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Abstract
This paper investigates the existence and potential uniqueness of equilibrium points
and some stability, instability and oscillatory properties of a discrete nonlinear
epidemic model, which generalises previous Stevic’s model, whose solutions possess
memory from a finite chain of preceding samples. An application example is provided
where the proposed model is ‘ad hoc’ adapted to a class of SIS models widely used in
epidemiology.

1 Introduction
In this paper, some properties of equilibriumpoints as well as some stability and instability
properties of the following nonlinear discrete epidemic model are investigated:

xn+ =max

(
,

(
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k–∑
j=

F(xn–j)

)(
 –M(x̄n)e–AG(x̄n)

))
, n ∈N, (.)

with N =N ∪ {}, where x̄n = (xn,xn–, . . . ,xn–q+) is a q (∈ N)-tuple of values of the solu-
tion sequence previous to its (n + )th value and F : R+ → R and M,G : Rq

+ → R under
any set of initial conditions xi ≥ ; i =  – p,  – p, . . . , , where p =max(k,q), and A ∈ R+ is
a weighting forgetting factor in the model. Note that such sets of initial conditions guar-
antee that the associated solution sequence {xn}, n ∈ N ∪ (–p), where p = {, , . . . ,p}, is
nonnegative by construction. It has to be pointed out that Stevic studied negative solutions
of the epidemic model

xn+ =max

(
,

(
 –

k–∑
j=

xn–j

)(
 – e–Axn

))
(.)

for A ∈ (,∞) and also described and interpreted prior work on nonnegative solutions of
the same epidemic model and their stability, instability and oscillation properties []. See
also [–] for some related work. Later on, the discrete epidemic model was extended to
include two coupled extended difference equations []. It turns out that both continuous-
type and discrete-type epidemic models are of great importance in research nowadays
because of its intrinsic interest in medical applications and because of their rich dynamics
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which make them also attractive to mathematicians involved in the investigations of non-
linear differential and difference equations. See, for instance, [–]. Note that discrete
modelling techniques are very relevant in the study of ecology and biology problems as
well, like, for instance, the discretization of logistic equations [] leading to discretemod-
els such as those related to the well-known Riecker, Beverton-Holt and Hassel equations
(see, for instance, [–] and references therein). A way of establishing a direct generali-
sation of Zhang-Shi’s [], Stevic’s [], and Papaschinopoulos et al.’s [] analysis for a related
epidemic model is to restrict the codomains of the various functions to be nonnegative by
defining them as F : R+ → R+; M,G : Rq

+ → R+, where R+ = {z ∈ R : z ≥ } = R+ ∪ {}
with R+ = {z ∈ R : z > }. However, under a more general discussion, it can be allowed for
the functions to have ranges in R. The function F : R+ → R is assumed to be upper-
bounded and lower-bounded by known polynomials in x of degree q. The constraint
max(

∑k–
j= F(xn–j),M(x̄n)e–AG(x̄n)) ≤  for j ∈ N+ is not assumed so that both sequences

( –
∑k–

j= F(xn–j)), ( – M(x̄n)e–AG(x̄n)) may be eventually negative in (.) while generat-
ing a nonnegative solution sequence. Note that the solution evolution of the proposed
model can be interpreted as the propagation of the infection (say, roughly speaking, the
infected population or a normalised value for it) from certain initial conditions and sub-
ject to weighting factor parameterization and a number of discrete delays. A considerable
freedom of implementation of the proposed model in terms of choices of the parameter-
ization structures F ,M, A and the number of terms in the parameterization sequences is
allowed. The above model remembers, in a much more general context and discretized
version, the original Bernoulli proposal to introduce a simple epidemic model with just
a single variable being the solution of a scalar equation. However, this model can be use-
ful for situations involving two (or even three) variables as, for instance, the SI-epidemic
model when the total population remains constant for all time during the illness cycle, i.e.
for the case when mortality caused by the disease is not expected, or even for models of
three variables. Related interpretations and practical use are addressed in the simulated
examples, and it has to be pointed out that simple structures for epidemicmodels are often
preferred in medical structures compared to complex alternative structures. A simulated
example is also provided with a detailed study combining the proposed epidemic models
with a class of SIS epidemic models that have been previously known in the background
literature [, ]. Finally, it has to be pointed out that the properties of stability, instability
and oscillatory behaviour of the solutions are very relevant issues in the study of epidemic
models. See, for instance, [–] and references therein. Thus, the study and associated
discussion provided concerning the proposed model pay a special attention to them.

2 Equilibrium points
To study the existence of potential equilibrium points, we set the values of solution se-
quence (.) to a constant one x, which yields

x =max
(
,

(
 – kF(x)

)(
 –M(x̄)e–AG(x̄)

))
, (.)

where x̄ = (x,x, . . . ,x) is in Rq. Define g : R+ → R as follows:

g(x) =max
(
,

(
 – kF(x)

)(
 –M(x̄)e–AG(x̄)

))
– x. (.)
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Note that x ∈ R+ is an equilibrium point of (.) if and only if g(x) = . The existence of
equilibrium points of (.) are subject to the following direct result.

Theorem . The following properties hold.
(i) x =  is an equilibrium point of (.) if and only if g() = , equivalently if and only if

( – kF())( –M(̄)e–AG(̄)) ≤ , where  ∈ R and ̄ = (, , . . . , ) ∈ Rq, equivalently if and
only if

(
F() = /k

) ∨ (
M(̄) = eAG(̄)

)
∨ ([(

F() 	= /k
) ∧M(̄) 	= eAG(̄)

] ⇔ [(
 – kF()

)(
 –M(̄)e–AG(̄)

)
< 

])
,

where the symbols ‘∨’ and ‘∧’ stand for ‘or’ and ‘and’ (i.e. for logic disjunction and conjunc-
tion, respectively).
(ii) x ∈ R+ (respectively, x ∈ R+) is a positive (respectively, a nonnegative) equilibrium

point of (.) if and only g(x) =  for such x ∈ R+ (respectively, for such x ∈ R+). If g(x) 	=  ⇔
( – kF(x))( –M(x̄)e–AG(x̄)) 	= x > ; ∀x ∈ [x,x] ⊂ R+, then there is no equilibrium point
of (.) within the real interval [x,x]. Finally, a necessary condition for x ∈ R+ (respec-
tively, for x ∈ R+) to be an equilibrium point of (.) is that ( – kF(x))( –M(x̄)e–AG(x̄)) ≥ 
(respectively, ( – kF(x))( –M(x̄)e–AG(x̄)) > ).
(iii) There is no positive (respectively, no nonnegative) equilibrium point of (.) if and

only if g(x) 	= ; ∀x ∈ R+ (respectively, if and only if g(x) 	= ; ∀x ∈ R+).
(iv) x =  is the unique nonnegative equilibrium point of (.) if and only if ( – kF(x))( –

M(x̄)e–AG(x̄))≤ ; ∀x ∈ R+.

Proof It follows that x =  is an equilibrium point of (.) if and only if g() =  ⇔ ( –
kF())( – M(̄)e–AG(̄)) ≤  from (.)-(.). This proves directly Property (i). To prove
Property (ii), note that the logic proposition g(x) 	=  ⇔ ( – kF(x))( –M(x̄)e–AG(x̄)) 	= x > 
for any x ∈ [x,x] ⊂ R+ is equivalent to its contrapositive logic proposition ¬∃x ∈ [x,x]
such that ( – kF(x))( –M(x̄)e–AG(x̄)) ≤  ⇔ g(x) =  (‘¬’ stands for logic negation) so that
there is no equilibrium point of (.) in [x,x]. This proves the first part of Property (ii).
The last part of Property (ii) follows by contradiction since (– kF(x))(–M(x̄)e–AG(x̄)) ≤ 
implies g(x) = –x < ; ∀x ∈ R+, so that there is no positive equilibrium point of (.), and,
on the other hand, g(x) =  if and only if x =  is an equilibrium point, which is impossible
since ( – kF())( – M(̄)e–AG(̄)) > . Hence, Property (ii). Property (iii) is direct since
any equilibrium point of (.) in R+ implies and is implied by the condition g(x) = . The
sufficiency part of Property (iv) follows since the given condition implies that g() = ,
then x =  is an equilibrium point of (.) and g(x) = –x <  for x ∈ R+, so that there is no
positive equilibrium point of (.). The necessity part of Property (iv) follows since x = 
is an equilibrium point of (.) only if ( – kF())( –M(̄)e–AG(̄)) ≤ , which is unique in
R+, since any x ∈ R+ is an equilibrium point of (.) only if ( – kF(x))( –M(x̄)e–AG(x̄)) > 
from Property (ii). �

Someparts of the subsequent analysis are simplified subject to the following assumption.

Assumption . F : R+ → R is differentiable on R+ and M,G : Rq
+ → R are differen-

tiable in Rq
+.
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Note that if Assumption . holds, then g : R+ → R is also everywhere differentiable.
The following result is a direct conclusion of Theorem ..

Theorem . A sufficient condition for x ∈ R+ to be the unique equilibrium point of (.)
is that g(x) =  and g : R+ → R fulfils one of the conditions below:
(a) strictly monotone in R+;
(b) non-decreasing (or, respectively, decreasing) in [x,∞) and, furthermore, strictly in-

creasing (or, respectively, strictly decreasing) in some real subinterval [x,x) ⊆ [x,∞) of
nonzero measure and, in addition if x ∈ R+, either strictly decreasing (or, respectively,
strictly increasing) in some interval [x,x] ⊂ R+ of nonzero measure and, correspond-
ingly, either decreasing (or, respectively, non-decreasing) in some (eventually being of zero
measure) interval [,x];
(c) non-decreasing (or, respectively, decreasing) in [,∞) and, furthermore, strictly in-

creasing (or, respectively, strictly decreasing) in some real subinterval [x,x) ⊆ [,x) of
nonzero measure.
The result also holds under Assumption . if g ′ : R+ → R is continuous, nonzero, and

has a constant sign in some real intervals [x,x) ⊆ [,x) and (x,x) ⊆ [x,∞) of nonzero
measure while being identically zero in [,x)∪ [x,∞).

Proof If g(x) =  for some x ∈ R+ and g : R+ → R is strictly monotone, then g(x) 	= ;
∀x (	= x) ∈ R+ so that there is no equilibriumpoint of (.) other than x onR+. The result
has been proven under Condition (a). Now, assume that g : R+ → R is strictly increasing
in [x,x) ⊆ [x,∞) and non-decreasing in [x,∞). Then, g(x) ≥ g(x) > g(y) > g(x) = ;
∀x ∈ (x,∞), ∀y ∈ (x,x). If g : R+ → R is strictly decreasing in [x,x) ⊆ [x,∞) and de-
creasing in [x,∞), then  = g(x) > g(y) > g(x) ≥ g(x); ∀y ∈ (x,x), ∀x ∈ (x,∞). Thus,
x is the unique equilibrium point of (.) in [x,∞). The result under Condition (b) is al-
ready proven for x =  but not yet for x ∈ R+. Thus, assume now that x ∈ R+, that the
above conditions hold and that, in addition, g : R+ → R is either strictly decreasing (or,
respectively, strictly increasing) in some interval [x,x] ⊂ R+ of nonzero measure and,
correspondingly, is either decreasing (or, respectively, non-decreasing) within an interval
[,x] being of zero or nonzero measure. Then, there is no x (	= x) ∈ R+ being an equi-
librium point of (.). Hence, the result fully follows under Condition (b). A particular
case occurs when the function is continuously differentiable and either strictly increasing
or strictly decreasing in each of the real intervals [,x) and (x,∞). Hence, the theorem.

�

Theorem . Assume that F : R+ → R satisfies {x ∈ R+ : F(x) = /k} = ∅ and that As-
sumption . holds with all the derivatives referred to as being everywhere continuous in
their definition domains. Define m′ : R+ → R as

m′(x) =
(
AG′(x) +

kF ′(x)
 – kF(x)

)
M(x̄) –

 + kF ′(x)
 – kF(x)

eAG(x̄); ∀x ∈ R+. (.)

Then the following properties hold.
(i)Assume that F : R+ → R+ andM,G : Rq

+ → R+ satisfy (–kF())(–M(̄)e–AG(̄)) ≤
, and

M′(x) =m′(x) + ε(x); ∀x ∈ R+ (.)
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for some given everywhere continuous ε : R+ → R+ if g() < , where

g ′() =

⎧⎪⎨
⎪⎩
– if ( – kF())( –M(̄)e–AG(̄)) < ,
[M(̄)AG′(̄) –M′(̄)]( – kF())e–AG(̄)

+ kF ′()(M(̄)e–AG(̄) – ) –  if ( – kF())( –M(̄)e–AG(̄)) = .
(.)

Then x =  is the unique nonnegative equilibrium point of (.) in R+.
(ii) Property (i) also holds if ( – kF())( –M(̄)e–AG(̄)) =  and if M′(x) =m′(x) – ε(x);

∀x ∈ R+ with g ′() > , where

g ′() =
[
M(̄)AG′(̄) –M′(̄)

](
 – kF()

)
e–AG(̄) + kF ′()

(
M(̄)e–AG(̄) – 

)
–  (.)

and ε : R+ → R+ is everywhere continuous.
(iii) Assume that F : R+ → R+ and M,G : Rq

+ → R+ satisfy ( – kF())( –
M(̄)e–AG(̄)) > . Then ∃x ∈ R+, which satisfies g(x) = , is a unique nonnegative equi-
librium point of (.) if M′(x) =m′(x) + ε(x) subject to (.) with ε : R+ → R+ being every-
where continuous, (strictly) positive in [,x + ε] for some sufficiently largeε ∈ R+, and
decreasing in R+.
(iv) Assume that F : R+ → R+ and M,G : Rq

+ → R+ satisfy g() = ( – kF())( –
M(̄)e–AG(̄)) > . Then, ¬∃x ∈ R+ is a nonnegative equilibrium point of (.) if M′(x) =
m′(x) – ε(x) with ε : R+ → R+ is everywhere continuous.

Proof Property (i) is first proven. Direct calculation from (.) under Assumption .
yields

g ′(x) =
(
 – kF(x)

)(
AG′(x̄)M′(x̄) –M(x̄)

)
e–AG(x̄) – kF ′(x)

(
 –M(x̄)e–AG(x̄)

)
– 

=
[
M(x̄)

(
AG′(x̄)

(
 – kF(x)

)
+ kF ′(x)

)
–M′(x̄)

(
 – kF(x)

)]
e–AG(x̄) – kF ′(x) – 

=
[
M(x̄)AG′(x̄) –M′(x̄)

](
 – kF(x)

)
e–AG(x̄) + kF ′(x)

(
M(x̄)e–AG(x̄) – 

)
–  (.)

for any x ∈ R+ such that (–kF(x))(–M(x̄)e–AG(x̄)) ≥ , and g ′(x) = – for any x ∈ R+ such
that ( – kF(x))( –M(x̄)e–AG(x̄)) ≤ . It is assumed that g ′() = a –  < g() = , obtained
from (.), where a = a() is defined by

a =

⎧⎪⎨
⎪⎩
 if ( – kF())( –M(̄)e–AG(̄)) < ,
[M(̄)AG′(̄) –M′(̄)]( – kF())e–AG(̄)

+ kF ′()(M(̄)e–AG(̄) – ) otherwise.
(.)

Definem′ : R+ → R as

m′(x) =
(
AG′(x) +

kF ′(x)
 – kF(x)

)
M(x̄) –

 + kF ′(x)
 – kF(x)

eAG(x̄); ∀x ∈ R+, (.)

which is everywhere continuous in R+ since the subset of its second-class discontinuity
points is empty by hypothesis. Then, from (.), one has for any x ∈ R+ such that F(x) 	= /k,

http://www.advancesindifferenceequations.com/content/2013/1/234
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then for any x ∈ R+ since {x ∈ R+ : F(x) = /k} =∅, that

g ′(x)≤  ⇔ M′(x)≥ m′(x); g ′(x) <  ⇔ M′(x) >m′(x);

g ′(x) =  ⇔ M′(x) =m′(x); ∀x ∈ R+,
(.a)

g ′(x) ≥  ⇔ M′(x)≤ m′(x);

g ′(x) >  ⇔ M′(x) <m′(x); ∀x ∈ R+.
(.b)

Now, x =  is an equilibrium point of (.), equivalently, g() = , with ( – kF())( –
M(̄)e–AG(̄)) ≤  and g ′() = a–  <  with a =  if ( – kF())( –M(̄)e–AG(̄)) <  and a =
a() = (M(̄)AG′(̄)–M′(̄))(–kF())e–AG(̄) +kF ′()(M(̄)e–AG(̄) – ) <  if (–kF())(–
M(̄)e–AG(̄)) = . In both cases, g ′() <  and, since g ′ : R+ → R is continuous from (.)-
(.), since {x ∈ R+ : F(x) = /k} = ∅ implies that m′ : R+ → R is continuous, there is
some x ∈ R+ such that g : R+ → R is strictly decreasing on [,x) from (.)-(.). Thus,
 	= g(x) < g() = ; ∀x ∈ [,x) and g(x) ≤ g(x) < g() = ; ∀x ∈ R+ since g : R+ → R is
decreasing in R+ if (.a) holds. Hence, Property (i). Property (ii) is a dual property of (i)
with g ′() = a –  > g() =  and g : R+ → R being non-decreasing in R+ under (.b).
Property (iii) holds since g() = ( – kF())( –M(̄)e–AG(̄)) >  (so that x =  is not an

equilibrium point of (.)) with g : R+ → R being strictly decreasing in [,x + ε] and
decreasing on [,∞) from (.a) for some x ∈ R+ (since ε : R+\[,x + ε] → R+) which
exists so that g(x) ≤ g(x +ε) < g(x) =  < g(y); ∀x (> x), y (< x) ∈ R+. Then x is the unique
equilibrium point of (.) in R+ if ε is large enough. Property (iv) holds since g() >  (so
that x =  is not an equilibrium point of (.)) with g : R+ → R being non-decreasing in
[,∞) from (.b). Then there is no equilibrium point of (.) in R+. �

The existence of the zero equilibrium and another positive equilibrium point of (.) can
be given by a direct extension of Theorem .(i)-(ii) as follows.

Theorem . Assume that F : R+ → R satisfies {x ∈ R+ : F(x) = /k} = ∅ and that As-
sumption . holds with all the derivatives referred to as being everywhere continuous in
their definition domains. Then the following properties hold.
(i) Assume, in addition, that F : R+ → R+ and M,G : Rq

+ → R+ satisfy ( – kF())( –
M(̄)e–AG(̄)) ≤ ,M′(x) =m′(x)+ε(x); ∀x ∈ [,x) andM′(x) =m′(x)–ε(x); ∀x ∈ [x,∞) for
some x ∈ R+, any continuous ε : R+ → R+ with g ′() <  satisfying (.) (i.e. g ′() = a– <
 if ( – kF())( –M(̄)e–AG(̄)) =  and g ′() = – <  if ( – kF())( –M(̄)e–AG(̄)) < ).
Then, x =  and x = x > x for some x ∈ R+ are the only two nonnegative equilibrium
points of (.) in R+.
(ii) Property (i) also holds if ( – kF())( –M(̄)e–AG(̄)) =  and if M′(x) =m′(x) – ε(x);

∀x ∈ [,x) and M′(x) =m′(x) + ε(x); ∀x ∈ [x,∞) for some x ∈ R+ and g ′() > , according
to (.), for any continuous ε : R+ → R+.

Outline of proof The proof of Property (i) follows with g : R+ → R being strictly de-
creasing on some interval [,x) with g ′() <  and strictly increasing on [x,∞) since
g ′() = – <  if ( – kF())( –M(̄)e–AG(̄)) <  and g ′() = a– <  if g() = (– kF())( –
M(̄)e–AG(̄)) = . Then there is x (> x) ∈ R+ such that  = g() > g(x) > g(x) < g(y) <
g(x) =  < g(z); ∀x ∈ (,x), x ∈ (x,x), ∀z ∈ (x,∞). Then there is no x ∈ R+ other than

http://www.advancesindifferenceequations.com/content/2013/1/234
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x =  and x = x such that g(x) = . Hence, Property (i). The proof of Property (ii) is sim-
ilar by noting that  = g() < g(x) < g(x) > g(y) > g(x) =  > g(z) with g(x) being strictly
increasing in [,x) and strictly decreasing in (x,∞). Hence, the result. �

Note that the conditions of Theorem . can be relaxed in the sense that it is not neces-
sary for g : R+ → R to be strictly monotone in (x,∞) but non-decreasing for Part (i) and
decreasing for Part (ii).

Examples . () If we consider the particular case p = , x = x̄, F(x) = G(x) = x, then
F() = G() = , M(x) =M() =  so that F ′(x) = G′(x) = F ′() = G′() = , M′(x) =M′() =
, one gets fromTheorem .(i) that the conditionM′() =  ≥ A–, equivalently,  < A≤
, leads to x =  being an equilibriumpoint of (.). Also, one has again fromTheorem.(i)
that g() =  and the following condition holds for x ∈ [, /k) and  < A≤ :

 =M′(x)≥ m′(x) = A –


 – kx
(
eAx + k

(
eAx – 

))
.

Then x =  is the only equilibrium point of (.) if  < A≤  for any k ∈N, since g : R+ →
R+ is decreasing for x ∈ [, /k) from the above inequality and g ′() <  implies that¬∃x ∈
R+ such that g(x) = . This coincides with former results obtained in [, ] for k = .
() Consider the equilibrium equation x = ( + kx)(eAx + ) of xn+ = ( +

∑k–
j= xn–j)( +

eAxn ) with min(x–i : i ∈ p) ≥ . Thus, F(x) = G(x) = –x, F ′(x) = G′(x) = –, M(x) = –,
M′(x) = , g() = , g ′() = A + k –  > , and g : R+ → R+ is not decreasing for A ≥ 
since

 =M′(x)≥ m′(x) = A +


 + kx
(
k
(
e–Ax + 

)
– e–Ax

)
cannot hold for x ∈ R+. Thus, ¬∃x ∈ R+ is an equilibrium point for any A ≥ .

Theorems ., . and . may be extended by removing the condition {x ∈ R+ : F(x) =
/k} = ∅ and the continuity of the derivatives of the vector functions in Assumption .
by allowing such derivatives to be impulsive at the points of x ∈ R+ such that F(x) = /k,
if any. The sign of eventual impulses should be such that they do not change the needed
non-decreasing, decreasing or strictly monotone properties of g : R+ → R. We denote in
the following by f (x–) the left limits and by f (x) the right limits of functions at points of
the functions f : R+ → Rwhich are distinct if such functions are discontinuous at x. Such
an extension is as follows.

Theorem . Let Assumption . hold with F : R+ → R being continuous on R+\Simp

and impulsive on Simp, and M′,G′ : Rp
+ → R being continuous on Rp

+\Simp and impul-
sive on Simp, where Simp = {x ∈ R+ : F(x) = /k} and Simp = {x̄ = (x,x, . . . ,x) ∈ Rp

+ : x ∈ Simp}
which can be empty or nonempty (note that x̄ ∈ Simp if and only if x ∈ Simp). Let the function
m′ : R+ → R be defined in (.). Then the following properties hold.
(i)Assume that F : R+ → R+ andM,G : Rq

+ → R+ satisfy (–kF())(–M(̄)e–AG(̄)) ≤
, and M′(x) = m′(x) + ε(x); ∀x ∈ R+ for some continuous ε : R+ → R+ being ev-
erywhere continuous and satisfying (.). Then x =  is the unique nonnegative equi-
librium point of (.) in R+ provided that either F ′(x)M(x̄) – ( + kF ′(x))eAG(x̄) =  or
sgn(F ′(x)M(x̄) – ( + kF ′(x))eAG(x̄)) < ; ∀x ∈ Simp.

http://www.advancesindifferenceequations.com/content/2013/1/234


De la Sen and Alonso-Quesada Advances in Difference Equations 2013, 2013:234 Page 8 of 29
http://www.advancesindifferenceequations.com/content/2013/1/234

(ii) Property (i) also holds if ( – kF())( – M(̄)e–AG(̄)) =  and if M′(x) = m′(x) –
ε(x); ∀x ∈ R+ with ε : R+ → R+ being everywhere continuous and satisfying (.) and
g ′() >  provided that either F ′(x)M(x̄) – ( + kF ′(x))eAG(x̄) =  or sgn(F ′(x)M(x̄) – ( +
kF ′(x))eAG(x̄)) > ; ∀x ∈ Simp.
(iii) Assume that F : R+ → R+ and M,G : Rq

+ → R+ satisfy ( – kF())( –
M(̄)e–AG(̄)) > . Then, ∃x ∈ R+, which satisfies g(x) = , is then a unique nonnegative
equilibrium point of (.) if M′(x) = m′(x) + ε(x), with ε : R+ → R+ being everywhere
continuous and strictly decreasing in [,x] and decreasing in (x,∞), provided that g ′()
fulfils (.), F ′(x)M(x̄) – ( + kF ′(x))eAG(x̄) = , or sgn(F ′(x)M(x̄) – ( + kF ′(x))eAG(x̄)) <  with
F ′(x)M(x̄)–(+kF ′(x))eAG(x̄)

–KF(x) ≤ –g(x–); ∀x ∈ Simp. If F ′(x)M(x̄)–(+kF ′(x))eAG(x̄)
–KF(x) = –g(x–), then x = x.

(iv) Assume that F : R+ → R+ and M,G : Rq
+ → R+ satisfy ( – kF())( –

M(̄)e–AG(̄)) > . Then ¬∃x ∈ R+ is a nonnegative equilibrium point of (.) if M′(x) =
m′(x)–ε(x)with ε : R+ → R+ being everywhere continuous, and g ′() subject to (.), pro-
vided that either F ′(x)M(x̄) – (+ kF ′(x))eAG(x̄) =  or sgn(F ′(x)M(x̄) – (+ kF ′(x)e)AG(x̄)) > ;
∀x ∈ Simp.

Outline of proof Note that the various extended conditions in Theorem .(i)-(iv) with
respect to those of Theorem . imply that g(x) ≤ g(x–) (respectively, g(x) ≥ g(x–)) if x ∈
Simp and g : (x – ε,x) → R is decreasing (respectively, non-decreasing) for some ε ∈ R+

since the constraints M′(x) =m′(x)± ε(x) of Theorem . also hold at the discontinuities
ofm′(x) at x = –/k. �

3 Stability results
A result on boundedness of the solutions of (.) and then its stability under certain para-
metrical constraints is now given as follows.

Theorem . Assume the following:
() The real sequences {Fn} and {Mn} of respective general terms Fn = F(xn) and

Mn =M(x̄n) satisfy the constraints νnxn ≤ Fn ≤ μnxn and
δnmaxn–p+≤i≤n xi ≤ Mn ≤ ωnmaxn–p+≤i≤n xi for some nonnegative real sequences
{νn}, {μn}, {δn} and {ωn} with μn ≥ νn and ωn ≥ δn; ∀n ∈N.

() There are a,b (≥ a) ∈ R+ such that b ≥ xi ≥ a; i =  – p,  – p, . . . , .
() G : Rq

+ → R, which generates the real sequence {Gn} of general terms Gn =G(xn)
satisfies the following constraints on R+:

a≤ Gn(x)≤ b if A≥ ; a ≥ Gn(x) ≥ b if A < .

Then the following properties hold:
(i) b ≥ xi ≥ a; ∀i ∈ { – p,  – p, . . . , } ∪N if the sequences {νn}, {μn} satisfy

eAb

a(
∑k–

j= νn–j)

[
a + b

(
ωne–Aa +

k–∑
j=

μn–j

)
– 

]

≤ δn ≤ ωn ≤ eAa

b(
∑k–

j= μn–j)

[
b + a

(
δne–Ab +

k–∑
j=

νn–j

)
– 

]
; (.)

∀n ∈ N for given a, b, {νn} and {μn}.
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(ii) A sufficient condition for (.) to hold is

(
 –


ab(

∑k–
j= νn–j)(

∑k–
j= μn–j)

)– eAb

a(
∑k–

j= νn–j)

×
[
a –  + b

( k–∑
j=

μn–j

)
+

∑k–
j= νn–j

+
b(

∑k–
j= μn–j – )

a(
∑k–

j= νn–j)

]

≤ δn ≤ ωn

≤
(
 –


ab(

∑k–
j= νn–j)(

∑k–
j= μn–j)

)– eAa

b(
∑k–

j= μn–j)

×
[
b –  + a

( k–∑
j=

νn–j

)
+

∑k–
j= μn–j

+
a(

∑k–
j= νn–j – )

b(
∑k–

j= μn–j)

]
;

∀n ∈ N provided that (
∑k–

j= νn–j)(
∑k–

j= μn–j) 	= 
ab .

Proof Note that  –ωnx̄ne–Aa ≤  –Mne–AGn ≤  – δnx̄ne–Ab; ∀n ∈N since

[(
a ≤ Gn(x)≤ b if A≥ 

) ∧ (
a ≥ Gn(x)≥ b if A < 

)]
⇒ [

eAa ≤ eAGn ≤ eAb
]
; ∀n ∈N.

Assume that  ≤ a ≤ xn ≤ b < ∞ for some a,b (≥ a) ∈ R+ and p (≥ n) ∈ N. Proceed now
by complete induction by assuming that if there is some n (≥ p) ∈ N such that b ≥ xi ≥ a;
∀i ∈ n̄, then b ≥ xn+ ≥ a. If xn+ = , this holds trivially for any a,b (≥ a) ∈ R+. Note that
for i ∈ n̄,

νia≤ Fi ≤ μib; eAa ≤ eAGi ≤ eAb, bωie–Aa ≥ Mie–AGi ≥ aδie–Ab, (.)

 – bωie–Aa ≤  –ωix̄ie–Aa ≤  –Mie–AGi ≤  – δix̄ie–Ab ≤  – aδie–Ab. (.)

If xn+ 	=  then it satisfies from (.) by using (.)-(.) that

a ≤ aδn

( k–∑
j=

νn–j

)
e–Ab – b

(
ωne–Aa +

k–∑
j=

μn–j

)
+ 

≤ xn+ =

(
 –

k–∑
j=

Fn–j

)(
 –Mne–AGn

)

= –Fn + FnMne–AGn +

( k–∑
j=

Fn–j

)
Mne–AGn –

( k–∑
j=

Fn–j

)
–Mne–AGn + 

≤ bωn

( k–∑
j=

μn–j

)
e–Aa – a

(
δne–Ab +

k–∑
j=

νn–j

)
+  ≤ b; (.)

∀n ∈ N provided that (.) holds. Thus, if b≥ xi ≥ a; i = –p,  –p, . . . , , then b ≥ xi ≥ a;
∀i ∈ { – p,  – p, . . . , } ∪N. Hence, Property (i).
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Property (ii) follows by replacing the lower-bound of δn of (.) in the upper-bound of
ωn to get a more stringent upper-bound ωn of ωn, which does not depend on δn since

ωn ≤ ωn

=
eAa

b(
∑k–

j= μn–j)

[
b –  + a

( k–∑
j=

νn–j

)

+


a(
∑k–

j= νn–j)

(
a + bωne–Aa + b

k–∑
j=

μn–j – 

)]
; ∀n ∈N.

In a close way, we can get a more stringent lower-bound δn of δn, which does not depend
on ωn since

δn ≥ δn

=
eAb

a(
∑k–

j= νn–j)

[
a –  + b

( k–∑
j=

μn–j

)

+


b(
∑k–

j= μn–j)

(
b + aδne–Ab + a

k–∑
j=

νn–j – 

)]
; ∀n ∈ N. �

Remark . (Brief historical note) It can be pointed out that assumptions of the type in
the assumption in Theorem . are very relevant to some classical control problems for
both continuous-time or discrete-time descriptions of dynamic systems, like, for instance,
those of absolute stability in the Lure and Popov (following Vasile Mihai Popov - Galati,
Romania, ) senses or Popovian hyperstability []. Basically, if there are uncertain-
ties in parameterization, which is a very common drawback from fabrication dispersion
of components for devices constructed for applications, a robust regulator or controller,
in general, has to be able to stabilise all the particular elements of the whole series within
some error margin, not just the theoretically nominal one. The lack in appropriately for-
mulating that problem implied during SecondWorldWar II a lack of well-regulated equi-
librium positioning of guns of some Soviet military tanks with the associate lack of effec-
tiveness in military operations. This was the initial point of the theory of Popov’s absolute
stability later on being generalised to hyperstability after including the phenomena of ex-
istence of unmodelled dynamics. This was apparently one of the reasons for Popov’s deci-
sion of to investigate the simultaneous stabilization of devices of the same family subject
to parametrical dispersion of components related to a theoretical nominal ideal device
(source: old private communication by PhD supervisor ID Landau, a former Popov’s col-
laborator and later on a relevant researcher in the field, to the first author of this paper).
See also [] for relevant content honouring Popov’s work. In the context of this paper,
we can attribute the unmodelled or parametrical errors to a non-exact parameterization
of the epidemic model for each possible situation.

A set of stability and instability properties, implying, furthermore, that any nontrivial
solution of (.) is strictly monotone for n ∈ N, are presented in the next two results.
Some of the properties depend on parametrical conditions of lower- and upper-bounding
sequences of {Fn}.
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Theorem . Assume that the real sequence {Fn} satisfies the constraints
∑m

i= νnixin ≤
Fn ≤ ∑m

i= μnixin for some real sequences {νni}, {μni} with μni ≥ νni; i ∈ m ∪ {}, ∀n ∈ N.
The following properties hold.
(i) Any nontrivial nonnegative solution {xn} of (.) is uniformly bounded and strictly de-

creasing for n ∈ N and initial conditions  ≥ min(,minn∈N+ (
–

∑n
j=n–k+ μj∑n

j=n–k+
∑m

i= μji
)) ≥ x–p+ ≥

· · · ≥ x– ≥ x, and then it converges to the zero equilibrium point under the following con-
dition:

([( n∑
j=n–k+

μj < 

)
∧

( n∑
j=n–k+

m∑
i=

μji ≥ 

)]

∨
[( n∑

j=n–k+

μj > 

)
∧

( n∑
j=n–k+

m∑
i=

μji ≤ 

)])

∧ (
Mn ≥ eAGn

)
; ∀n ∈N. (.)

(ii)Any nontrivial nonnegative solution {xn} of (.) is uniformly bounded and strictly de-
creasing for n ∈N and initial conditions min(,minn∈N+ (

∑n
j=n–k+ νj–

|∑n
j=n–k+

∑m
i= νji| )) > x–p+ ≥ · · · ≥

x– ≥ x, and then it converges to the zero equilibrium point under the following condition:

[( n∑
j=n–k+

νj < 

)
∧ (νji ≤ ;∀j ∈ N+,∀i ∈m)

]
∧ (

Mn ≤ eAGn
)
; ∀n ∈N. (.)

Proof Define λn =  –Mne–AGn . Thus, one gets

xn+ – xn =

(
 –

n∑
j=n–k+

Fj

)
λn – xn < ; ∀n ∈N (.)

from (.) if xn > ,
∑n

j=n–k+ Fj ≤  and λn ≤ , which is guaranteed with Mn ≥ eAGn ;
∀n ∈ N, if for any n ∈ N, the constraints  < xn < · · · < x ≤ x– ≤ · · · ≤ x–p+ ≤
min(,minn∈N+ (

–
∑n

j=n–k+ μj∑n
j=n–k+

∑m
i= μji

)) hold for any given n ∈N+, together with

n∑
j=n–k+

Fj ≤
n∑

j=n–k+

μj +
n∑

j=n–k+

m∑
i=

μjixij ≤
n∑

j=n–k+

μj +
n∑

j=n–k+

m∑
i=

μjimax
(
xj,xmj

)

≤
n∑

j=n–k+

μj +
n∑

j=n–k+

m∑
i=

μjixj ≤
n∑

j=n–k+

μj +

( n∑
j=n–k+

m∑
i=

μji

)
x–p+

≤  (.a)

so that

 < xn+ < xn < · · · < x ≤ x–p+

≤ min

(
, min

n∈N+

(  –
∑n

j=n–k+ μj∑n
j=n–k+

∑m
i= μji

))
; ∀n ∈N (.b)
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provided thatmin(,minn∈N+ (
–

∑n
j=n–k+ μj∑n

j=n–k+
∑m

i= μji
)) ≥ x–p+ ≥ · · · ≥ x– ≥ x. It has been proven

by complete induction that for any given n ∈N,

 < xn < · · · < x ≤ x– ≤ · · · ≤ x–p+ ≤ min

(
, min

n∈N+

(  –
∑n

j=n–k+ μj∑n
j=n–k+

∑m
i= μji

))
≤ 

⇒  < xn+ < xn < · · · < x ≤ x–p+

≤ min

(
, min

n∈N+

(  –
∑n

j=n–k+ μj∑n
j=n–k+

∑m
i= μji

))
≤ . (.)

A close result also holds involving non-strict inequalities if xn = ,
∑n

j=n–k+ Fj ≤  and λn ≤
 or if xn ≥ ,

∑n
j=n–k+ Fj >  and λn ≥ , then xj = ; ∀j (≥ n+) ∈ N from (.). Then (.)

guarantees the convergence to zero of the sequence {xn}; n ∈ N which is, furthermore,
strictly decreasing. Hence, Property (i).
To prove Property (ii), note that (.) also holds from (.) for xn >  if

∑n
j=n–k+ Fj ≥ 

and λn ≥ , which is guaranteed with Mn ≤ eAGn ; ∀n ∈ N+, if
∑n

j=n–k+
∑m

i= νji ≤ , and
then the complete induction method gives

min

(
, min

n∈N+

( ∑n
j=n–k+ νj – 

|∑n
j=n–k+

∑m
i= νji|

))

> x–p+ ≥ · · · ≥ x– ≥ x > xn for any given n ∈N,

together with

n∑
j=n–k+

Fj ≥
n∑

j=n–k+

νj –

∣∣∣∣∣
n∑

j=n–k+

m∑
i=

νji

∣∣∣∣∣max
(
xj,xmj

)

≥
n∑

j=n–k+

νj –

∣∣∣∣∣
n∑

j=n–k+

m∑
i=

νji

∣∣∣∣∣x–p+ ≥ 

⇒ min

(
, min

n∈N+

( ∑n
j=n–k+ νj – 

|∑n
j=n–k+

∑m
i= νji|

))

> x–p+ ≥ · · · ≥ x– ≥ x > xn > xn+; ∀n ∈ N (.)

provided that min(,minn∈N+ (
∑n

j=n–k+ νj–
|∑n

j=n–k+
∑m

i= νji| )) > x–p+ ≥ · · · ≥ x– ≥ x. On the other

hand, if xn ≥ with
∑n

j=n–k+ Fj ≥  and λn ≥  or if xn ≥ ,
∑n

j=n–k+ Fj ≤  and λn ≤ , then
xj = ; ∀j (≥ n + ) ∈ N from (.). Then (.) guarantees the convergence to zero of the
sequence {xn}; n ∈ N which is, furthermore, strictly decreasing. Hence, Property (ii). �

A dual result to Theorem . concerned with the instability situations follows.

Theorem . The following properties hold.
(i) Any nontrivial nonnegative solution {xn} of (.) is strictly increasing for n ∈ N and

initial conditions x–p+ ≤ · · · ≤ x– ≤ x > , and then it tends to +∞ under the following

http://www.advancesindifferenceequations.com/content/2013/1/234
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condition:
(
eAGn

(
 +

∑n
j=n–k+ νj

)
>Mn ≥ eAGn

)

∧
( n∑
j=n–k+

νj ≥ 

)
∧ (νji ≥ ;∀j ∈N+,∀i ∈ m); ∀n ∈N (.)

with Mn > eAGn if xn 	=  and
∑n

j=n–k+ μj >  with {Fn} satisfying the same constraints as
those of Theorem ..
(ii) Any nontrivial nonnegative solution {xn} of (.) is strictly increasing for n ∈ N and

initial conditions x–p+ ≤ · · · ≤ x– ≤ x > , and then it tends to +∞ under the following
condition:

(
Mn ≤ eAGn

) ∧
( n∑
j=n–k+

μj ≤ 

)
∧ (μji ≤ ;∀j ∈N+,∀i ∈ m); ∀n ∈N (.)

with Mn > eAGn if xn 	=  and
∑n

j=n–k+ μj < .

Proof Assume that xj > xj– > · · · > x ≥ x– ≥ · · · ≥ x–p+ for any given j (≤ n) ∈ N. If
xn+ 	= , then it follows that

xn+ =

(
 –

n∑
j=n–k+

Fj

)(
 –Mne–AGn

)
=

( n∑
j=n–k+

Fj – 

)(
Mne–AGn – 

)

≥
( n∑
j=n–k+

νj –  +
n∑

j=n–k+

νjxj +
n∑

j=n–k+

m∑
i=

νjixij

)(
Mne–AGn – 

)
> xn

≥
( n∑
j=n–k+

νj –  +
n∑

j=n–k+

νjxj +
n∑

j=n–k+

m∑
i=

νjimin
(
xn,xmn

))(
Mne–AGn – 

)
> xn

if either

Mn ≥ eAGn ;
n∑

j=n–k+

νj >


 –Mne–AGn
;

n∑
j=n–k+

νj ≥ ; νji ≥ ;∀j,n ∈ N,∀i ∈m

(.)

with the first inequality being strict for any xn 	= , or

Mn ≤ eAGn ;
n∑

j=n–k+

|νj| > 
 –Mne–AGn

;

n∑
j=n–k+

νj ≤ ; νji ≤ ;∀j,n ∈ N,∀i ∈m

(.)

with the first inequality being strict for any xn 	= , and the proof of Property (i) follows
by complete induction after combining the first two conditions of (.). The proof of
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Property (ii) follows from (.) in the same way after combining the first two conditions
which reduce to the first one. �

The constraints
∑m

i= νnixin ≤ Fn ≤ ∑m
i= μnixin; ∀n ∈ N have been used in order to

simplify the discussion. More general constraints can be used instead as, for instance,∑mn
i= νnixin ≤ Fn ≤ ∑mn

i= μnixin or
∑

i∈In νnixin ≤ Fn ≤ ∑
i∈In μnixin, where {mn} is a nonnega-

tive sequence of polynomial degrees subject tom ≤ mn ≤ m; ∀n ∈N and {In} is a nonneg-
ative real sequence of sets of cardinal (mn + ); ∀n ∈N. The above second constraints are
not necessarily of polynomial type. Theorems .-. have the following direct extensions
such that the stability and instability conditions depend not only of the parameters but on
the solution sequence as well.

Theorem . The following results hold.
(i) Assume that the sequence {Mn} satisfies the constraint

Mn > eAGn

(
 +

xn
(
∑n

j=n–k+ νj – ) + (
∑n

j=n–k+
∑m

i= νji)min(xn,xmn )

)
;

∀n ∈N. (.)

Thus, any nontrivial nonnegative solution {xn} of (.) under initial conditions x–p+ ≥
· · · ≥ x– ≥ x >  is uniformly bounded and strictly decreasing and then converges to the
zero equilibrium point. If the above inequality is non-strict, then any nontrivial solution
still is uniformly bounded satisfying xn ≤ x ≤ x–p+ < +∞, ∀n ∈N.
(ii) Assume that the sequence {Mn} satisfies the constraint

Mn < eAGn

(
 –

xn
(
∑n

j=n–k+ μj – ) + (
∑n

j=n–k+
∑m

i= μji)max(xn,xmn )

)
;

∀n ∈N. (.)

Thus, any nontrivial nonnegative solution {xn} of (.)under initial conditions x–p+ ≤ · · · ≤
x– ≤ x >  is strictly increasing and then tends to +∞. If the above inequality is non-strict,
then any nontrivial solution is bounded from below satisfying xn+ ≥ xn ≥ x ≥ x–p+ > ,
∀n ∈N.

Proof Note that for xn >  and xn+ ≥ , one has

xn+ =

(
 –

n∑
j=n–k+

Fj

)(
 –Mne–AGn

) ≤ xn

⇔ Mn ≥ eAGn

(
 +

xn∑n
j=n–k+ Fj – 

)
; ∀n ∈N. (.)

If xn =  then xj = ; ∀j (≥ n) ∈ N from (.). Thus, Eq. (.) is a sufficient condition
for (.) to hold. This proves the first part of Property (i) and the solution sequence is
strictly decreasing. If the inequality in (.) is non-strict, then xn+ ≤ xn ≤ x ≤ x–p+;
∀n ∈ N leading to the second part of Property (i). Property (ii) follows by proving that
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(.) guarantees that

xn+ =max

(
,

(
 –

n∑
j=n–k+

Fj

)(
 –Mne–AGn

))
> (≥) xn; ∀n ∈N. �

Theorems .-. may be combined to give mixed conditions for the solution to be os-
cillatory while being uniformly bounded as follows.

Theorem . Assume that the real sequence {Fn} satisfies the constraints: ∑m
i= νnixin ≤

Fn ≤ ∑m
i= μnixin for some nonnegative real sequences {νni}, {μni}withμni ≥ νni; i ∈m∪{},

∀n ∈N. Then the following properties hold.
(i) Any nontrivial nonnegative solution {xn} of (.) for initial conditions min(,

minn∈N+ (
–

∑n
j=n–k+ μj∑n

j=n–k+
∑m

i= μji
)) ≥ x–p+ ≥ · · · ≥ x– ≥ x is uniformly bounded and oscillatory

if it satisfies, for each two consecutive intervals on nonnegative integers, the following con-
straints:

([( n∑
j=n–k+

μj < 

)
∧

( n∑
j=n–k+

m∑
i=

μji ≥ 

)]

∨
[( n∑

j=n–k+

μj > 

)
∧

( n∑
j=n–k+

m∑
i=

μji ≤ 

)])

∧ (
Mn ≥ eAGn

)
; ∀n ∈

[
k

( j∑
i=

ni

)
,k

( j+∑
i=

ni

)
– 

)
, (.)

(
eAGn

(
 +

∑n
j=n–k+ νj

)
>Mn ≥ eAGn

)

∧
( n∑
j=n–k+

νj ≥ 

)
∧ (νji ≥ ;∀j ∈N,∀i ∈m);

∀n ∈
[
k

( j+∑
i=

ni

)
,k

( j+∑
i=

ni

)
– 

)
(.)

with Mn > eAGn if xn 	=  in (.), for any given finite j ∈ N for any set of finite numbers
ni ∈ N for i ≥ , i ∈ N with n = , which satisfy xk(∑j+

i= ni)–
≤ xk(∑j+

i= ni)–
. The solution is

alternately strictly decreasing and strictly increasing for each two consecutive such inter-
vals.
(ii) Any nontrivial nonnegative solution {xn} of (.) for initial conditions min(,

minn∈N+ (
–

∑n
j=n–k+ μj∑n

j=n–k+
∑m

i= μji
)) ≥ x–p+ ≥ · · · ≥ x– ≥ x is uniformly bounded and oscillatory

if it satisfies the following constraints for each two consecutive intervals on nonnegative
integers:

([( n∑
j=n–k+

μj < 

)
∧

( n∑
j=n–k+

m∑
i=

μji ≥ 

)]

∨
[( n∑

j=n–k+

μj > 

)
∧

( n∑
j=n–k+

m∑
i=

μji ≤ 

)])
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∧ (
Mn ≥ eAGn

)
; ∀n ∈

[
k

( j∑
i=

ni

)
,k

( j+∑
i=

ni

)
– 

)
, (.)

(
Mn ≤ eAGn

) ∧
( n∑
j=n–k+

μj ≤ 

)
∧ (μji ≤ ;∀j ∈N+,∀i ∈ m);

∀n ∈
[
k

( j+∑
i=

ni

)
,k

( j+∑
i=

ni

)
– 

)
(.)

withMn < eAGn if xn 	=  in (.), for any given finite j ∈N and for any set of finite numbers
ni ∈ N for i ≥ , i ∈ N+ with n = , which satisfy xk(∑j+

i= ni)–
≤ xk(∑j+

i= ni)–
. The solution is

alternately strictly decreasing and strictly increasing for each two consecutive such inter-
vals.
(iii) Any nontrivial nonnegative solution {xn} of (.) for initial conditions min(,

minn∈N+ (
∑n

j=n–k+ νj–
|∑n

j=n–k+
∑m

i= νji| )) > x–p+ ≥ · · · ≥ x– ≥ x is uniformly bounded and oscillatory
if it satisfies the following constraints for each two consecutive intervals on nonnegative
integers:

[( n∑
j=n–k+

νj < 

)
∧ (νji ≤ ;∀j ∈ N,∀i ∈m)

]

∧ (
Mn ≤ eAGn

)
; ∀n ∈

[
k

( j∑
i=

ni

)
,k

( j+∑
i=

ni

)
– 

)
, (.)

(
eAGn

(
 +

∑n
j=n–k+ νj

)
>Mn ≥ eAGn

)

∧
( n∑
j=n–k+

νj ≥ 

)
∧ (νji ≥ ;∀j ∈N,∀i ∈m);

∀n ∈
[
k

( j+∑
i=

ni

)
,k

( j+∑
i=

ni

)
– 

)
(.)

with Mn > eAGn if xn 	=  in (.), for any given finite j ∈ N for any set of finite numbers
ni ∈ N for i ≥ , i ∈ N with n = , which satisfy xk(∑j+

i= ni)–
≤ xk(∑j+

i= ni)–
. The solution is

alternately strictly decreasing and strictly increasing for each two consecutive such inter-
vals.
(iv) Any nontrivial nonnegative solution {xn} of (.) for initial conditions min(,

minn∈N+ (
∑n

j=n–k+ νj–
|∑n

j=n–k+
∑m

i= νji| )) > x–p+ ≥ · · · ≥ x– ≥ x is uniformly bounded and oscillatory
if it satisfies the following constraints for each two consecutive intervals on nonnegative
integers:

[( n∑
j=n–k+

νj < 

)
∧ (νji ≤ ;∀j ∈ N+,∀i ∈m)

]
∧ (

Mn ≤ eAGn
)
;

∀n ∈
[
k

( j∑
i=

ni

)
,k

( j+∑
i=

ni

)
– 

)
, (.)
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(
Mn ≤ eAGn

) ∧
( n∑
j=n–k+

μj ≤ 

)
∧ (μji ≤ ;∀j ∈N+,∀i ∈ m);

∀n ∈
[
k

( j+∑
i=

ni

)
,k

( j+∑
i=

ni

)
– 

)
(.)

with Mn < eAGn if xn 	=  in (.), for any given finite j ∈ N for any set of finite numbers
ni ∈ N for i ≥ , i ∈ N, with n = , which satisfy xk(∑j+

i= ni)–
≤ xk(∑j+

i= ni)–
; ∀j ∈ N. The

solution is alternately strictly decreasing and strictly increasing for each two consecutive
such intervals.
(v) Any nontrivial nonnegative solution {xn} of (.) for initial conditions x–p+ ≤ · · · ≤

x– ≤ x >  is uniformly bounded and oscillatory if it satisfies the following constraints for
each two consecutive intervals on nonnegative integers:

(
eAGn

(
 +

∑n
j=n–k+ νj

)
>Mn ≥ eAGn

)

∧
( n∑
j=n–k+

νj ≥ 

)
∧ (νji ≥ ;∀j ∈N,∀i ∈m);

∀n ∈
[
k

( j∑
i=

ni

)
,k

( j+∑
i=

ni

)
– 

)
, (.)

([( n∑
j=n–k+

μj < 

)
∧

( n∑
j=n–k+

m∑
i=

μji ≥ 

)]

∨
[( n∑

j=n–k+

μj > 

)
∧

( n∑
j=n–k+

m∑
i=

μji ≤ 

)])
;

∀n ∈
[
k

( j+∑
i=

ni

)
,k

( j+∑
i=

ni

)
– 

)
(.)

with Mn > eAGn if xn 	=  in (.), for any given finite j ∈ N for any set of finite numbers
ni ∈ N for i ≥ , i ∈ N with n = , which satisfy xk(∑j+

i= ni)–
≤ xk(∑j+

i= ni)–
. The solution is

alternately strictly increasing and strictly decreasing for each two consecutive such inter-
vals. If the above inequality is strict, then the solution converges asymptotically to the zero
equilibrium point.
(vi) Any nontrivial nonnegative solution {xn} of (.) for initial conditions x–p+ ≤ · · · ≤

x– ≤ x >  is uniformly bounded and oscillatory if it satisfies the following constraints for
each two consecutive intervals on nonnegative integers:

(
Mn ≤ eAGn

) ∧
( n∑
j=n–k+

μj ≤ 

)
∧ (μji ≤ ;∀j ∈N+,∀i ∈ m);

∀n ∈
[
k

( j∑
i=

ni

)
,k

( j+∑
i=

ni

)
– 

)
, (.)

([( n∑
j=n–k+

μj < 

)
∧

( n∑
j=n–k+

m∑
i=

μji ≥ 

)]
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∨
[( n∑

j=n–k+

μj > 

)
∧

( n∑
j=n–k+

m∑
i=

μji ≤ 

)])
;

∀n ∈
[
k

( j+∑
i=

ni

)
,k

( j+∑
i=

ni

)
– 

)
(.)

with Mn < eAGn if xn 	=  in (.), for any given finite j ∈ N for any set of finite numbers
ni ∈ N for i ≥ , i ∈ N with n = , which satisfy xk(∑j+

i= ni)–
≤ xk(∑j+

i= ni)–
; ∀j ∈ N. The

solution is alternately strictly increasing and strictly decreasing for each two consecutive
such intervals. If the above inequality is strict, then the solution converges asymptotically
to the zero equilibrium point.
(vii) Any nontrivial nonnegative solution {xn} of (.) for initial conditions x–p+ ≤ · · · ≤

x– ≤ x >  is uniformly bounded and oscillatory if it satisfies the following constraints for
each two consecutive intervals on nonnegative integers:(

eAGn

(
 +

∑n
j=n–k+ νj

)
>Mn ≥ eAGn

)

∧
( n∑
j=n–k+

νj ≥ 

)
∧ (νji ≥ ;∀j ∈N+,∀i ∈m);

∀n ∈
[
k

( j∑
i=

ni

)
,k

( j+∑
i=

ni

)
– 

)
, (.)

[( n∑
j=n–k+

νj < 

)
∧ (νji ≤ ;∀j ∈ N+,∀i ∈m)

]
∧ (

Mn ≤ eAGn
)
;

∀n ∈
[
k

( j+∑
i=

ni

)
,k

( j+∑
i=

ni

)
– 

)
(.)

with Mn > eAGn if xn 	=  in (.) for any given finite j ∈ N+ for any set of finite numbers
ni ∈ N for i ≥ , i ∈ N, with n = , which satisfy xk(∑j+

i= ni)–
≤ xk(∑j+

i= ni)–
; ∀j ∈ N. The

solution is alternately strictly increasing and strictly decreasing for each two consecutive
such intervals. If the above inequality is strict, then the solution converges asymptotically
to the zero equilibrium point.
(viii) Any nontrivial nonnegative solution {xn} of (.) for initial conditions x–p+ ≤ · · · ≤

x– ≤ x >  is uniformly bounded and oscillatory if it satisfies the following constraints for
each two consecutive intervals on nonnegative integers:

(
Mn ≤ eAGn

) ∧
( n∑
j=n–k+

μj ≤ 

)
∧ (μji ≤ ;∀j ∈N+,∀i ∈ m);

∀n ∈
[
k

( j+∑
i=

ni

)
,k

( j+∑
i=

ni

)
– 

)
, (.)

[( n∑
j=n–k+

νj < 

)
∧ (νji ≤ ;∀j ∈ N+,∀i ∈m)

]
∧ (

Mn ≤ eAGn
)
;

∀n ∈
[
k

( j∑
i=

ni

)
,k

( j+∑
i=

ni

)
– 

)
(.)
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with Mn > eAGn if xn 	=  in (.) for any given finite j ∈ N for any set of finite numbers
ni ∈ N for i ≥ , i ∈ N, with n = , which satisfy xk(∑j+

i= ni)–
≤ xk(∑j+

i= ni)–
; ∀j ∈ N. The

solution is alternately strictly increasing and strictly decreasing for each two consecutive
such intervals. If the above inequality is strict, then the solution converges asymptotically
to the zero equilibrium point.

Proof Property (i) is proven directly as follows. For any given finite j ∈ N, the solution
subsequence {xk(∑j+�

i= ni)–
} satisfies the chain of inequalities xk(∑j+�

i= ni)–
≤ xk(∑j+�–

i= ni)–
≤

· · · ≤ xk(∑j–
i= ni)–

< +∞; ∀� ∈ N by construction for a set of finite ni ∈ N. Thus, the whole
solution cannot possess any other unbounded subsequence since this would be a con-
tradiction to the above chain of finitely upper-bounded inequalities by taking account
of the fact that all the numbers ni ∈ N are finite. The solution is alternately strictly in-
creasing and decreasing from Theorem .(i) and Theorem .(i). The first part of Prop-
erty (ii) is a dual one to Property (i) and it is proven also from Theorems .-. and
the existence of a bounded chain of finitely bounded non-strict inequalities as above.
The second part is proven as follows. The conditions (.) and (.) lead to strictly in-
creasing and strictly decreasing sequences of the solution of finite sizes ni ∈ N, i ∈ N,
respectively. The strict inequality xk(∑j+

i= ni)–
< xk(∑j+

i= ni)–
; ∀j ∈ N, together with the

fact that the above sequences of pair order are strictly decreasing from (.) and Prop-
erty (ii), that is, xk(∑j

i= ni)
> xk(∑j

i= ni+)
> · · · > xk(∑j

i= ni+ni,j++)
, lead to the contradiction

 = limj→∞ xk(∑j
i= ni)

> max≤�≤ni+j– (lim infj→∞ xk(∑j+�
i= ni)

) >  if lim infj→∞ xk(∑j
i= ni)

> .
Hence, Property (ii). The remaining properties are proven ‘mutatis-mutandis’. �

4 Global stability and instability
Consider, for the sake of a more complete discussion, the following generalisation of (.):

xn+ = θnmax

(
,

(
 –

k–∑
j=

F(xn–j)

)(
 –M(x̄n)e–AG(x̄n)

))
; ∀n ∈N (.)

for initial conditions xi ≥ ; i =  – p,  – p, . . . , , where the general term of the real se-
quence {θn} satisfies θn = θn(xn) ∈ [, ]. This term can be interpreted as a total or partial
‘culling’ action on the infection in the sense that all of a part of the infected individu-
als are removed from the habitat by using, for instance, quarantine or simply removal.
Physically, we can consider the first stage given by (.) producing the solution sequence
x–n+, which replaces the current solution value xn+ in (.), and then the second stage in-
volving an impulsive action leading to the value xn+ ≡ x+n+ given by (.). If θn ≡ , then
(.) is identical to (.). The global stability of (.) is discussed from Lyapunov stabil-
ity theory as follows. Let us define a Lyapunov sequence candidate {Vn} for (.) of the
general term Vn = Vn(xn) = pnxn, where the general term of the sequence {pn} satisfies
 < p≤ pn ≤ p < +∞ for some p,p (≥ p) ∈ R+. The following result follows.

Theorem . Assume that the sequence {Fn} satisfies the constraint
∑m

i= νnixin ≤ Fn ≤∑m
i= μnixin. Then the following properties hold.
(i) Assume that Mn ≤ eAGn ; ∀n ∈N. Any solution sequence of (.) is uniformly bounded

for any bounded set of initial conditions xi ≥ ; i =  – p,  – p, . . . , , if for any n ∈ N, one
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of the following constraints holds:

( n∑
j=n–k+

νj ≥ 

)
∧ (νji ≥ ;∀j ∈N,∀i ∈ m)

∧
(

θn ∈
[
,max

(


( –Mne–AGn )νn
, 

)])
(.)

and, furthermore, either θn < 
(–Mne–AGn )νn

or
∑n

j=n–k+ νj > , or at least one inequality
νji ≥  is strict for each pair of integers j ∈ [n – k + ,n), i ∈m, or at least one νni is positive
for i ∈ m. If, furthermore, there is only an equilibrium point, then the solution sequence
converges to such a point.
(ii) Assume that Mn > eAGn ; ∀n ∈N.Any solution sequence of (.) is uniformly bounded

for any bounded set of initial conditions xi ≥ ; i =  – p,  – p, . . . , , if for any n ∈ N, one
of the following constraints holds:

( n∑
j=n–k+

μj ≤ 

)
∧ (μji ≤ ;∀j ∈ N+,∀i ∈m)

∧
((

θn ∈
[
,max

(


( –Mne–AGn )|μn| , 
)]))

(.)

and, furthermore, either θn < 
(Mne–AGn–)|μn| or

∑n
j=n–k+ μj < , or at least one inequality

νji ≥  is strict for each pair of integers j ∈ [n – k + ,n), i ∈ m, or at least one μni is nega-
tive for i = , , . . . ,m. If, furthermore, there is only an equilibrium point, then the solution
sequence converges to such a point.
(iii)Assume that the sequence {–Mne–AGn} is neither nonnegative nor nonpositive.Then,

any solution sequence of (.) is uniformly bounded for any bounded set of initial conditions
xi ≥ ; i = –p, –p, . . . , , if (.) holds for any n ∈N+ such thatMn < eAGn and (.) holds
for any n ∈ N such that Mn > eAGn . If, furthermore, there is only an equilibrium point, then
the solution sequence converges to such a point.

Proof Since Vn = Vn(xn) = pnxn, it follows from (.) for λn = λn(x̄n) =  –Mne–AGn ≥ ,
equivalently,Mn ≤ eAGn , that if

∑n
j=n–k+ Fj > , one gets

ΔVn = Vn+ –Vn = pn+xn+ – pnxn

≤ –pnxn + pn+θnλn – pn+θnλn

( n∑
j=n–k+

νj +
n∑

j=n–k+

m∑
i=

νjixij

)

≤ –(pn + pn+θnλnνn)xn – pn+θnλn

( n∑
j=n–k+

νj – 

)

– pn+θnλn

(( n–∑
j=n–k+

m∑
i=

νji

)
min

n–k+≤j≤n–
min

(
xj,xmj

)
+

( m∑
i=

νni

)
min

(
xn,x

m
n
))

≤ –pnxn – pn+θnλn

( n∑
j=n–k+

νj – 

)
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– pn+θnλn

( n∑
j=n–k+

m∑
i=

νji

)
min

n–k+≤j≤n
min

(
xj,xmj

)
< ;

∀n ∈ N (.)

provided that xn 	=  under the constraints (.) so that ΔVn = Vn+ – Vn < . If∑n
j=n–k+ Fj ≤ , then one also has that ΔVn = Vn+ – Vn = –pnxn <  for any nonzero xn.

Thus, the candidate sequence is strictly decreasing and then has a zero limit while being
a Lyapunov sequence:

lim sup
n→∞

(
xn+ –

p
p
xn

)
≤ lim

n→∞

(
xn+ –

pn
pn+

xn
)
= 

so that the sequence {xn} fulfils xn+ → pn
pn+

xn as n → ∞. Since the stability conditions
(.) are not dependent on the {pn} sequence, this one may be a chosen constant pn = p =
p = p > , then the solution sequence {xn} converges to a finite limit which can depend on
the initial conditions. It turns out that if there is only an equilibrium point (some related
conditions are given in Theorem .), then such a point is globally asymptotically stable
and all the solutions converge to it. Otherwise, either some solution tends to infinity or
oscillates contradicting that it converges to a finite limit. Hence, Property (i).
The proof of Property (ii) follows in the same way from (.) by noting that λn = –|λn| <

, μn = –|μn| <  and that if xn 	=  then one gets, under the constraints (.),

ΔVn ≤ –
(
pn – pn+θn|λn||μn|

)
xn + pn+θn|λn|

( n∑
j=n–k+

μj – 

)

+ pn+θn|λn|
(( n–∑

j=n–k+

m∑
i=

μji

)
max

n–k+≤j≤n–
max

(
xj,xmj

)

+

( m∑
i=

μni

)
max

(
xn,x

m
n
))

< ; (.)

∀n ∈ N if (.) holds by taking  <  = p ≤ pn = pn+ = p ≤ p =  < +∞ provided that∑n
j=n–k+ Fj ≤ . If

∑n
j=n–k+ Fj ≤ , then one also has that ΔVn = Vn+ – Vn = –pnxn <  for

any nonzero xn. Hence, Property (ii). Property (iii) is a set of mixed conditions of Proper-
ties (i)-(ii). �

An instability theorem being dual to the stability Theorem . follows without proof
since it is close to that of the following theorem.

Theorem . Assume that the sequence {Fn} satisfies the constraint
∑m

i= νnixin ≤ Fn ≤∑m
i= μnixin. Then the following properties hold.
(i) The solution sequence {xn} tends to infinity if the following conditions hold for any

n ∈N:

(
Mn > eAGn

) ∧
( n∑
j=n–k+

νj ≥ 

)
∧ (νji ≥ ;∀j ∈N, i ∈m)

∧
(

νn >


| –Mne–AGn |
)

∧
(

θn ∈
[


| –Mne–AGn |νn , 

])
(.)
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and, furthermore, either θn > 
|–Mne–AGn |νn or

∑n
j=n–k+ νj > , or at least one inequality

νji ≥  is strict for each pair of integers j ∈ [n – k + ,n), i ∈m, or at least one νni is positive
for i = , , . . . ,m.
(ii) The solution sequence {xn} tends also to infinity if the following two conditions hold

simultaneously for any n ∈ N:

(
Mn < eAGn

) ∧
( n∑
j=n–k+

μj ≥ 

)
∧ (μji ≥ ;∀j ∈N, i ∈m)

∧
(

|μn| > 
| –Mne–AGn |

)
∧

(
θn ∈

[


| –Mne–AGn ||μn| , 
])

(.)

and, furthermore, either θn > 
|–Mne–AGn ||μn| or

∑n
j=n–k+ μj < , or at least one inequality

μji ≤  is strict for each pair of integers j ∈ [n– k +,n), i ∈m, or at least one μni is negative
for i = , , . . . ,m.

Proof Note that if λn =  – Mne–AGn < , equivalently Mn > eAGn , then if xn >  and
pn – pn+θn|λn|νn ≤ ,

∑n
j=n–k+ νj ≥ , νji ≥ ; ∀j ∈ N, ∀i ∈ m, with at least one of these

inequalities being strict, one has

ΔVn ≥ –
(
pn – pn+θn|λn|νn

)
xn + pn+θn|λn|

( n∑
j=n–k+

νj – 

)

+ pn+θn|λn|
(( n–∑

j=n–k+

m∑
i=

νji

)
min

n–k+≤j≤n–
min

(
xj,xmj

)

+

( m∑
i=

νni

)
min

(
xn,x

m
n
))

> ; (.)

∀n ∈ N. Then the solution sequence {xn} is strictly monotone so that it tends to in-
finity. Hence, Property (i), by choosing pn = pn+ =  with no loss in generality. If λn =
 – Mne–AGn > , equivalently, Mn < eAGn , then if xn >  and pn – pn+θn|λn||μn| ≤ ,∑n

j=n–k+ μj ≤ , μji ≤ ; ∀j ∈ N, ∀i ∈ m, with at least one of these inequalities being
strict, one has

ΔVn ≥ –
(
pn – pn+θnλn|μn|

)
xn – pn+θnλn

( n∑
j=n–k+

μj – 

)

– pn+θnλn

(( n–∑
j=n–k+

m∑
i=

μji

)
max

n–k+≤j≤n–
max

(
xj,xmj

)

+

( m∑
i=

μni

)
max

(
xn,x

m
n
))

> ; (.)

∀n ∈ N. Hence, Property (ii). �
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5 Simulation example: a SIS epidemic model
A simulation example which adapts a background SIS epidemic model to the class of epi-
demicmodels studied in this paper is used to illustrate some of the theoretic results proved
in the previous sections.

5.1 Epidemic model description
The SIS epidemic model describes the transmission of some infectious diseases within a
host population. The whole population can be divided in two categories by taking into ac-
count the status with regard to the disease of the individuals within the host population.
In this sense, there is a population susceptible to the infection (S) and an infectious popu-
lation (I) which can transmit the infection to the susceptible population by contacts. The
discrete-time SIS epidemic model is composed by the following difference equations []:

⎧⎨
⎩Sn+ = Sn( – p)

αIn
Nn + νNn –μSn + β( –μ)In,

In+ = Sn( – ( – p)
αIn
Nn ) –μIn + ( – β( –μ))In,

(.)

where Sn, In and Nn = Sn + In, respectively, denote the susceptible, infectious and whole
populations at the sampling time instant t = nT , for all n ∈N, with T being the sampling
period. The parameters μ and ν are, respectively, the mortality for natural causes and the
birth probabilities within a time step. Then μSn and μIn are, respectively, the numbers of
susceptible and infectious individuals dying within the time period [nT , (n + )T). Also,
νNn denotes the number of newborns in such a time period. In view of (.), the facts that
all newborns are susceptible to the infection and that there is no mortality from causes
related to the disease are assumed. Finally, the parameters α > ,  < p <  and  ≤ β < ,
respectively, denote the number of contacts between an individual and others within a
time step, the probability of transmitting the infection from an infectious individual to a
susceptible one after a contact between them, and the probability of transition from the
infectious population to the susceptible one within a time step. In this sense, αIn/Nn is
the quantity of contacts of one individual with any infectious one within a time step. Then
Sn(–p)α

In
Nn is the number of individuals which remain in the susceptible category after the

time interval [nT , (n+ )T), and Sn( – ( – p)α
In
Nn ) is the number of individuals which pass

from the susceptible to the infectious category within such a time interval. Finally, β( –
μ)In and [ – β( –μ)]In, respectively, denote the number of infectious individuals which
remain alive and pass from the infectious to the susceptible category and that of infectious
individuals which remain alive and infectious after such a time interval. In summary, Eqs.
(.) describe the transitions between such population categories within a time step. In the
particular case, when β = , the SISmodel becomes a SImodel where there is no transition
from the infectious population to the susceptible one. Then, once a susceptible individual
catches the infection, he/she/it remains infectious for all his/her/its live.
From (.), the dynamics of the whole population is given by

Nn+ = ( + ν –μ)Nn. (.)

By applying the variable changes xn = Sn
Nn

and yn = In
Nn

, and the fact that xn + yn = , one
directly obtains that

yn+ =
 – ( – p)αyn + (μβ –μ – β + ( – p)αyn )yn

 + ν –μ
, (.)
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which describes the dynamics of the normalised infectious population which is the pro-
portion of the infectious population with respect to the whole population. Such an equa-
tion can be rewritten as

zn+ =  – ( – p)α
′zn +

μβ –μ – β + ( – p)αyn

 + ν –μ
zn

=
 + ν –μ + (μβ –μ – β)zn + ( – p)α′zn (zn –  – ν +μ)

 + ν –μ

=
(
 –

μ + β –μβ

 + ν –μ
zn

)(
 –

 + ν –μ – zn
 + ν –μ + (μβ –μ – β)zn

eα′ ln(–p)zn
)
, (.)

where zn = (+ ν –μ)yn and α′ = α/( + ν –μ). Such an equation possesses the same struc-
ture as (.) if one takes into account the fact that the infectious population has to be non-
negative for all time since a negative population is not reasonable. In this sense, it follows
that

k = ; F(zn) =
μ + β –μβ

 + ν –μ
zn,

q = ; zn = z̄n; M(z̄n) =
 + ν –μ – zn

 + ν –μ + (μβ –μ – β)zn
;

G(z̄n) = zn; A = –α′ ln( – p) > 

(.)

by comparing (.) and (.).

5.2 Numerical results with a constant probability for the infection transmission
A numerical study based on simulations of an epidemic disease described by (.)-(.)
is carried out. The time evolution of the proportion of the infectious population for dif-
ferent values of the parameters p, α and β is analysed. In this way, the dependence on
the epidemics dynamics of such parameters is reflected. The values μ = / years– =
. × – days–, ν = . × – days– and T =  day as the sampling period for
the model (.) are considered. Also, the initial condition for such amodel corresponds to
an initial situation at which S =  individuals (ind), I =  ind so that N = , ind
and y = . (z ≈ y).
Figure  displays the time evolution of the proportion of the infectious population for

three different probabilities of the transmission of the infection after a contact between a
susceptible individual with an infectious one. Concretely, the values p = ., p = .
and p = . are considered. Moreover, the values α =  and β = . are, respectively,
chosen for the number of contacts between an individual and others and for the probability
of transition from the infectious population to the susceptible one within a time step. One
can see that the infection disappears from the host population in the stationary state if the
disease transmission probability is smaller than .. On the other hand, the proportion
of the infectious population in the stationary state increases as the infection probability
does.
Figure  displays the time evolution of the proportion of the infectious population for

three different values for the number of contacts of an individual with others within a
time step. Concretely, the values α = , α =  and α =  are considered. Moreover,
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Figure 1 Time evolution of the normalized
infectious population for different infection
probability.

Figure 2 Time evolution of the normalized
infectious population for different number of
contacts in a time step.

Figure 3 Time evolution of the normalized
infectious population for different probabilities
of removing from infection.

the values p = . and β = . are, respectively, chosen for the probability of infec-
tion transmission after a contact between a susceptible individual with an infectious one
and for the probability of transition from the infectious population to the susceptible one
within a time step. One can see that the infection disappears from the host population in
the stationary state if the number of contacts is smaller than . Also, the proportion of
the infectious population in the stationary state increases as such a number does.
Finally, Figure  displays the time evolution of the proportion of the infectious popula-

tion for three different values for the probability of transition from the infectious popu-
lation to the susceptible one. Concretely, the values β = ., β = . and β = . are
considered. Moreover, the values p = . and α =  are, respectively, chosen for the
probability of infection transmission after a contact between a susceptible individual with
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an infectious one and for the number of contacts of an individual with others within a time
step. One can see that the infection disappears from the host population in the stationary
state if the probability of transition from the infectious population to the susceptible one
is larger than .. Also, the proportion of the infectious population in the stationary state
increases as such a probability decreases.

5.3 Numerical results with a time-varying probability for the infection
transmission

In a more realistic situation, the probability of transmitting the infection from an infec-
tious individual to a susceptible one can depend on the time evolution of the proportion
of the infectious population. This feature can be motivated by the fact that the whole pop-
ulation usually takes preventive measures for fighting against the propagation of the infec-
tion when the incidence of the infection is relevant. Suchmeasures may imply an effective
reduction in the probability of the infection transmission. This fact has been also mod-
elled by means of a saturated transmission rate in other related research []. In such a
situation, the dynamics of the infection can be also given by (.) but replacing the con-
stant transmission probability p by p(z̄n), where z̄n = (zn, zn–, . . . , zn–q+) for some q ∈N, or,
equivalently, by (.)-(.), by replacing xn by zn in (.) andG(z̄n) = zn andA = –α′ ln(–p)
by G(z̄n) = –zn ln( – p(z̄n)) and A = α′, respectively.
An example based on an infectious disease where the current infection transmission de-

pends on the time evolution of the proportion of infectious is analysed. The same initial
condition and the same values for the parametersμ, ν and T as those used in the previous
subsection are considered. Moreover, the values α =  and β = . are used. Then, note
that yn ≈ zn since  + ν – μ ≈ . The example considers that the transmission probability
on the present day depends on the average of the registered values for the proportion of
the infectious population within the previous seven days (a week). More specifically, at
the beginning of the simulation, a constant probability p = . is supposed in (.) and
such a value is maintained until the value for z̄n = 


∑

j= zn–j is larger than some upper
bound zsup (for instance, if zsup = . is used, then the transmission probability is main-
tained constant until the day on which the average proportion of infectious population
within a week reaches % of the whole population). After such a day (namely, n), the
probability of contracting the infection decreases from preventive behaviour. The follow-
ing expression is supposed for the time evolution of such a probability:

p(n) = p – kz̄n(n – n); ∀n ∈ [n + ,n], (.)

where n denotes the eventual day on which the proportion of the infectious population
is smaller than a lower bound zinf (for instance, if the value zinf = . is used, then the
time-varying probability given by (.) is maintained until the day on which the average
proportion of infectious population within a week is smaller than .% of the whole pop-
ulation). Note from (.) that the probability of contracting the infection decays after the
day n with a decreasing step proportional to the average z̄n = 


∑

j= zn–j, where k is a con-
stant parameter appropriately chosen such that the time-varying probability p(n) ∈ (, );
∀n ∈ [n + ,n]. Also, note that such a time-varying probability can be not decreasing af-
ter a certain day within the interval [n + ,n] since f(n) = kz̄n(n– n) is not a monotone
increasing function within such an interval.
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After the day n, the probability of contracting the infection again can increase from the
fact that the population could relax the preventive measures because the affectation of
the disease within the host population has decreased to a small level. Then the following
expression can be supposed for the time evolution of such a probability:

p(n) = p(n) +
k(n – n)

z̄n
; ∀n ∈ [n + ,n], (.)

where n denotes the eventual day on which the proportion of the infectious population
is again larger than the upper bound. Note from (.) that the probability of contracting
the infection increases after the day n with an increasing step inversely proportional to
the average z̄n = 


∑

j= zn–j, where k is a constant parameter appropriately chosen such
that the time-varying probability p(n) ∈ (, ); ∀n ∈ [n +,n]. Also, note that such a time-
varying probability can be not increasing after a certain day within the interval [n + ,n]
since f(n) = k(n – n)/z̄n is not a monotone increasing function within such an interval.
After the day n, the probability of contracting the infection again can decrease as (.)
frompreventivemeasures because the affectation of the diseasewithin the host population
has reached a high level and so on. As a consequence, there is a cyclic behaviour in the
transmission probability of the infection given by

p(n) =

⎧⎪⎪⎨
⎪⎪⎩
p for n≤ n,

p(ni) – kz̄n(n – ni) for n ∈ [ni + ,ni+],

p(ni+) + k(n–ni+)
z̄n for n ∈ [ni+ + ,ni+]

(.)

for any odd i ∈ N . If the values for zsup = ., zinf = ., k = × – and k = × –

are considered, then the time varying evolution of the proportion of infectious population
and the transmission probability are, respectively, displayed in Figures  and .
One can see from Figure  that the proportion of the infectious population increases

from the initial day until the nth day because the constant probability p of transmitting
the infection after contacts between susceptible and infectious individuals is large enough.
On the nth day, the proportion of infectious population is large enough so that the whole
population has to begin to take preventive measures in order to reduce the probability of
transmission so that the impact of the disease be attenuated. Such preventive actionsmake
such a probability begin to decrease via (.) within the time interval [n + ,n∗], with n∗

Figure 4 Time evolution of the normalized infectious population for a time-varying probability of
infection transmission (the right-hand figure is a zoom for the first 500 days).

http://www.advancesindifferenceequations.com/content/2013/1/234


De la Sen and Alonso-Quesada Advances in Difference Equations 2013, 2013:234 Page 28 of 29
http://www.advancesindifferenceequations.com/content/2013/1/234

Figure 5 Time evolution of the probability of infection transmission (the right-hand figure is a zoom
for the first 500 days).

denoting the day when the transmission probability reaches its minimum value within the
time interval [n + ,n], as it can be seen in Figure . As a consequence, the proportion
of the infectious population decreases until the nth day when the population begins to
relax the preventive measures since the individuals can feel that the infectious disease has
disappeared because of the little proportion of the infectious population. Such behaviour
makes the probability of transmitting the infection begin to increase after the nth day via
(.). This fact implies an increment in the proportion of the infectious population until
the nth day when such a proportion is large enough so that the whole population begins
to take again preventive measures. In summary, a cyclic time evolution is obtained for the
proportion of the infectious population as well as for the probability of transmission as
it can be seen from Figures  and . Such a cyclic behaviour is a consequence of taking
preventive actions for fighting against the disease transmission when the influence of the
disease in the population is notable.
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