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Abstract
In this paper, a functional boundary value problem of fractional differential equations
is studied. Based on Mawhin’s coincidence degree theory, some existence theorems
are obtained in the case of nonresonance and the cases of dimKer L = 1 and
dimKer L = 2 at resonance.

1 Introduction
The subject of fractional calculus has gained considerable popularity and importance be-
cause of its frequent appearance in various fields such as physics, chemistry, and engineer-
ing. In consequence, the subject of fractional differential equations has attracted much
attention. Many methods have been introduced to solve fractional differential equations,
such as the popular Laplace transform method, the iteration method, the Fourier trans-
formmethod and the operationalmethod. For details, see [–] and the references therein.
Recently, there have been some papers dealing with the basic theory for initial value prob-
lems of nonlinear fractional differential equations; for example, see [, ]. Also, there are
some articles which deal with the existence and multiplicity of solutions for nonlinear
boundary value problems of fractional order differential equations using techniques of
topological degree theory. We refer the reader to [–] for some recent results at non-
resonance and to [–] at resonance.
In [], by making use of the coincidence degree theory of Mawhin, Zhang and Bai dis-

cussed the existence results for the following nonlinear nonlocal problem at resonance
under the case dimKerL = :

Dα
+u(t) = f

(
t,u(t)

)
,  < t < , u() = , βu(η) = u(),  < α ≤ .

Recently, Jiang [] studied the existence of a solution for the following fractional dif-
ferential equation at resonance under the case dimKerL = :

Dα
+u(t) = f

(
t,u(t),Dα–

+ u(t)
)
,

u() = , Dα–
+ u() =

m∑
i=

aiDα–
+ u(ξi), Dα–

+ u() =
n∑
j=

bjDα–
+ u(ηj).
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Being directly inspired by [, , ], we intend in this paper to study the following
functional boundary value problems (FBVP) of fractional order differential equation:

Dα
+u(t) = f

(
t,u(t),Dα–

+ u(t),Dα–
+ u(t)

)
, (.)

I–α
+ u(t)|t= = , �

[
Dα–

+ u(t)
]
= , �

[
Dα–

+ u(t)
]
= , (.)

where  < α < , Dα
+ and Iα+ are the standard Riemann-Liouville differentiation and inte-

gration, and f ∈ C([, ]×R
,R); �,� : C[, ] →R are continuous linear functionals.

In this paper, we shall give some sufficient conditions to construct the existence the-
orems for FBVP (.), (.) at nonresonance and resonance (both cases of dimKerL = 
and dimKerL = ), respectively. To the best of our knowledge, the method of Mawhin’s
theorem has not been developed for fractional order differential equation with functional
boundary value problems at resonance. So, it is interesting and important to discuss the
existence of a solution for FBVP (.), (.). Many difficulties occur when we deal with
them. For example, the construction of the generalized inverse Kp : ImL → domL∩KerP
of L. So, we need to introduce some new tools and methods to investigate the existence of
a solution for FBVP (.), (.).
The rest of this paper is organized as follows. In Section , we give some notations and

lemmas. In Section , we establish the existence results of a solution for functional bound-
ary value problem (.), (.).

2 Preliminaries and lemmas
For the convenience of the reader, we present here the necessary definitions from frac-
tional calculus theory. These definitions and properties can be found in the literature. The
readers who are unfamiliar with this area can consult, for example, [, , ] for details.

Definition. [, ] TheRiemann-Liouville fractional integral of order α >  of a function
u : (,∞) →R is given by

Iα+u(t) =


�(α)

∫ t


(t – s)α–u(s)ds,

provided that the right-hand side is pointwise defined on (,∞). Here �(α) is the Gamma
function given by �(α) =

∫ +∞
 tα–e–t dt.

Definition . [, ] The Riemann-Liouville fractional derivative of order α >  of a con-
tinuous function u : (,∞) →R is given by

Dα
+u(t) =


�(n – α)

(
d
dt

)n ∫ t



u(s)
(t – s)α–n+

ds,

where n –  ≤ α < n, provided that the right-hand side is pointwise defined on (,∞).

We use the classical spaces C[, ] with the norm ‖u‖∞ = maxt∈[,] |u(t)|, L[, ] with
the norm ‖u‖ =

∫ 
 |u(t)|dt. We also use the space ACn[, ] defined by

ACn[, ] =
{
u : [, ] →R | u(n–) are absolutely continuous on [, ]

}
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and the Banach space Cμ[, ] (μ > )

Cμ[, ] =
{
u(t) | u(t) = Iμ+x(t) + ctμ– + ctμ– + · · · + cN–tμ–(N–),

x ∈ C[, ], t ∈ [, ], ci ∈R, i = , , . . . ,N = [μ] + 
}

with the norm ‖u‖Cμ = ‖Dμ
+u‖∞ + · · · + ‖Dμ–(N–)

+ u‖∞ + ‖u‖∞.

Lemma . [] Let α > , n = [α] + .Assume that u ∈ L(, ) with a fractional integration
of order n – α that belongs to ACn[, ]. Then the equality

(
Iα+D

α
+u

)
(t) = u(t) –

n∑
i=

((In–α
+ u)(t))(n–i)|t=
�(α – i + )

tα–i

holds almost everywhere on [, ].

Remark . If u satisfies Dα
+u = f (t) ∈ L(, ) and I–α

+ u|t= = , then u ∈ Cα–[, ]. In
fact, with Lemma ., one has

u(t) = Iα+f (t) + ctα– + ctα– + ctα–.

Combine with I–α
+ u|t= = , there is c = . So,

u(t) = Iα+f (t) + ctα– + ctα– = Iα–+
[
I+f (t) + c�(α)

]
+ ct(α–)–.

In the following lemma, we use the unified notation both for fractional integrals and
fractional derivatives assuming that Iα+ =D–α

+ for α < .

Lemma . [] Assume α > , then:
(i) Let k ∈N. If Dα

a+u(t) and (Dα+k
a+ u)(t) exist, then

(
DkDα

a+
)
u(t) =

(
Dα+k

a+ u
)
(t);

(ii) If β > , α + β > , then

(
Iαa+I

β
a+

)
u(t) =

(
Iα+β
a+ u

)
(t)

is satisfied at any point on [a,b] for u ∈ Lp(a,b) and  ≤ p ≤ +∞;
(iii) Let u ∈ C[a,b]. Then (Dα

a+Iαa+)u(t) = u(t) holds on [a,b];
(iv) Note that for λ > –, λ �= α – ,α – , . . . ,α – n, we have

Dαtλ =
�(λ + )

�(λ – α + )
tλ–α , Dαtα–i = , i = , , . . . ,n.

Lemma . [] F ⊂ Cμ[, ] is a sequentially compact set if and only if F is uniformly
bounded and equicontinuous. Here ‘F is uniformly bounded and equicontinuous’ means
that there exists M >  such that for every u ∈ F ,

‖u‖Cμ =
∥∥Dμ

+u
∥∥∞ + · · · + ∥∥Dμ–[μ]

+ u
∥∥∞ + ‖u‖∞ <M
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and that ∀ε > , ∃N > , for all t, t ∈ [, ], |t – t| < δ, u ∈ F , i ∈ {, , . . . , [μ]}, there hold
∣∣u(t) – u(t)

∣∣ < ε,
∣∣Dμ–i

+ u(t) –Dμ–i
+ u(t)

∣∣ < ε,

respectively.

Next, consider the following conditions:
(A) �[]�[] �= .
(A) �[] = , �[] �= , �[t] = .
(A) �[] = , �[] = , �[t] �= .
(A) �[] �= , �[] = , �[t] = .
(A) �[] = , �[] = , �[t] = .
We shall prove that: If (A) holds, thenKerL = {θ}. It is the so-called nonresonance case.

If (A) holds, thenKerL = {atα– : a ∈R}. If (A) or (A) holds, thenKerL = {atα– : a ∈R}.
If (A) holds, then KerL = {atα– + btα– : a,b ∈R}.
In the nonresonance case, FBVP (.), (.) can be transformed into an operator equa-

tion.

Lemma . Assume that (A) holds. Then functional boundary value problem (.) and
(.) has a solution if and only if the operator T : Cα–[, ] → Cα–[, ], defined by

(Tu)(t) =


�(α)

∫ t


(t – s)α–(fu)(s)ds –

�[
∫ t
 (fu)(s)ds]

�(α)�[]
tα–

–
�[]�[

∫ t
 (t – s)(fu)(s)ds] –�[

∫ t
 (fu)(s)ds]�[t]

�(α – )�[]�[]
tα–,

has a fixed point, where (fu)(t) = f (t,u(t),Dα–
+ u(t),Dα–

+ u(t)).

Proof If u is a solution to Tu = u, by Lemma ., we get

Dα
+u(t) = f

(
t,u(t),Dα–

+ u(t),Dα–
+ u(t)

)
,

Dα–
+ u(t) =

∫ t


(fu)(s)ds –

�[
∫ t
 (fu)(s)ds]
�[]

and

Dα–
+ u(t) =

∫ t


(t – s)(fu)(s)ds –

�[
∫ t
 (fu)(s)ds]
�[]

t

–
�[]�[

∫ t
 (t – s)(fu)(s)ds] –�[

∫ t
 (fu)(s)ds]�[t]

�[]�[]
.

Considering the linearity of �i (i = , ), we have

I–α
+ u(t)|t= = ,

�
[
Dα–

+ u(t)
]
= �

[∫ t


(fu)(s)ds

]
–

�[
∫ t
 (fu)(s)ds]
�[]

�[] = ,
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�
[
Dα–

+ u(t)
]
= �

[∫ t


(t – s)(fu)(s)ds

]
–

�[
∫ t
 (fu)(s)ds]
�[]

�[t]

–
�[]�[

∫ t
 (t – s)(fu)(s)ds] –�[

∫ t
 (fu)(s)ds]�[t]

�[]�[]
�[] = .

So, u is a solution to FBVP (.), (.).
If u is a solution to (.), by Lemma ., we can reduce (.) to an equivalent integral

equation

u(t) = Iα+(fu)(t) + ctα– + ctα– + ctα–. (.)

By I–α
+ u(t)|t= = , there is c = , and

Dα–
+ u(t) =

∫ t


(fu)(s)ds + c�(α), (.)

Dα–
+ u(t) =

∫ t


(t – s)(fu)(s)ds + c�(α)t + c�(α – ). (.)

Applying � and � to (.) and (.), respectively, we obtain

 =�
[
Dα–

+ u(t)
]
= �

[∫ t


(fu)(s)ds

]
+ c�(α)�[],

 =�
[
Dα–

+ u(t)
]
= �

[∫ t


(t – s)(fu)(s)ds

]
+ c�(α)�[t] + c�(α – )�[].

Thus,

c = –
�[

∫ t
 (fu)(s)ds]

�(α)�[]
, (.)

c = –
�[]�[

∫ t
 (t – s)(fu)(s)ds] –�[

∫ t
 (fu)(s)ds]�[t]

�(α – )�[]�[]
. (.)

Substituting (.) and (.) into (.), we obtain

u(t) =


�(α)

∫ t


(t – s)α–(fu)(s)ds –

�[
∫ t
 (fu)(s)ds]

�(α)�[]
tα–

–
�[]�[

∫ t
 (t – s)(fu)(s)ds] –�[

∫ t
 (fu)(s)ds]�[t]

�(α – )�[]�[]
tα–.

The proof is complete. �

The following definitions and lemmas are a preparation for the existence of solutions to
(.), (.) at resonance.

Definition . Let Y , Z be real Banach spaces, let L : domL ⊂ Y → Z be a linear operator.
L is said to be a Fredholm operator of index zero provided that:

(i) ImL is a closed subset of Z,
(ii) dimKerL = codim ImL < +∞.

http://www.advancesindifferenceequations.com/content/2013/1/233
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Let Y , Z be real Banach spaces and L : domL ⊂ Y → Z be a Fredholm operator of index
zero. P : Y → Y ,Q : Z → Z are continuous projectors such that ImP =KerL,KerQ = ImL,
Y =KerL⊕KerP and Z = ImL⊕ ImQ. It follows that L|domL∩KerP : domL∩KerP → ImL
is invertible. We denote the inverse of the mapping by KP (generalized inverse operator
of L). If is an open bounded subset of Y such that domL∩ �= ∅, themappingN : Y → Z
will be called L-compact on , if QN() is bounded and KP(I –Q)N : → Y is compact.

We need the following known result for the sequel (Theorem . []).

Theorem . Let L be a Fredholm operator of index zero, and let N be L-compact on .
Assume that the following conditions are satisfied:

(i) Lx �= λNx for every (x,λ) ∈ [(domL\KerL)∩ ∂]× (, ).
(ii) Nx /∈ ImL for every x ∈KerL∩ ∂.
(iii) deg(QN |KerL,KerL∩ , ) �= , where Q : Z → Z is a projector as above with

ImL =KerQ.
Then the equation Lx =Nx has at least one solution in domL∩ .

Let Y = Cα–[, ], Z = L[, ]. Let the linear operator L : Y ⊂ domL → Z with

domL =
{
u ∈ Cα–[, ] :Dα

+u(t) ∈ Z, I–α
+ u(t)|t= = ,

�
[
Dα–

+ u(t)
]
= ,�

[
Dα–

+ u(t)
]
= 

}

be defined by Lu =Dα
+u(t). Let the nonlinear operator N : Y → Z be defined by

(Nu)(t) = f
(
t,u(t),Dα–

+ u(t),Dα–
+ u(t)

)
.

Then (.), (.) can be written as

Lu =Nu.

Now, we give KerL, ImL and some necessary operators at dimKerL =  and dimKerL =
, respectively.

Lemma . Let L be the linear operator defined as above. If (A) holds, then

KerL =
{
u ∈ domL : u = atα–,a ∈R, t ∈ [, ]

}

and

ImL =
{
v ∈ Z :�

[∫ t


v(s)ds

]
= 

}
.

Proof Let u(t) = atα–. Clearly, Dα
+u(t) =  and I–α

+ u(t)|t= = . Considering (A),
�[Dα–

+ u(t)] = a�[�(α)] = a�(α)�[] =  and �[Dα–
+ u(t)] = �(α)�[t] = . So,

{
u ∈ domL : u = atα–,a ∈R, t ∈ [, ]

} ⊂KerL.

http://www.advancesindifferenceequations.com/content/2013/1/233
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If Lu =Dα
+u(t) = , then u(t) = atα– +btα– + ctα–. Considering I–α

+ u(t)|t= =  and (A),
we can obtain that b = c = . It yields u(t) = atα– and KerL ⊂ {u ∈ domL : u = atα–,a ∈
R, t ∈ [, ]}.
We now show that

ImL =
{
v ∈ Z :�

[∫ t


v(s)ds

]
= 

}
.

If v ∈ ImL, then there exists u ∈ domL such that Dα
+u(t) = v(t). Hence,

u(t) =


�(α)

∫ t


(t – s)α–v(s)ds + atα– + btα–

for some a,b ∈R. It yields

�
[
Dα–

+ u(t)
]
= �

[∫ t


v(s)ds

]
+ a�(α)�[] = �

[∫ t


v(s)ds

]
= .

Therefore

ImL ⊂
{
v ∈ Z :�

[∫ t


v(s)ds

]
= 

}
.

On the other hand, suppose v ∈ Z satisfies

�

[∫ t


v(s)ds

]
= .

Let

u(t) =


�(α)

∫ t


(t – s)α–v(s)ds –

tα–

�(α – )�[]
�

[∫ t


(t – s)v(s)ds

]
.

Obviously, Dα
+u(t) = v(t) and I–α

+ u(t)|t= = . Considering (A) and the linearity of �i

(i = , ), we have

�
[
Dα–

+ u(t)
]
= �

[∫ t


v(s)ds

]
= 

and

�
[
Dα–

+ u(t)
]
= �

[∫ t


(t – s)v(s)ds

]
–�

[


�[]
�

[∫ t


(t – s)v(s)ds

]]
= .

It yields

{
v ∈ Z :�

[∫ t


v(s)ds

]
= 

}
⊂ ImL.

The proof is complete. �

Lemma . If �[t] �= , then:

http://www.advancesindifferenceequations.com/content/2013/1/233
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(i) L is a Fredholm operator of index zero and dimKerL = codim ImL = .
(ii) The linear operator Kp : ImL → domL∩KerP can be defined by

(Kpv)(t) = Iα+v(t) –
tα–

�(α – )�[]
�

[∫ t


(t – s)v(s)ds

]
.

(iii) ‖Kpv‖Cα– ≤ �‖v‖, where � =  + 
�(α) +

(+�(α–))‖�‖
�(α–)|�[]| and ‖�‖ is the norm of a

continuous linear functional �.
(iv) The linear operator Kp : ImL → domL∩KerP ⊂ Cα–[, ] is completely

continuous.

Proof Firstly, we construct the mapping Q : Z → Z defined by

Qy =


�[t]
�

[∫ t


y(s)ds

]
. (.)

Noting that

Qy =


�[t]
�

[∫ t


(Qy)ds

]
=


�[t]

�

[∫ t


ds

]
(Qy) =Qy,

we get Q : Z → Z is a well-defined projector.
Now, it is obvious that ImL = KerQ. Noting that Q is a linear projector, we have Z =

ImQ ⊕ KerQ. Hence, Z = ImQ ⊕ ImL and dimKerL = codim ImL =. This means L is a
Fredholm mapping of index zero. Taking P : Y → Y as

(Pu)(t) =
Dα–

+ u(t)|t=
�(α)

tα–,

then the generalized inverse Kp : ImL → domL∩KerP of L can be rewritten

(Kpv)(t) = Iα+v(t) –
tα–

�(α – )�[]
�

[∫ t


(t – s)v(s)ds

]
.

In fact, for v ∈ ImL, we have

I–α
+ (Kpv)(t)|t= = ,

�
[
Dα–

+ (Kpv)(t)
]
= �

[
Dα–

+ Iα+v(t)
]
= �

[∫ t


v(s)ds

]
= 

and

�
[
Dα–

+ (Kpv)(t)
]
= �

[∫ t


(t – s)v(s)ds

]
–


�[]

�

[∫ t


(t – s)v(s)ds

]
�[] = ,

which implies that Kp is well defined on ImL. Moreover, for v ∈ ImL, we have

(LKp)v(t) =Dα
+I

α
+v(t) = v(t)

http://www.advancesindifferenceequations.com/content/2013/1/233
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and for v ∈ domL∩KerP, we know

Iα+D
α
+v(t) = v(t) –

Dα–
+ v(t)|t=

�(α)
tα– –

Dα–
+ v(t)|t=
�(α – )

tα– –
I–α
+ v(t)|t=

�(α)
tα–,

v ∈ domL∩KerP means that I–α
+ v(t)|t= =Dα–

+ v(t)|t= = �[Dα–
+ v(t)] = . So,

(KpL)v(t) = Iα+D
α
+v(t) –

tα–

�(α – )�[]
�

[
Dα–

+ v(t) –Dα–
+ v(t)|t=

]

= v(t) –
Dα–

+ v(t)|t=
�(α – )

tα– +
tα–

�(α – )�[]
�

[
Dα–

+ v(t)|t=
]
= v(t).

That is, Kp = (L|domL∩KerP)–. Since

Dα–
+ (Kpv)(t) =

∫ t


v(s)ds,

Dα–
+ (Kpv)(t) =

∫ t


(t – s)v(s)ds –


�[]

�

[∫ t


(t – s)v(s)ds

]
,

then

‖Kpv‖∞ ≤
(


�(α)

+
‖�‖

�(α – )|�[]|
)

‖v‖,
∥∥Dα–

+ (Kpv)
∥∥∞ ≤ ‖v‖,

∥∥Dα–
+ (Kpv)

∥∥∞ ≤
(
 +

‖�‖
|�[]|

)
‖v‖.

It follows that

‖Kpv‖Cα– ≤
(
 +


�(α)

+
( + �(α – ))‖�‖

�(α – )|�[]|
)

‖v‖.

Finally, we prove that Kp : ImL → domL ∩KerP ⊂ Cα–[, ] is completely continuous.
Let V ⊂ ImL ⊂ L[, ] be a bounded set. From the above discussion, we only need to
prove that KpV is equicontinuous on [, ]. For v ∈ V , t, t ∈ [, ] with t < t, we have

∣∣Dα–
+ (Kpv)(t) –Dα–

+ (Kpv)(t)
∣∣ =

∣∣∣∣
∫ t

t
v(s)ds

∣∣∣∣ ≤
∫ t

t

∣∣v(s)∣∣ds,
∣∣Dα–

+ (Kpv)(t) –Dα–
+ (Kpv)(t)

∣∣ =
∣∣∣∣
∫ t


(t – s)v(s)ds –

∫ t


(t – s)v(s)ds

∣∣∣∣
≤

∣∣∣∣
∫ t

t
(t – s)v(s)ds

∣∣∣∣ +
∣∣∣∣
∫ t


(t – t)v(s)ds

∣∣∣∣
≤

∫ t

t

∣∣v(s)∣∣ds + (t – t)‖v‖

and

∣∣(Kpv)(t) – (Kpv)(t)
∣∣

≤ 
�(α)

∣∣∣∣
∫ t


(t – s)α–v(s)ds –

∫ t


(t – s)α–v(s)ds

∣∣∣∣

http://www.advancesindifferenceequations.com/content/2013/1/233


Zou and Cui Advances in Difference Equations 2013, 2013:233 Page 10 of 25
http://www.advancesindifferenceequations.com/content/2013/1/233

+
|�[

∫ t
 (t – s)v(s)ds]|

�(α – )|�[]|
∣∣tα– – tα–∣∣

≤ 
�(α)

∣∣∣∣
∫ t

t
(t – s)α–v(s)ds

∣∣∣∣ + 
�(α)

∣∣∣∣
∫ t



(
(t – s)α– – (t – s)α–

)
v(s)ds

∣∣∣∣
+

‖�‖‖v‖
�(α – )|�[]|

∣∣tα– – tα–∣∣

≤ 
�(α)

∫ t

t

∣∣v(s)∣∣ds + α – 
�(α)

‖v‖(t – t) +
‖�‖‖v‖

�(α – )|�[]|
∣∣tα– – tα–∣∣.

Therefore, Kp(V ) is equicontinuous. Thus, the operator Kp : ImL → domL∩KerP is com-
pletely continuous. The proof is complete. �

Similar to Lemmas . and ., we can obtain the following lemma.

Lemma . If (A) holds, then KerL = {atα– : a ∈ R} and

ImL =
{
v :�

[∫ t


v(s)ds

]
= 

}
.

Furthermore, if �[t] �=  also holds, then L is a Fredholm operator of index zero and
dimKerL = codim ImL = . Here, the projectors P : Y → Y , Q : Z → Z can be defined as
follows:

(Pv)(t) =
Dα–

+ v(t)|t=
�(α – )

tα–,

(Qv)(t) =
�[

∫ t
 v(s)ds]
�[t]

.

The generalized inverse operator of L,KP : ImL→ domL∩KerP can be defined by

(Kpv)(t) = Iα+v(t) –
�[

∫ t
 (t – s)v(s)ds]
�(α)�[t]

tα–.

Also,

‖Kpv‖Cα– ≤ �‖v‖,

where � =  + 
�(α) +

(+�(α))‖�‖
�(α)|�[t]| .

Lemma . If (A) holds, then KerL = {atα– : a ∈ R} and

ImL =
{
v :�

[∫ t


(t – s)v(s)ds

]
= 

}
.

Furthermore, if �[t] �=  also holds, then L is a Fredholm operator of index zero and
dimKerL = codim ImL = . Here, the projectors P : Y → Y , Q : Z → Z can be defined as

http://www.advancesindifferenceequations.com/content/2013/1/233
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follows:

(Pv)(t) =
Dα–

+ v|t=
�(α – )

tα–,

(Qv)(t) =
�[

∫ t
 (t – s)v(s)ds]
�[t]

.

The generalized inverse operator of L,KP : ImL→ domL∩KerP can be defined by

(Kpv)(t) = Iα+v(t) –
�[

∫ t
 v(s)ds]

�(α)�[]
tα–.

Also,

‖Kpv‖Cα– ≤ �‖v‖,

where � =  + 
�(α) +

(+�(α))‖�‖
�(α)|�[]| and ‖�‖ is the norm of the continuous linear func-

tional �.

Lemma . If (A) holds, then

KerL =
{
u ∈ domL : u = atα– + btα–,a,b ∈R, t ∈ [, ]

}

and

ImL =
{
v ∈ Z :�

[∫ t


v(s)ds

]
= �

[∫ t


(t – s)v(s)ds

]
= 

}
.

Proof Let u(t) = atα– + btα–. Clearly, Dα
+u(t) =  and I–α

+ u(t)|t= = . Considering
(A), �[Dα–

+ u(t)] = �[�(α)] = �(α)�[] =  and �[Dα–
+ u(t)] = a�(α)�[t] + b�(α –

)�[] = . So,

{
u ∈ domL : u = atα– + btα–,a,b ∈R, t ∈ [, ]

} ⊂KerL.

If Lu =Dα
+u(t) = , then u(t) = atα– + btα– + ctα–. Considering Dα

+u(t) =  and (A), we
can obtain that

KerL ⊂ {
u ∈ domL : u = atα– + btα–,a,b ∈R, t ∈ [, ]

}
.

We now show that

ImL =
{
v ∈ Z :�

[∫ t


v(s)ds

]
= �

[∫ t


(t – s)v(s)ds

]
= 

}
.

If v ∈ ImL, then there exists u ∈ domL such that Dα
+u(t) = v(t). Hence,

u(t) =


�(α)

∫ t


(t – s)α–v(s)ds + atα– + btα–

http://www.advancesindifferenceequations.com/content/2013/1/233
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for some a,b ∈R. It yields

�
[
Dα–

+ u(t)
]
= �

[∫ t


v(s)ds

]
+ a�(α)�[] = �

[∫ t


v(s)ds

]
= 

and

�
[
Dα–

+ u(t)
]
= �

[∫ t


(t – s)v(s)ds

]
+ a�(α)�[t] + b�(α – )�[]

= �

[∫ t


(t – s)v(s)ds

]
= .

Therefore,

ImL ⊂
{
v ∈ Z :�

[∫ t


v(s)ds

]
= �

[∫ t


(t – s)v(s)ds

]
= 

}
.

On the other hand, suppose v ∈ Z satisfies

�

[∫ t


v(s)ds

]
= �

[∫ t


(t – s)v(s)ds

]
= .

Let

u(t) = Iα+v(t) =


�(α)

∫ t


(t – s)α–v(s)ds.

Obviously, Dα
+u(t) = v(t) and I–α

+ u(t)|t= = . Considering (A) and the linearity of �i

(i = , ), we have

�
[
Dα–

+ u(t)
]
= �

[∫ t


v(s)ds

]
= 

and

�
[
Dα–

+ u(t)
]
= �

[∫ t


(t – s)v(s)ds

]
= .

It yields

{
v ∈ Z :�

[∫ t


v(s)ds

]
= �

[∫ t


(t – s)v(s)ds

]
= 

}
⊂ ImL.

The proof is complete. �

Lemma . If �[t]�[t] – �[t]�[t] �= , then L is a Fredholm operator of index
zero and dimKerL = codim ImL = . Furthermore, the linear operator Kp : ImL → domL∩
KerP can be defined by

(Kpv)(t) = Iα+v(t).
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Also,

‖Kpv‖Cα– ≤
(
 +


�(α)

)
‖v‖.

Proof Firstly, we construct the mapping Q : Z → Z defined by

(Qv)(t) =
�[t]�[

∫ t
 v(s)ds] – �[t]�[

∫ t
 (t – s)v(s)ds]

�[t]�[t] – �[t]�[t]

–
�[t]�[

∫ t
 v(s)ds] – �[t]�[

∫ t
 (t – s)v(s)ds]

�[t]�[t] – �[t]�[t]
t.

Let

Tv =
�[t]�[

∫ t
 v(s)ds] – �[t]�[

∫ t
 (t – s)v(s)ds]

�[t]�[t] – �[t]�[t]

and

Tv = –
�[t]�[

∫ t
 v(s)ds] – �[t]�[

∫ t
 (t – s)v(s)ds]

�[t]�[t] – �[t]�[t]
.

We have

Qv = Tv + (Tv)t. (.)

Noting that

T(Tv) =
�[t]�[

∫ t
 (Tv)ds] – �[t]�[

∫ t
 (t – s)(Tv)ds]

�[t]�[t] – �[t]�[t]

=
�[t]�[

∫ t
 ds] – �[t]�[

∫ t
 (t – s)ds]

�[t]�[t] – �[t]�[t]
(Tv)

=
�[t]�[t] – �[t]�[ t



 ]
�[t]�[t] – �[t]�[t]

(Tv)

= Tv,

T(Tv) =
�[t]�[

∫ t
 (Tv)s ds] – �[t]�[

∫ t
 (t – s)(Tv)s ds]

�[t]�[t] – �[t]�[t]

=
�[t]�[

∫ t
 s ds] – �[t]�[

∫ t
 (t – s)s ds]

�[t]�[t] – �[t]�[t]
(Tv)

=
�[t]�[ t



 ] – �[t]�[ t


 ]
�[t]�[t] – �[t]�[t]

(Tv)

= ,

T(Tv) = –
�[t]�[

∫ t
 (Tv)ds] – �[t]�[

∫ t
 (t – s)(Tv)ds]

�[t]�[t] – �[t]�[t]

= –
�[t]�[

∫ t
 ds] – �[t]�[

∫ t
 (t – s)ds]

�[t]�[t] – �[t]�[t]
(Tv)
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= –
�[t]�[t] – �[t]�[ t



 ]
�[t]�[t] – �[t]�[t]

(Tv)

= 

and

T(Tv) = –
�[t]�[

∫ t
 (Tv)s ds] – �[t]�[

∫ t
 (t – s)(Tv)s ds]

�[t]�[t] – �[t]�[t]

= –
�[t]�[

∫ t
 s ds] – �[t]�[

∫ t
 (t – s)s ds]

�[t]�[t] – �[t]�[t]
(Tv)

= –
�[t]�[ t



 ] – �[t]�[ t


 ]
�[t]�[t] – �[t]�[t]

(Tv)

= Tv,

we have, for each v ∈ Z, that

Qv = T
(
Tv + (Tv)t

)
+ T

(
Tv + (Tv)t

)
t = Tv + (Tv)t =Qv.

So, Q : Z → Z is a well-defined projector.
Now we will show that KerQ = ImL. If v ∈ KerQ, from Qv = , we have Tv =  and

Tv = . Considering the definitions of T and T, we have

⎧⎨
⎩

�[t]�[
∫ t
 v(s)ds] – �[t]�[

∫ t
 (t – s)v(s)ds] = ,

�[t]�[
∫ t
 v(s)ds] – �[t]�[

∫ t
 (t – s)v(s)ds] = .

Since

∣∣∣∣∣
�[t] –�[t]
�[t] –�[t]

∣∣∣∣∣ = –�[t]�
[
t

]
+ �

[
t

]
�

[
t

] �= ,

so �[
∫ t
 v(s)ds] = �[

∫ t
 (t – s)v(s)ds] = , which yields v ∈ ImL. On the other hand, if

v ∈ ImL, from �[
∫ t
 v(s)ds] =�[

∫ t
 (t – s)v(s)ds] =  and the definition of Q, it is obvious

that Qv = , thus v ∈KerQ. Hence, KerQ = ImL.
For v ∈ Z, from v = (v –Qv) +Qv, v –Qv ∈ KerQ = ImL, Qv ∈ ImQ, we have Z = ImL +

ImQ. And for any v ∈ ImL∩ ImQ, from v ∈ ImQ, there exist constants a,b ∈ R such that
v(t) = a + bt. From v ∈ ImL, we obtain

⎧⎨
⎩

�[t] · a +�[ t


 ] · b = ,

�[ t


 ] · a +�[ t


 ] · b = .
(.)

In view of

∣∣∣∣∣
�[t] �[ t



 ]
�[ t



 ] �[ t


 ]

∣∣∣∣∣ =



�[t]�
[
t

]
–



�
[
t

]
�

[
t

] �= ,
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therefore (.) has a unique solution a = b = , which implies ImL ∩ ImQ = {θ} and Z =
ImL ⊕ ImQ. Since dimKerL = dim ImQ = codim ImL = , thus L is a Fredholm map of
index zero. Let P : Y → Y be defined by

(Pv)(t) =
Dα–

+ u(t)|t=
�(α)

tα– +
Dα–

+ u(t)|t=
�(α – )

tα–.

Then the generalized inverse Kp : ImL → domL∩KerP of L can be rewritten

(Kpv)(t) = Iα+v(t).

In fact, for v ∈ ImL, we have

I–α
+ (Kpv)(t)|t= = ,

�
[
Dα–

+ (Kpv)(t)
]
= �

[
Dα–

+ Iα+v(t)
]
= �

[∫ t


v(s)ds

]
= 

and

�
[
Dα–

+ (Kpv)(t)
]
= �

[∫ t


(t – s)v(s)ds

]
= ,

which implies that Kp is well defined on ImL. Moreover, for v ∈ ImL, we have

(LKp)v(t) =Dα
+I

α
+v(t) = v(t)

and for v ∈ domL∩KerP, we know

Iα+D
α
+v(t) = v(t) –

Dα–
+ v(t)|t=

�(α)
tα– –

Dα–
+ v(t)|t=
�(α – )

tα– –
I–α
+ v(t)|t=

�(α)
tα–,

v ∈ domL∩KerP means that I–α
+ v(t)|t= =Dα–

+ v(t)|t= =Dα–
+ v(t)|t= = . So,

(KpL)v(t) = Iα+D
α
+v(t) = v(t).

That is, Kp = (L|domL∩KerP)–. Since

Dα–
+ (Kpv)(t) =

∫ t


v(s)ds,

Dα–
+ (Kpv)(t) =

∫ t


(t – s)v(s)ds,

then

‖Kpv‖∞ ≤ 
�(α)

‖v‖,
∥∥Dα–

+ (Kpv)
∥∥∞ ≤ ‖v‖,

∥∥Dα–
+ (Kpv)

∥∥∞ ≤ ‖v‖.
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It follows that

‖Kpv‖Cα– ≤
(
 +


�(α)

)
‖v‖.

The proof is complete. �

3 Main results
From Lemma ., we can obtain the existence theorem for FBVP (.), (.).

Theorem . Assume that (A) and the following conditions hold:

∣∣f (t,x,x,x) – f (t, y, y, y)
∣∣ ≤ β

(|x – y| + |x – y| + |x – y|
)
.

Then FBVP (.), (.) has a unique solution in Cα–[, ] provided that

β

(
 +

‖�‖
|�[]| +


�(α)

+
‖�‖

�(α – )|�[]|
)(

 +
‖�‖
|�[]|

)
< .

Proof We shall prove that Tx = x has a unique solution in Cα–[, ]. For each u, v ∈
Cα–[, ], considering the linearity of �i (i = , ), we have

(Tu)(t) – (Tv)(t) =


�(α)

∫ t


(t – s)α–

(
(fu)(s) – (fu)(s)

)
ds

–
�[

∫ t
 ((fu)(s) – (fu)(s))ds]

�(α)�[]
tα–

–
�[

∫ t
 (t – s)((fu)(s) – (fu)(s))ds]

�(α – )�[]
tα–

+
�[

∫ t
 ((fu)(s) – (fu)(s))ds]�[t]
�(α – )�[]�[]

tα–.

Then

∣∣(Tu)(t) – (Tv)(t)
∣∣ ≤ β‖u – v‖Cα–

(


�(α)
+

‖�‖
�(α – )|�[]|

)(
 +

‖�‖
|�[]|

)
,

∣∣Dα–
+ (Tu)(t) –Dα–

+ (Tv)(t)
∣∣ ≤ β‖u – v‖Cα–

(
 +

‖�‖
|�[]|

)

and

∣∣Dα–
+ (Tu)(t) –Dα–

+ (Tv)(t)
∣∣ ≤ β‖u – v‖Cα–

(
 +

‖�‖
|�[]|

)(
 +

‖�‖
|�[]|

)
.

So,

‖Tu – Tv‖Cα– ≤ β‖u – v‖Cα–

(
 +

‖�‖
|�[]| +


�(α)

+
‖�‖

�(α – )|�[]|
)(

 +
‖�‖
|�[]|

)
.

The above inequality implies that T is a contraction. By using Banach’s contraction prin-
ciple, Tx = x has a unique solution in Cα–[, ]. From Lemma ., FBVP (.), (.) has a
unique solution in Cα–[, ]. The proof is complete. �
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From Lemmas .-. and Theorem ., we can obtain the existence theorem for FBVP
(.), (.) in the case of dimKerL = .

Theorem . Let f : [, ] × R
 → R be a continuous function. Assume that �[t] �= ,

(A) and the following conditions (H)-(H) hold:
(H) There exist functions α,β ,γ ,ω ∈ L[, ] such that for all (x, y, z) ∈R

, t ∈ [, ],

∣∣f (t,x, y)∣∣ ≤ ω(t) + α(t)|x| + β(t)|y| + γ (t)|z|.

(H) There exists a constant A >  such that for u ∈ domL, if |Dα–
+ u(t)| > A for all

t ∈ [, ], then �[
∫ t
 f (s,u(s),D

α–
+ u(s),Dα–

+ u(s))ds] �= .
(H) There exists a constant B >  such that either for each a ∈R : |a| > B,

a�

[∫ t


f
(
s,asα–,a�(α), 

)
ds

]
> 

or for each a ∈R : |a| > B,

a�

[∫ t


f
(
s,asα–,a�(α), 

)
ds

]
< .

Then FBVP (.), (.) has at least one solution in Cα–[, ] provided

(


�(α)
+  +�

)(‖α‖ + ‖β‖ + ‖γ ‖
)
< ,

where � is the same as in Lemma ..

Proof Set

 =
{
u ∈ domL\KerL : Lu = λNu for some λ ∈ [, ]

}
.

Then, for u ∈ , since Lu = λNu, so λ �= , Nu ∈ ImL =KerQ, hence

�

[∫ t


f
(
s,u(s),Dα–

+ u(s),Dα–
+ u(s)

)
ds

]
= .

Thus, from (H), there exists t ∈ [, ] such that

∣∣Dα–
+ u(t)

∣∣ ≤ A.

Now,

Dα–
+ u(t) =Dα–

+ u(t) +
∫ t

t
Dα

+u(s)ds,

and so
∣∣Dα–

+ u()
∣∣ ≤ ∥∥Dα–

+ u(t)
∥∥∞ ≤ ∣∣Dα–

+ u(t)
∣∣ + ∥∥Dα

+u(t)
∥∥


≤ A + ‖Lu‖ ≤ A + ‖Nu‖. (.)
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Again, for u ∈ , u ∈ domL\KerL, then (I –P)u ∈ domL∩KerP and LPu = . Thus, from
Lemma ., we have

∥∥(I – P)u
∥∥
Cα– =

∥∥KPL(I – P)u
∥∥
Cα– ≤ �

∥∥L(I – P)u
∥∥


≤ �‖Nu‖. (.)

From (.), (.), we have

‖u‖Cα– ≤ ‖Pu‖Cα– +
∥∥(I – P)u

∥∥
Cα–

=
(


�(α)

+ 
)∣∣Dα–

+ u()
∣∣ + ∥∥(I – P)u

∥∥
Cα–

≤ A
(


�(α)

+ 
)
+

(


�(α)
+  +�

)
‖Nu‖.

By this and (H), we have

‖u‖Cα– ≤ A
(


�(α)

+ 
)
+

(


�(α)
+  +�

)
‖ω‖

+
(


�(α)

+  +�

)(‖α‖ + ‖β‖ + ‖γ ‖
)‖u‖Cα–

and

‖u‖Cα– ≤ A( 
�(α) + ) + ( 

�(α) +  +�)‖ω‖
 – ( 

�(α) +  +�)(‖α‖ + ‖β‖ + ‖γ ‖) .

Therefore,  is bounded. Let

 = {u ∈KerL :Nu ∈ ImL}.

For u ∈ , there is u ∈ KerL = {u ∈ domL | u = atα–, t ∈ [, ],a ∈ R}, and Nu ∈ ImL,
thus

�

[∫ t


f
(
s,atα–,a�(α),a�(α)s

)
ds

]
= .

From (H), we get |a| ≤ A
�(α) , thus  is bounded.

Next, according to the condition (H), for any a ∈R, if |a| > B, then either

a�

[∫ t


f
(
s,asα–,a�(α), 

)
ds

]
<  (.)

or else

a�

[∫ t


f
(
s,asα–,a�(α), 

)
ds

]
> . (.)

If (.) holds, set

 =
{
u ∈KerL : –λJu + ( – λ)QNu = ,λ ∈ [, ]

}
,
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here Q is given by (.) and J :KerL → ImQ is the linear isomorphism given by J(atα–) =
a

�[t]
, ∀a ∈R, t ∈ [, ]. For u = atα– ∈ ,

λa = ( – λ)�

[∫ t


f
(
s,asα–,a�(α), 

)
ds

]
.

If λ = , then a = . Otherwise, if |a| > B, in view of (.), one has

a( – λ)�

[∫ t


f
(
s,asα–,a�(α), 

)
ds

]
< ,

which contradicts λa ≥ . Thus,  ⊂ {u ∈KerL | u = atα–, |a| ≤ B} is bounded.
If (.) holds, then define the set

 =
{
x ∈ KerL : λJu + ( – λ)QNu = ,λ ∈ [, ]

}
,

here J is as above. Similar to the above argument, we can show that  is bounded too.
In the following, we shall prove that all the conditions of Theorem . are satisfied. Let

 be a bounded open subset of Y such that
⋃

i= i ⊂ . By Lemma . and standard
arguments, we can prove that KP(I –Q)N : → Y is compact, thusN is L-compact on .
Then, by the above argument, we have

(i) Lu �= λNu, for every (u,λ) ∈ [(domL\KerL)∩ ∂]× (, ),
(ii) Nu /∈ ImL for u ∈KerL∩ ∂.

Finally, we will prove that (iii) of Theorem . is satisfied. LetH(u,λ) = ±λJu+ (–λ)QNu.
According to the above argument, we know

H(u,λ) �=  for u ∈KerL∩ ∂.

Thus, by the homotopy property of degree, we have

deg(QN |KerL,KerL∩ , ) = deg
(
H(·, ),KerL∩ , 

)
= deg

(
H(·, ),KerL∩ , 

)
= deg(J ,KerL∩ , ) �= .

Then, by Theorem ., Lu =Nu has at least one solution in domL∩ , so that FBVP (.),
(.) has a solution in Cα–[, ]. The proof is complete. �

Theorem . Let f : [, ] × R
 → R be a continuous function. Assume that �[t] �= ,

(A), (H) and the following conditions (H), (H) hold:
(H) There exists a constant A >  such that for u ∈ domL, if |Dα–

+ u(t)| + |Dα–
+ u(t)| > A

for all t ∈ [, ], then �[
∫ t
 f (s,u(s),D

α–
+ u(s),Dα–

+ u(s))ds] �= .
(H) There exists a constant B >  such that either for each a ∈R : |a| > B,

a�

[∫ t


f
(
s,asα–, ,a�(α – )

)
ds

]
> 

or for each a ∈R : |a| > B,

a�

[∫ t


f
(
s,asα–, ,a�(α – )

)
ds

]
< .
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Then FBVP (.), (.) has at least one solution in Cα–[, ] provided
(


�(α – )

+  +�

)(‖α‖ + ‖β‖ + ‖γ ‖
)
< ,

where � is the same as in Lemma ..

Theorem . Let f : [, ] × R
 → R be a continuous function. Assume that �[t] �= ,

(A), (H) and the following conditions (H), (H) hold:
(H) There exists a constant A >  such that for u ∈ domL, if |Dα–

+ u(t)| + |Dα–
+ u(t)| > A

for all t ∈ [, ], then �[
∫ t
 (t – s)f (s,u(s),Dα–

+ u(s),Dα–
+ u(s))ds] �= .

(H) There exists a constant B >  such that either for each a ∈R : |a| > B,

a�

[∫ t


(t – s)f

(
s,asα–, ,a�(α – )

)
ds

]
> 

or for each a ∈R : |a| > B,

a�

[∫ t


(t – s)f

(
s,asα–, ,a�(α – )

)
ds

]
< .

Then FBVP (.), (.) has at least one solution in Cα–[, ] provided
(


�(α – )

+  +�

)(‖α‖ + ‖β‖ + ‖γ ‖
)
< ,

where � is the same as in Lemma ..

The proofs of Theorem . and Theorem . are similar to that of Theorem .. So, we
omit them.
The above Theorem ., Theorem . and Theorem . are the existence of solutions

to FBVP (.), (.) in the case of dimKerL = . By making use of Theorem ., Lemma .
and Lemma ., we obtain the existence of solutions for FBVP (.), (.) in the case of
dimKerL = .

Theorem. Let f : [, ]×R
 → R be a continuous function.Assume that �[t]�[t]–

�[t]�[t] �= , (A), (H) and the following conditions (H), (H) hold:
(H) There exists a constant A >  such that for u ∈ domL, if |Dα–

+ u(t)| + |Dα–
+ u(t)| > A

for all t ∈ [, ], then

�

[∫ t


f
(
s,u(s),Dα–

+ u(s),Dα–
+ u(s)

)
ds

]
�=  or

�

[∫ t


(t – s)f

(
s,u(s),Dα–

+ u(s),Dα–
+ u(s)

)
ds

]
�= .

(H) There exists a constant B >  such that for a,a ∈R satisfying |a|+ |a| > B, either

a�

[∫ t


N

(
atα– + atα–

)
ds

]
> ,

a�

[∫ t


(t – s)N

(
atα– + atα–

)
ds

]
> 

(.)
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or

a�

[∫ t


N

(
atα– + atα–

)
ds

]
< ,

a�

[∫ t


(t – s)N

(
atα– + atα–

)
ds

]
< .

(.)

Then FBVP (.), (.) has at least one solution in Cα–[, ] provided

(


�(α)
+  +


�(α – )

)(‖α‖ + ‖β‖ + ‖γ ‖
)
< .

Proof Set

 =
{
u ∈ domL\KerL : Lu = λNu for some λ ∈ [, ]

}
.

Then, for u ∈ , since Lu = λNu, so λ �= , Nu ∈ ImL =KerQ, hence

�

[∫ t


f
(
s,u(s),Dα–

+ u(s),Dα–
+ u(s)

)
ds

]
= 

and

�

[∫ t


(t – s)f

(
s,u(s),Dα–

+ u(s),Dα–
+ u(s)

)
ds

]
= .

Thus, from (H), there exists t ∈ [, ] such that

∣∣Dα–
+ u(t)

∣∣ + ∣∣Dα–
+ u(t)

∣∣ ≤ A.

Now,

Dα–
+ u(t) =Dα–

+ u(t) +
∫ t

t
Dα

+u(s)ds,

Dα–
+ u(t) =Dα–

+ u(t) +
∫ t

t
Dα–

+ u(s)ds,

and so

∣∣Dα–
+ u()

∣∣ ≤ ∥∥Dα–
+ u(t)

∥∥∞ ≤ ∣∣Dα–
+ u(t)

∣∣ + ∥∥Dα
+u(t)

∥∥


≤ A + ‖Lu‖ ≤ A + ‖Nu‖, (.)
∣∣Dα–

+ u()
∣∣ ≤ ∥∥Dα–

+ u(t)
∥∥∞ ≤ ∣∣Dα–

+ u(t)
∣∣ + ∥∥Dα–

+ u(t)
∥∥


≤ ∣∣Dα–
+ u(t)

∣∣ + ∥∥Dα–
+ u(t)

∥∥∞

≤ ∣∣Dα–
+ u(t)

∣∣ + ∣∣Dα–
+ u(t)

∣∣ + ∥∥Dα
+u(t)

∥∥
 ≤ A + ‖Nu‖. (.)
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Again, for u ∈ , u ∈ domL\KerL, then (I –P)u ∈ domL∩KerP and LPu = . Thus, from
Lemma ., we have

∥∥(I – P)u
∥∥
Cα– =

∥∥KPL(I – P)u
∥∥
Cα– ≤

(
 +


�(α)

)∥∥L(I – P)u
∥∥


≤
(
 +


�(α)

)
‖Nu‖. (.)

From (.), (.) and (.), we have

‖u‖Cα– ≤ ‖Pu‖Cα– +
∥∥(I – P)u

∥∥
Cα–

=
(


�(α)

+ 
)∣∣Dα–

+ u()
∣∣ +

(


�(α – )
+ 

)∣∣Dα–
+ u()

∣∣ + ∥∥(I – P)u
∥∥
Cα–

≤ A
(


�(α)

+


�(α – )
+ 

)
+

(


�(α)
+  +


�(α – )

)
‖Nu‖.

By this and (H), we have

‖u‖Cα– ≤ A
(


�(α)

+


�(α – )
+ 

)
+

(


�(α)
+  +


�(α – )

)
‖ω‖

+
(


�(α)

+  +


�(α – )

)(‖α‖ + ‖β‖ + ‖γ ‖
)‖u‖Cα–

and

‖u‖Cα– ≤ A( 
�(α) +


�(α–) + ) + ( 

�(α) +  + 
�(α–) )‖ω‖

 – ( 
�(α) +  + 

�(α–) )(‖α‖ + ‖β‖ + ‖γ ‖) .

Therefore,  is bounded. Let

 = {u ∈KerL :Nu ∈ ImL}.

For u ∈ , there is u ∈KerL = {u ∈ domL | u = atα– + btα–, t ∈ [, ],a,b ∈R}, and Nu ∈
ImL, thus

�

[∫ t


f
(
s,asα– + bsα–,a�(α),a�(α)s + b�(α – )

)
ds

]
= 

and

�

[∫ t


(t – s)f

(
s,asα– + bsα–,a�(α),a�(α)s + b�(α – )

)
ds

]
= .

From (H), we get �(α)|a| + �(α – )|b| ≤ A. Then, for u ∈ , we have

‖u‖Cα– ≤ (
�(α) + 

)|a| + (
�(α – ) + 

)|b| ≤
(
 +


�(α – )

)
A,

thus  is bounded.
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Next, for any a,a ∈ R, define a linear isomorphism J :KerL → ImQ by

J
(
atα– + atα–

)
=
a�[t] – a�[t] – (a�[t] – a�[t])t

�[t]�[t] – �[t]�[t]
.

If (.) holds, set

 =
{
u ∈KerL : λJu + ( – λ)QNu = ,λ ∈ [, ]

}
,

where Q is given by (.). For u = atα– + atα– ∈ , from λJu + ( – λ)QNu = , we
obtain

�
[
t

](
aλ + ( – λ)�

[∫ t


Nu(s)ds

])

– �
[
t

](
aλ + ( – λ)�

[∫ t


(t – s)Nu(s)ds

])
= 

and

�
[
t

](
aλ + ( – λ)�

[∫ t


Nu(s)ds

])

– �[t]
(
aλ + ( – λ)�

[∫ t


(t – s)Nu(s)ds

])
= .

By �[t]�[t] – �[t]�[t] �= , it yields

⎧⎨
⎩
aλ + ( – λ)�[

∫ t
 Nu(s)ds] = ,

aλ + ( – λ)�[
∫ t
 (t – s)Nu(s)ds] = .

If λ = , then a = a = . Otherwise, if |a|+ |a| > B, considering the above equalities and
(.), we have

λ
(
a + a

)
= –( – λ)

[
a�

[∫ t


Nu(s)ds

]
+ a�

[∫ t


(t – s)Nu(s)ds

]]
< ,

which contradicts λ(a + a) ≥ . If (.) holds, then we take

 =
{
u ∈KerL : –λJu + ( – λ)QNu = ,λ ∈ [, ]

}

and, again, obtain a contradiction. Thus, in either case,

‖u‖Cα– =
∥∥atα– + atα–

∥∥
Cα–

≤ |a|
(
 + �(α)

)
+ |a|

(
 + �(α – )

)
≤ B

(
 + �(α) + �(α – )

)

for all u ∈ , that is,  is bounded.
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In the following, we shall prove that all the conditions of Theorem . are satisfied. Let
 be a bounded open subset of Y such that

⋃
i= i ⊂ . By Lemma . and standard

arguments, we can prove that KP(I –Q)N : → Y is compact, thusN is L-compact on .
Then, by the above argument, we have

(i) Lu �= λNu for every (u,λ) ∈ [(domL\KerL)∩ ∂]× (, ),
(ii) Nu /∈ ImL for u ∈KerL∩ ∂.

Finally, we will prove that (iii) of Theorem . is satisfied. LetH(u,λ) = ±λJu+ (–λ)QNu.
According to the above argument, we know

H(u,λ) �=  for u ∈KerL∩ ∂.

Thus, by the homotopy property of degree, we have

deg(QN |KerL,KerL∩ , ) = deg
(
H(·, ),KerL∩ , 

)
= deg

(
H(·, ),KerL∩ , 

)
= deg(±J ,KerL∩ , ) �= .

Then, by Theorem ., Lu =Nu has at least one solution in domL∩ , so that FBVP (.),
(.) has a solution in Cα–[, ]. The proof is complete. �
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