satisfy (L′
ν ) and (W′). Then, for u ∈ E,

∑
n∈Z

∣∣W(
n,u(n)

)∣∣ ≤ φ(N)‖u‖γ + φ(N)‖u‖γ , N ≥ N, (.)

where

κ =
( – ν)γ – ( + σ)


, κ =

( – ν)γ – ( + σ)


; (.)

φ(N) = a
[( ∑

|n|≤N

(
 + |n|σ)/(–γ)[l̃(n)]–γ/(–γ)

)– γ

+
K(σ,γ)
Nκ

]
, (.)

φ(N) = a
[( ∑

|n|≤N

(
 + |n|σ)/(–γ)[l̃(n)]–γ/(–γ)

)– γ

+
K(σ,γ)

Nκ

]
. (.)

Proof For N ≥ N, it follows from (W′), (.), (.), (.) and (.) that

∑
n∈Z

∣∣W(
n,u(n)

)∣∣ ≤
∑
i=

ai
∑
n∈Z

(
 + |n|σi)∣∣u(n)∣∣γi

≤
∑
i=

ai
[( ∑

|n|≤N

(
 + |n|σi)/(–γi)[l̃(n)]–γi/(–γi)

)– γi

+
K(σi,γi)
Nκi

]
‖u‖γi

= φ(N)‖u‖γ + φ(N)‖u‖γ .

This shows that (.) holds. �

Lemma . Assume that L and W satisfy (L′
ν ), (W′) and (W′). Then the functional f :

E →R defined by

f (u) =


b(u,u) –

∑
n∈Z

W
(
n,u(n)

)
, ∀u ∈ E (.)

is well defined and of class C(E,R) and

〈
f ′(u), v

〉
= b(u, v) –

∑
n∈Z

(∇W
(
n,u(n)

)
, v(n)

)
, ∀u, v ∈ E. (.)

Furthermore, the critical points of f in E are the solutions of system (.) with u(±∞) = .

http://www.advancesindifferenceequations.com/content/2013/1/228
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Proof Lemmas . and . imply that f defined by (.) is well defined on E. Next, we
prove that (.) holds. By (W′), there existM,M >  such that

ϕi
(|x|) ≤ Mi|x|γ+i–, ∀x ∈R

N , |x| ≤ , i = , . (.)

For any u, v ∈ E, there exists an integer N >N such that |u(n)| + |v(n)| <  for |n| >N.
Then, for any sequence {θn}n∈Z ⊂ R with |θn| <  for n ∈ Z and any number h ∈ (, ), by
(W′), (.) and (.), we have

∑
n∈Z

max
h∈[,]

∣∣(∇W
(
n,u(n) + θnhv(n)

)
, v(n)

)∣∣

≤
∑

|n|≤N

max
h∈[,]

∣∣∇W
(
n,u(n) + θnhv(n)

)∣∣∣∣v(n)∣∣

+
∑

|n|>N

max
h∈[,]

∣∣∇W
(
n,u(n) + θnhv(n)

)∣∣∣∣v(n)∣∣

≤
∑

|n|≤N

max
|x|≤‖u‖∞+‖v‖∞

∣∣∇W (n,x)
∣∣∣∣v(n)∣∣

+
∑
i=

Mi
∑

|n|>N

(
 + |n|σi)(∣∣u(n)∣∣ + ∣∣v(n)∣∣)γ+i–∣∣v(n)∣∣

≤
∑

|n|≤N

max
|x|≤‖u‖∞+‖v‖∞

∣∣∇W (n,x)
∣∣∣∣v(n)∣∣ +

∑
i=

Mi
∑

|n|>N

(
 + |n|σi)∣∣v(n)∣∣γ+i

+
∑
i=

Mi

( ∑
|n|>N

(
 + |n|σi)∣∣u(n)∣∣γ+i

)– 
γ+i

×
( ∑

|n|>N

(
 + |n|σi)∣∣v(n)∣∣γ+i

) 
γ+i

≤
∑

|n|≤N

max
|x|≤‖u‖∞+‖v‖∞

∣∣∇W (n,x)
∣∣∣∣v(n)∣∣

+
∑
i=

MiK(σi,γ+i)
Nκ+i



(‖u‖γ+i– + ‖v‖γ+i–
)‖v‖ < +∞, (.)

where κ+i = [γ+i( – ν) – ( + σi)]/ > , i = , . Then by (.), (.) and Lebesgue’s
dominated convergence theorem, we have

〈
f ′(u), v

〉
= lim

h→+
f (u + hv) – f (u)

h

= lim
h→+

[
b(u, v) +

hb(v, v)


–
∑
n∈Z

(∇W
(
n,u(n) + θnhv(n)

)
, v(n)

)]

= b(u, v) –
∑
n∈Z

(∇W
(
n,u(n)

)
, v(n)

)
.

This shows that (.) holds. In view of the proof of [, Lemma .], the critical points
of f in E are the solutions of system (.) with u(±∞) = . �
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Let us prove now that f ′ is continuous. Let uk → u in E. Then there exists a constant
δ >  such that

‖u‖ ≤ 
√(

l∗ + α
)
l∗δ, ‖uk‖ ≤ 

√(
l∗ + α

)
l∗δ, k = , , . . . . (.)

It follows from (.) that

‖u‖∞ ≤ δ, ‖uk‖∞ ≤ δ, k = , , . . . . (.)

By (W′), there existM,M >  such that

ϕi
(|x|) ≤ M+i|x|γ+i–, ∀x ∈R

N , |x| ≤ δ, i = , . (.)

From (.), (.), (.), (.), (.), (W′) and the Hölder inequality, we have

∣∣〈f ′(uk) – f ′(u), v
〉∣∣

≤ ∣∣b(uk – u, v)
∣∣ +∑

n∈Z

∣∣(∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)
, v(n)

)∣∣

≤ C‖uk – u‖‖v‖ +
∑

|n|≤N

∣∣∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)∣∣∣∣v(n)∣∣

+
∑
|n|>N

(∣∣∇W
(
n,uk(n)

)∣∣ + ∣∣∇W
(
n,u(n)

)∣∣)∣∣v(n)∣∣

≤ o() +
∑
i=

M+i
∑
|n|>N

(
 + |n|σi)(∣∣uk(n)∣∣γ+i– + ∣∣u(n)∣∣γ+i–)∣∣v(n)∣∣

≤ o() +
∑
i=

M+i

(∑
|n|>N

(
 + |n|σi)∣∣uk(n)∣∣γ+i

)– 
γ+i

(∑
|n|>N

(
 + |n|σi)∣∣v(n)∣∣γ+i

) 
γ+i

+
∑
i=

M+i

(∑
|n|>N

(
 + |n|σi)∣∣u(n)∣∣γ+i

)– 
γ+i

(∑
|n|>N

(
 + |n|σi)∣∣v(n)∣∣γ+i

) 
γ+i

≤ o() +
∑
i=

M+iK(σi,γ+i)
Nκ+i

(‖uk‖γ+i– + ‖u‖γ+i–
)‖v‖

= o(), k → +∞,N → +∞,∀v ∈ E,

which implies the continuity of f ′. The proof is complete. �

Lemma . [] Let X be an infinite dimensional Banach space and let f ∈ C(X,R) be
even, satisfy the (PS)-condition, and f () = . If X = X ⊕X (direct sum), where X is finite
dimensional, and f satisfies

(i) f is bounded from below on X;
(ii) for each finite dimensional subspace X̃ ⊂ X , there are positive constants ρ = ρ(X̃)

and σ = σ (X̃) such that f |Bρ∩X̃ ≤  and f |∂Bρ∩X̃ ≤ –σ , where Bρ = {x ∈ X : ‖x‖ = ρ}.
Then f possesses infinitely many nontrivial critical points.
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3 Proof of the theorem
Proof of Theorem . For u ∈ E, we define two functions as follows:

u–(n) =

⎧⎨
⎩
u(n), n ∈ Z

,

, n ∈ Z
;

u+(n) =

⎧⎨
⎩
, n ∈ Z

,

u(n), n ∈ Z
.

(.)

Set

X =
{
u– : u ∈ E

}
, X =

{
u+ : u ∈ E

}
. (.)

Then X := E = X ⊕ X (direct sum) and dim(X) < +∞. Obviously, (W′) and (W) im-
ply f () =  and f is even. In view of Lemma ., f ∈ C(E,R). In what follows, we first
prove that f satisfies the (PS)-condition. Assume that {uk}k∈N ⊂ E is a (PS)-sequence:
{f (uk)}k∈N is bounded and ‖f ′(uk)‖ →  as k → +∞. From (.), (.) and (W′), we
have

〈
f ′(uk),uk

〉
– f (uk) =

∑
n∈Z

[
W

(
n,uk(n)

)
–

(∇W
(
n,uk(n)

)
,uk(n)

)]

≥ b
∑
n∈Z

∣∣uk(n)∣∣γ – b
∑
n∈Z

∣∣uk(n)∣∣γ

= b‖uk‖γ
γ
– b‖uk‖γ

γ
.

It follows that there exists a constant C >  such that

b‖uk‖γ
γ
– b‖uk‖γ

γ
≤ C

(
 + ‖uk‖

)
. (.)

Since dim(X) < +∞, it follows that there exists a constant C >  such that

∥∥u–k∥∥
 =

(
u–k ,uk

)
l ≤ ∥∥u–k∥∥γ ′


‖uk‖γ ≤ C

∥∥u–k∥∥‖uk‖γ , (.)

where γ ′
 = γ/(γ – ). Combining (.) with (.), one has

∑
n∈Z

((
L̃(n) – L(n)

)
uk(n),uk(n)

)
=

∑
n∈Z

((
L̃(n) – L(n)

)
u–k (n),u

–
k (n)

)

≤ C
∥∥u–k∥∥



≤ C
(
 + ‖uk‖/γ + ‖uk‖γ/γ

)
. (.)

From (.), (.) and (.), we obtain

‖uk‖ =
∑
n∈Z

[(
p(n + )�uk(n),�uk(n)

)
+

(
L̃(n)uk(n),uk(n)

)]

= b(uk ,uk) +
∑
n∈Z

((
L̃(n) – L(n)

)
uk(n),uk(n)

)

=
∑
n∈Z

((
L̃(n) – L(n)

)
uk(n),uk(n)

)
+ f (uk) + 

∑
n∈Z

W
(
n,uk(n)

)

http://www.advancesindifferenceequations.com/content/2013/1/228
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≤ C
(
 + ‖uk‖/γ + ‖uk‖γ/γ

)
+ φ(N)‖uk‖γ + φ(N)‖uk‖γ

≤ C
(
 + ‖uk‖γ + ‖uk‖γ + ‖uk‖/γ + ‖uk‖γ/γ

)
. (.)

Since  < γ < γ < ,  < γ < γ < , it follows from (.) that {‖uk‖} is bounded. Let A > 
such that

‖uk‖∞ ≤ 
√(l∗ + α)l∗

‖uk‖ ≤ A, k ∈ N. (.)

So, passing to a subsequence if necessary, it can be assumed that uk ⇀ u in E. It is easy
to verify that

lim
k→∞

uk(n) = u(n), ∀n ∈ Z. (.)

By (W′), there existM,M >  such that

ϕi
(|x|) ≤ M+i|x|γ+i–, ∀x ∈R

N , |x| ≤ A, i = , . (.)

For any given number ε > , we can choose an integer N >N such that

M+iK(σi,γ+i)
Nκ+i



{[ 
√
(l∗ + α)l∗A

]γ+i + ‖u‖γ+i
}
< ε, i = , . (.)

It follows from (.) and the continuity of ∇W (n,x) on x that there exists k ∈ N such
that

N∑
n=–N

∣∣∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)∣∣∣∣uk(n) – u(n)
∣∣ < ε for k ≥ k. (.)

On the other hand, it follows from (.), (.), (.), (.) and (W′) that

∑
|n|>N

∣∣∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)∣∣∣∣uk(n) – u(n)
∣∣

≤
∑

|n|>N

[∣∣∇W
(
n,uk(n)

)∣∣ + ∣∣∇W
(
n,u(n)

)∣∣](∣∣uk(n)∣∣ + ∣∣u(n)∣∣)

≤
∑
i=

∑
|n|>N

(
 + |n|σi)[ϕi

(∣∣uk(n)∣∣) + ϕi
(∣∣u(n)∣∣)](∣∣uk(n)∣∣ + ∣∣u(n)∣∣)

≤
∑
i=

M+i
∑

|n|>N

(
 + |n|σi)(∣∣uk(n)∣∣γ+i– + ∣∣u(n)∣∣γ+i–)(∣∣uk(n)∣∣ + ∣∣u(n)∣∣)

≤ 
∑
i=

M+i
∑

|n|>N

(
 + |n|σi)(∣∣uk(n)∣∣γ+i + ∣∣u(n)∣∣γ+i)

≤
∑
i=

M+iK(σi,γ+i)
Nκ+i



(‖uk‖γ+i + ‖u‖γ+i
)

http://www.advancesindifferenceequations.com/content/2013/1/228
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≤
∑
i=

M+iK(σi,γ+i)
Nκ+i



{[ 
√
(l∗ + α)l∗A

]γ+i + ‖u‖γ+i
}

≤ ε, k ∈N. (.)

Since ε is arbitrary, combining (.) with (.), we get

∑
n∈Z

(∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)
,uk(n) – u(n)

) →  as k → ∞. (.)

It follows from (.) that

〈
f ′(uk) – f ′(u),uk – u

〉
= b(uk – u,uk – u) –

∑
n∈Z

(∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)
,uk(n) – u(n)

)

= ‖uk – u‖ –
∑
n∈Z

((
L̃(n) – L(n)

)
(uk – u),uk – u

)

–
∑
n∈Z

(∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)
,uk(n) – u(n)

)
. (.)

Since 〈f ′(uk) – f ′(u),uk – u〉 → , it follows from (.), (.) and (.) that uk → u
in E. Hence, f satisfies the (PS)-condition.
Next, for u ∈ X, it follows from (.), (.) and (.) that

f (u) =


b(u,u) –

∑
n∈Z

W
(
n,u(n)

)
=


‖u‖ –

∑
n∈Z

W
(
n,u(n)

)

≥ 

‖u‖ – φ(N)‖u‖γ – φ(N)‖u‖γ → +∞ (.)

as ‖u‖ → +∞ and u ∈ X, since  < γ < γ < .
Finally, we prove that assumption (ii) in Lemma . holds. Let X̃ ⊂ X be any finite di-

mensional subspace. Then there exist constants c = c(X̃) >  and c∗ = c(X̃) >  such that

c‖u‖ ≤ ‖u‖γi ≤ c∗‖u‖, ∀i = , ,u ∈ X̃. (.)

From (.), (.), (.) and (W′), one has

f (u) =


b(u,u) –

∑
n∈Z

W
(
n,u(n)

)

≤ 

‖u‖ – b

∑
n∈Z

∣∣u(n)∣∣γ + b
∑
n∈Z

∣∣u(n)∣∣γ

=


‖u‖ – b‖u‖γ

γ + b‖u‖γ
γ

≤ 

‖u‖ – bcγ ‖u‖γ + bcγ∗ ‖u‖γ , ∀u ∈ X̃.

http://www.advancesindifferenceequations.com/content/2013/1/228


Lin Advances in Difference Equations 2013, 2013:228 Page 13 of 14
http://www.advancesindifferenceequations.com/content/2013/1/228

Since  < γ < γ < , the above estimation implies that there exist ρ = ρ(b,b, c, c∗) =
ρ(X̃) >  and σ = σ (b,b, c, c∗) = σ (X̃) >  such that

f (u) ≤ , ∀u ∈ Bρ ∩ X̃; f (u) ≤ –σ , ∀u ∈ ∂Bρ ∩ X̃.

This shows that assumption (ii) in Lemma . holds. By Lemma ., f has infinitely many
critical points which are homoclinic solutions for system (.). �

4 Example
In this section, we give an example to illustrate our result.

Example . In system (.), let p(n) be anN ×N real symmetric positive definite matrix
for all n ∈ Z, L(n) = ( + sin n)(|n|/ – )IN , and let

W (n,x) =
(
 + sin n

)[(
 + |n|/)|x|/ – |x|/ + (

 + |n|/)|x|/]. (.)

Then L satisfies (L′
ν ) with ν = /, and

∇W (n,x) =
(
 + sin n

)[


(
 + |n|/)|x|–/x – 


|x|–/x + 


(
 + |n|/)|x|–/x

]
,

∣∣W (n,x)
∣∣ ≤ 

(
 + |n|/)|x|/ + 

(
 + |n|/)|x|/, ∀(n,x) ∈ Z×R

N ,∣∣∇W (n,x)
∣∣ ≤ 

(
 + |n|/)|x|/ + 

(
 + |n|/)|x|/, ∀(n,x) ∈ Z×R

N ,

W (n,x) –∇W (n,x)≥ 


|x|/ – |x|/, ∀(n,x) ∈ Z×R
N

and

W (n,x)≥ |x|/ – |x|/, ∀(n,x) ∈ Z×R
N .

Thus all the conditions of Theorem . are satisfied with



= γ = γ = γ < γ = γ =



< γ = γ = γ =



;

a = a = ; b =


, b = , b = , b = ;

σ =


, σ =



; ϕ(s) = s/, ϕ(s) = s/.

Hence, by Theorem ., system (.) has infinitely many nontrivial homoclinic solutions.
However, one can see thatW (n,x) defined by (.) does not satisfy (W) and (W).
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