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Abstract
In this paper, we give some new and interesting identities involving harmonic and
hyperharmonic numbers which are derived from the transfer formula for the
associated sequences.

1 Introduction
Let F be the set of all formal power series in the variable t over C with

F =

{
f (t) =

∞∑
k=

ak
k!
tk

∣∣∣ak ∈C

}
. ()

Suppose that P is the algebra of polynomials in the variable x over C and that P∗ is the
vector space of all linear functionals on P. The action of the linear functional L on a poly-
nomial p(x) is denoted by 〈L|p(x)〉.
Let f (t) ∈F . Then we consider a linear functional on P by setting

〈
f (t)|xn〉 = an (n≥ ) (see [, ]). ()

From () and (), we note that

〈
tk|xn〉 = n!δn,k (n,k ≥ ) (see [, –]), ()

where δn,k is the Kronecker symbol.
Let fL(t) =

∑∞
k=

〈L|xn〉
k! tk . Then we see that 〈fL(t)|xn〉 = 〈L|xn〉. The map L �−→ fL(t) is a

vector space isomorphism from P
∗ onto F . Henceforth, F is thought of as both a for-

mal power series and a linear functional. We call F the umbral algebra. The umbral cal-
culus is the study of umbral algebra. The order O(f (t)) of the nonzero power series f (t)
is the smallest integer k for which the coefficient of tk does not vanish. If O(f (t)) = ,
then f (t) is called an invertible series. If O(f (t)) = , then f (t) is called a delta series. Let
O(f (t)) =  and O(g(t)) = . Then there exists a unique sequence sn(x) of polynomials such
that 〈g(t)f (t)k|sn(x)〉 = n!δn,k for n,k ≥ . The sequence sn(x) is called the Sheffer sequence
for (g(t), f (t)) which is denoted by sn(x) ∼ (g(t), f (t)) (see [, , ]). If sn(x) ∼ (, f (t)), then
sn(x) is called the associated sequence for f (t). By (), we easily see that 〈eyt|p(x)〉 = p(y).
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Let f (t) ∈F and p(x) ∈ P. Then we have

f (t) =
∞∑
k=

〈f (t)|xk〉
k!

tk , p(x) =
∞∑
k=

〈tk|p(x)〉
k!

xk (see [, , ]). ()

From (), we note that

p(k)() =
〈
tk|p(x)〉, 〈

|p(k)(x)〉 = p(k)(). ()

By (), we easily see that

tkp(x) = p(k)(x) =
dkp(x)
dxk

(k ≥ ) (see [, , , ]). ()

Let φn(x) be exponential polynomials which are given by

∞∑
k=

φk(x)
k!

tk = ex(e
t–) (see [, , ]). ()

Thus, by (), we get

φn(x) =
n∑

k=

S(n,k)xk ∼ (
, log ( + t)

)
, ()

where S(n,k) is the Stirling number of the second kind.
The Stirling number of the first kind is defined by

(x)n = x(x – ) · · · (x – n + ) =
n∑

k=

S(n,k)xk . ()

Thus, by (), we get

S(n,k) =

k!

〈
tk|(x)n

〉
(see [, ]). ()

Let pn(x) ∼ (, f (t)), qn(x) ∼ (, g(t)). Then the transfer formula for the associated se-
quences is given by

qn(x) = x
(
f (t)
g(t)

)n

x–pn(x) (see [, ]). ()

The nth harmonic number is Hn =
∑n

i=

i (n≥ ) and H = .

In general, the hyperharmonic number H (r)
n of order r is defined by

H (r)
n =

⎧⎪⎪⎨
⎪⎪⎩
 if n≤  or r < ,

n if r = ,n≥ ,∑n

i=H
(r–)
i if r,n≥ 

(see [, ]). ()
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From (), we note that H ()
n is the ordinary harmonic number Hn. It is known that

H (r)
n =

(
n + r – 
r – 

)
(Hn+r– –Hr–) (see [, ]). ()

The generating functions of the harmonic and hyperharmonic numbers are given by

∞∑
n=

Hntn = –
log ( – t)

 – t
()

and

∞∑
n=

H (r)
n tn = –

log ( – t)
( – t)r

, respectively. ()

The purpose of this paper is to give some new and interesting identities involving har-
monic and hyperharmonic numbers which are derived from the transfer formula for the
associated sequences.

2 Identities involving harmonic and hyperharmonic numbers
From () and (), we note that

φn(x) =
n∑
j=

S(n, j)xj ∼
(
, log ( + t)

)
()

and

(–)nφn(–x)∼
(
,– log ( – t)

)
. ()

Let us assume that

qn(x) ∼
(
, t( – t)r

)
. ()

From (), () and xn ∼ (, t), we note that

qn(x) = x
(

t
t( – t)r

)n

x–xn = x( – t)–rnxn–

= x
n–∑
k=

(
–rn
k

)
(–t)kxn– = x

n–∑
k=

(
rn + k – 

k

)
tkxn–

= x
n–∑
k=

(
rn + k – 

k

)
(n – )kxn––k =

n–∑
k=

(
rn + k – 

k

)
(n – )kxn–k

=
n∑
k=

(
rn + n – k – 

n – k

)
(n – )n–kxk . ()

Now, we use the following fact:

∞∑
n=

H (r)
n tn = –

log ( – t)
( – t)r

. ()
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For n≥ , by (), () and (), we get

qn(x) = x
(
– log ( – t)
t( – t)r

)n

x–(–)nφn(–x)

= x

( ∞∑
l=

H (r)
l+t

l

)n

x–(–)n
n∑
j=

S(n, j)(–x)j

= (–)n
n∑
j=

S(n, j)(–)jx

( ∞∑
l=

H (r)
l+t

l

)n

xj–

= (–)n
n∑
j=

S(n, j)(–)jx

( j–∑
l=

( ∑
l+···+ln=l

H (r)
l+ · · ·H (r)

ln+

)
tl
)
xj–

= (–)n
n∑
j=

j–∑
l=

∑
l+···+ln=l

S(n, j)(–)jH (r)
l+ · · ·H (r)

ln+(j – )lxj–l

= (–)n
n∑
j=

j∑
k=

∑
l+···+ln=j–k

S(n, j)(–)jH (r)
l+ · · ·H (r)

ln+(j – )j–kxk

= (–)n
n∑
k=

{ n∑
j=k

∑
l+···+ln=j–k

(–)jS(n, j)H (r)
l+ · · ·H (r)

ln+(j – )j–k

}
xk . ()

Therefore, by comparing coefficients on both sides of () and (), we obtain the following
theorem.

Theorem  For n≥ , r ≥ ,  ≤ k ≤ n, we have

(
rn + n – k – 

n – k

)
(n – )n–k = (–)n

n∑
j=k

∑
l+···+ln=j–k

S(n, j)(–)jH (r)
l+ · · ·H (r)

ln+(j – )j–k .

We recall the following equation:

(
log ( + t)

t

)n

=
∞∑
l=

n!
(l + n)!

S(l + n,n)tl. ()

For n≥ , from (), () and (), we have

qn(x) = x
(
– log ( – t)
t( – t)r

)n

x–(–)nφn(–x)

= x
(
log ( – t)

–t

)n

( – t)–rnx–(–)nφn(–x)

= (–)n
n∑
j=

S(n, j)(–)jx
(
log ( – t)

–t

)n

( – t)–rnxj–

= (–)n
n∑
j=

S(n, j)(–)jx
(
log ( – t)

–t

)n j–∑
l=

(
rn + l – 

l

)
(j – )lxj––l
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= (–)n
n∑
j=

S(n, j)(–)j
j–∑
l=

(
rn + l – 

l

)
(j – )lx

j––l∑
m=

n!
(m + n)!

× S(m + n,n)(–t)mxj––l

= (–)n
n∑
j=

j–∑
l=

j––l∑
m=

(–)j+m
(
rn + l – 

l

)
n!

(m + n)!
(j – )!

(j –  – l –m)!

× S(m + n,n)S(n, j)xj–l–m

= (–)n
n∑
k=

{ n∑
j=k

j–k∑
l=

(–)k+l
(
rn + l – 

l

)
n!

(j – l – k + n)!
(j – )!
(k – )!

× S(j – l – k + n,n)S(n, j)

}
xk . ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For r,n≥ ,  ≤ k ≤ n, we have
(
rn + n – k – 

n – k

)
(n – )n–k

= (–)n
n∑
j=k

j–k∑
l=

(–)k+l
(
rn + l – 

l

)
n!

(j – l – k + n)!
(j – )!
(k – )!

× S(j – l – k + n,n)S(n, j).

Here we invoke the following identity:

∞∑
n=

( n∑
m=

mH (r)
m

)
tn =

t( – r log ( – t))
( – t)r+

. ()

Let us consider the following associated sequence:

qn(x) ∼
(
, t( – t)r+

)
. ()

For n≥ , by () and (), we get

qn(x) =
n∑
k=

(
(r + )n – k – 

n – k

)
(n – )n–kxk . ()

Let us assume that

pn(x) ∼
(
, t

(
 – r log ( – t)

))
. ()

For n≥ , by (), () and xn ∼ (, t), we get

pn(x) = x
(

t
t( – r log( – t))

)n

x–xn

= x
(
 – r log ( – t)

)–nxn–
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= x
∞∑
l=

(
n + l – 

l

)
rl

(
log ( – t)

)lxn–

= x
n–∑
l=

(
n + l – 

l

)
rl

n––l∑
j=

l!
(j + l)!

S(j + l, l)tj+lxn–

=
n–∑
l=

n––l∑
j=

l!rl
(
n + l – 

l

)(
n – 
j + l

)
S(j + l, l)xn–j–l

=
n∑
k=

{ n–k∑
l=

l!rl
(
n + l – 

l

)(
n – 
k – 

)
S(n – k, l)

}
xk . ()

For n≥ , from (), () and (), we can derive the following equation:

qn(x) = x
(
t( – r log ( – t))

t( – t)r+

)n

x–pn(x)

= x

( ∞∑
j=

( j∑
m=

mH (r)
m

)
tj–

)n n∑
a=

{ n–a∑
l=

l!rl
(
n + l – 

l

)(
n – 
a – 

)

× S(n – a, l)

}
xa–

=
n∑
a=

{ n–a∑
l=

l!rl
(
n + l – 

l

)(
n – 
a – 

)
S(n – a, l)

}

× x

[ ∞∑
j=

{ ∑
j+···+jn=j

( j+∑
m=

· · ·
jn+∑
mn=

m · · ·mnH (r)
m · · ·H (r)

mn

)}
tj
]
xa–

=
n∑
a=

n–a∑
l=

a∑
k=

∑
j+···+jn=a–k

( j+∑
m=

· · ·
jn+∑
mn=

m · · ·mnH (r)
m · · ·H (r)

mn

)

× l!rl
(
n + l – 

l

)(
n – 
a – 

)
S(n – a, l)(a – )a–kxk

=
n∑
k=

{ n∑
a=k

n–a∑
l=

∑
j+···+jn=a–k

( j+∑
m=

· · ·
jn+∑
mn=

m · · ·mnH (r)
m · · ·H (r)

mn

)

× l!rl
(
n + l – 

l

)(
n – 
a – 

)
S(n – a, l)(a – )a–k

}
xk . ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For n, r ≥ ,  ≤ k ≤ n, we have(
(r + )n – k – 

n – k

)
(n – )n–k

=
n∑

a=k

n–a∑
l=

∑
j+···+jn=a–k

( j+∑
m=

· · ·
jn+∑
mn=

m · · ·mnH (r)
m · · ·H (r)

mn

)
l!rl

×
(
n + l – 

l

)(
n – 
a – 

)
S(n – a, l)(a – )n–k .
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Here we use the following identity:

∞∑
n=

nH (r)
n tn =

t( – r log ( – t))
( – t)r+

. ()

Let us consider the following associated sequence:

qn(x) ∼
(
, t( – t)r+

)
. ()

For n≥ , from () and (), we have

qn(x) =
n∑
k=

(
(r + )n – k – 

n – k

)
(n – )n–kxk . ()

Let us assume that

pn(x) ∼
(
, t

(
 – r log ( – t)

))
. ()

Then, from () and (), we note that, for n≥ ,

pn(x) =
n∑
k=

{ n–k∑
l=

l!rl
(
n + l – 

l

)(
n – 
k – 

)
S(n – k, l)

}
xk . ()

For n≥ , by (), () and (), we get

qn(x) = x
(
t( – r log ( – t))

t( – t)r+

)n

x–pn(x)

= x

( ∞∑
j=

jH (r)
j tj–

)n

x–
n∑

a=

{ n–a∑
l=

l!rl
(
n + l – 

l

)(
n – 
a – 

)
S(n – a, l)

}
xa

=
n∑
a=

{ n–a∑
l=

l!rl
(
n + l – 

l

)(
n – 
a – 

)
S(n – a, l)

}

× x
a–∑
j=

( ∑
j+···+jn=j

(j + ) · · · (jn + )H (r)
j+ · · ·H (r)

jn+

)
tjxa–

=
n∑
a=

n–a∑
l=

a–∑
j=

( ∑
j+···+jn=j

(j + ) · · · (jn + )H (r)
j+ · · ·H (r)

jn+

)
l!rl

×
(
n + l – 

l

)(
n – 
a – 

)
S(n – a, l)(a – )jxa–j

=
n∑
k=

{ n∑
a=k

n–a∑
l=

( ∑
j+···+jn=a–k

(j + ) · · · (jn + )H (r)
j+ · · ·H (r)

jn+

)
l!rl

×
(
n + l – 

l

)(
n – 
a – 

)
S(n – a, l)(a – )a–k

}
xk . ()

Therefore, by () and (), we obtain the following theorem.
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Theorem  For n, r ≥ ,  ≤ k ≤ n, we have

(
(r + )n – k – 

n – k

)
(n – )n–k

=
n∑

a=k

n–a∑
l=

( ∑
j+···+jn=a–k

(j + ) · · · (jn + )H (r)
j+ · · ·H (r)

jn+

)
l!rl

×
(
n + l – 

l

)(
n – 
a – 

)
S(n – a, l)(a – )a–k .

Now, we utilize the following identity:

∞∑
n=

(n + )Hntn =
t – log ( – t)

( – t)
. ()

Let us consider the following associated sequence:

qn(x) ∼
(
, t( – t)

)
. ()

For n≥ , from () and (), we have

qn(x) =
n∑
k=

(
n – k – 
n – k

)
(n – )n–kxk . ()

Let us assume that

pn(x) ∼
(
, t – log ( – t)

)
. ()

We observe that

t – log ( – t) = t +
∞∑
n=

tn

n
= t +

∞∑
n=

tn

n
. ()

From (), (), () and xn ∼ (, t), we can derive the following equation:

pn(x) = x
(

t
(t +

∑∞
n=

tn
n )

)n

x–xn

= –nx

(
 +

∞∑
n=

tn–

n

)–n

xn–

= –nx
∞∑
l=

(
–n
l

)( ∞∑
n=

tn–

n

)l

xn–

= –nx
n–∑
l=

(–)l
(
n + l – 

l

)

×
n––l∑
m=

∑
m+···+ml=m


l(m + ) · · · (ml + )

tm+lxn–

http://www.advancesindifferenceequations.com/content/2013/1/235
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= –n
n–∑
l=

n––l∑
m=

∑
m+···+ml=m

(
–



)l(n + l – 
l

)
(n – )m+l

(m + ) · · · (ml + )
xn–l–m

= –n
n∑
k=

{ n–k∑
l=

∑
m+···+ml=n–l–k

(
–



)l(n + l – 
l

)
(n – )n–k

(m + ) · · · (ml + )

}
xk . ()

For n≥ , by (), (), () and (), we get

qn(x) = x
(
t – log ( – t)
t – ( – t)

)n

x–pn(x)

= x

( ∞∑
j=

(j + )Hj+tj
)n

x––n
n∑

a=

{ n–a∑
l=

∑
m+···+ml=n–l–a

(
–



)l

×
(
n + l – 

l

)
(n – )n–a

(m + ) · · · (ml + )

}
xa

= –n
n∑

a=

{ n–a∑
l=

∑
m+···+ml=n–l–a

(
–



)l(n + l – 
l

)

× (n – )n–a
(m + ) · · · (ml + )

}
x

a–∑
j=

( ∑
j+···+jn=j

(j + ) · · · (jn + )

×Hj+ · · ·Hjn+

)
(a – )jxa––j

= –n
n∑

a=

n–a∑
l=

a∑
k=

∑
m+···+ml=n–l–a

∑
j+···+jn=a–k

(
–



)l(n + l – 
l

)

× (n – )n–a(a – )a–k
(m + ) · · · (ml + )

(j + ) · · · (jn + )Hj+ · · ·Hjn+x
k

= –n
n∑
k=

{ n∑
a=k

n–a∑
l=

∑
m+···+ml=n–l–a

∑
j+···+jn=a–k

(
–



)l(n + l – 
l

)

× (n – )n–a(a – )a–k
(m + ) · · · (ml + )

(j + ) · · · (jn + )Hj+ · · ·Hjn+

}
xk . ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For n≥ ,  ≤ k ≤ n, we have

(
n – k – 
n – k

)
(n – )n–k

= –n
n∑

a=k

n–a∑
l=

∑
m+···+ml=n–l–a

∑
j+···+jn=a–k

(
–



)l(n + l – 
l

)

× (n – )n–a(a – )a–k
(m + ) · · · (ml + )

(j + ) · · · (jn + )Hj+ · · ·Hjn+.

http://www.advancesindifferenceequations.com/content/2013/1/235
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Now, we recall the following identity:

∞∑
n=

nHntn =
t{ + t – ( + t) log ( – t)}

( – t)
. ()

Let us consider the following associated sequence:

qn(x) ∼
(
, t( – t)

)
. ()

For n≥ , from () and (), we can derive the following equation:

qn(x) =
n∑
k=

(
n – k – 
n – k

)
(n – )n–kxk . ()

Let us assume that

pn(x) ∼
(
, t

{
 + t – ( + t) log ( – t)

})
. ()

We observe that

 + t – ( + t) log ( – t) =  + t + ( + t)
∞∑
j=

tj

j

=  + t + t +
∞∑
j=

tj

j
+

∞∑
j=

tj+

j

=  + t +
∞∑
j=

tj+

j + 
+

∞∑
j=

tj+

j + 

=  + t +
∞∑
j=

j + 
(j + )(j + )

tj+. ()

For n≥ , by (), (), () and xn ∼ (, t), we get

pn(x) = x
(

t
t{ + t – ( + t) log ( – t)}

)n

x–xn

= x

(
 + t +

∞∑
j=

j + 
(j + )(j + )

tj+
)–n

xn–

= x
n–∑
l=

(–)l
(
n + l – 

l

)(
 +

∞∑
j=

j + 
(j + )(j + )

tj+
)l

tlxn–

=
n–∑
l=

n––l∑
a=

n–a–l∑
k=

∑
j+···+ja=n–a–k–l

(–)l
(
n + l – 

l

)(
l
a

)
l–a(n – )n–k

×
( ∏a

i=(ji + )∏a
i=(ji + )(ji + )

)
xk
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=
n∑
k=

{ n–k∑
l=

n–k–l∑
a=

∑
j+···+ja=n–a–k–l

(–)l
(
n + l – 

l

)(
l
a

)
l–a(n – a)n–k

×
( ∏a

i=(ji + )∏a
i=(ji + )(ji + )

)}
xk . ()

For n≥ , from (), (), () and (), we have

qn(x) = x
(
t( + t – ( + t) log ( – t))

t( – t)

)n

x–pn(x)

=
n∑

m=

n–m∑
l=

n–m–l∑
a=

∑
j+···+ja=n–a–m–l

(–)l
(
n + l – 

l

)(
l
a

)
l–a(n – )n–m

×
( ∏a

i=(ji + )∏a
i=(ji + )(ji + )

)
x
m–∑
b=

∑
b+···+bn=b

( n∏
i=

(bi + )Hbi+

)
tbxm–

=
n∑

m=

n–m∑
l=

n–m–l∑
a=

∑
j+···+ja=n–a–m–l

(–)l
(
n + l – 

l

)(
l
a

)
l–a(n – )n–m

×
( ∏a

i=(ji + )∏a
i=(ji + )(ji + )

) m–∑
b=

∑
b+···+bn=b

n∏
i=

(bi + )Hbi+(m – )bxm–b

=
n∑
k=

{ n∑
m=k

n–m∑
l=

n–m–l∑
a=

∑
j+···+ja=n–a–m–l

∑
b+···+bn=m–k

(–)l
(
n + l – 

l

)(
l
a

)

× l–a(n – )n–m(m – )m–k

(∏a
i=(ji + )

∏n
i=(bi + )Hbi+∏a

i=(ji + )(ji + )

)}
xk . ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For n ≥ ,  ≤ k ≤ n, we have

(
n – k – 
n – k

)
(n – )n–k

=
n∑

m=k

n–m∑
l=

n–m–l∑
a=

∑
j+···+ja=n–a–m–l

∑
b+···+bn=m–k

(–)l
(
n + l – 

l

)(
l
a

)
l–a

× (n – )n–m(m – )m–k

(∏a
i=(ji + )

∏n
i=(bi + )Hbi+∏a

i=(ji + )(ji + )

)
.

Here we invoke the following identity:

∞∑
b=

( b∑
c=

cHc

)
tb =

t{ + t – ( + t) log ( – t)}
( – t)

. ()

Let us consider the following associated sequence:

qn(x) ∼
(
, t( – t)

)
. ()
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From () and (), we note that

qn(x) =
n∑
k=

(
n – k – 
n – k

)
(n – )n–kxk . ()

Let us assume that

pn(x) ∼
(
, t

(
 + t – ( + t) log ( – t)

))
. ()

For n≥ , from () and (), we have

pn(x) =
n∑
k=

{ n–k∑
l=

n–k–l∑
a=

∑
j+···+ja=n–a–k–l

(–)l
(
n + l – 

l

)(
l
a

)
l–a(n – )n–k

×
( ∏a

i=(ji + )∏a
i=(ji + )(ji + )

)}
xk . ()

For n≥ , from (), (), () and (), we can derive the following identity:

qn(x) = x
(
t{ + t – ( + t) log ( – t)}

t( – t)

)n

x–pn(x)

= x

( ∞∑
b=

( b+∑
c=

cHc

)
tb

)n

x–pn(x)

= x
∞∑
b=

∑
b+···+bn=b

{b+∑
c=

· · ·
bn+∑
cn=

c · · · cnHc · · ·Hcn

}
tb

×
n∑

m=

{n–m∑
l=

n–m–l∑
a=

∑
j+···+ja=n–a–m–l

(–)l
(
n + l – 

l

)(
l
a

)
l–a

× (n – )n–m
( ∏a

i=(ji + )∏a
i=(ji + )(ji + )

)}
xm–

=
n∑

m=

n–m∑
l=

n–m–l∑
a=

∑
j+···+ja=n–a–m–l

(–)l
(
n + l – 

l

)(
l
a

)
l–a(n – )n–m

×
( ∏a

i=(ji + )∏a
i=(ji + )(ji + )

) m–∑
b=

∑
b+···+bn=b

{b+∑
c=

· · ·
bn+∑
cn=

c · · · cnHc · · ·Hcn

}

× (m – )bxm–b

=
n∑
k=

{ n∑
m=k

n–m∑
l=

n–m–l∑
a=

∑
j+···+ja=n–a–m–l

∑
b+···+bn=m–k

(–)l
(
n + l – 

l

)

×
(
l
a

)
l–a(n – )n–m(m – )m–k

( ∏a
i=(ji + )∏a

i=(ji + )(ji + )

)

×
b+∑
c=

· · ·
bn+∑
cn=

n∏
i=

ci Hci

}
xk . ()

Therefore, by () and (), we obtain the following theorem.
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Theorem  For n≥ ,  ≤ k ≤ n, we have
(
n – k – 
n – k

)
(n – )n–k

=
n∑

m=k

n–m∑
l=

n–m–l∑
a=

∑
j+···+ja=n–a–m–l

∑
b+···+bn=m–k

(–)l
(
n + l – 

l

)(
l
a

)
l–a

× (n – )n–m(m – )m–k

( ∏a
i=(ji + )∏a

i=(ji + )(ji + )

) b+∑
c=

· · ·
bn+∑
cn=

n∏
i=

ci Hci .

Here we use the following identity:

∞∑
n=

n(n + )Hntn =
t{( + t) – (t + ) log ( – t)}

( – t)
. ()

Let us consider the following associated sequence:

qn(x) ∼
(
, t( – t)

)
. ()

By () and (), we get

qn(x) =
n∑
k=

(
n – k – 
n – k

)
(n – )n–kxk (n≥ ). ()

Let us assume that

pn(x) ∼
(
, t

{
( + t) – (t + ) log ( – t)

})
. ()

We see that

( + t) – (t + ) log ( – t) =  + t +
∞∑
n=

n + 
n(n + )

tn+. ()

For n≥ , from (), (), () and xn ∼ (, t), we have

pn(x) = x
(

t
t{( + t) – (t + ) log ( – t)}

)n

x–xn

= x
(
( + t) – (t + ) log ( – t)

)–nxn–
= x

(
 + t +

∞∑
j=

j + 
j(j + )

tj+
)–n

xn–. ()

From (), by the same method of (), we get

pn(x) = –n
n∑
k=

{ n–k∑
l=

n–k–l∑
a=

∑
j+···+ja=n–a–l–k

(–)l
(
n + l – 

l

)(
l
a

)
l–a

× (n – )n–k

( a∏
i=

(ji + )
(ji + )(ji + )

)}
xk . ()

http://www.advancesindifferenceequations.com/content/2013/1/235
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For n≥ , by (), (), (), () and (), we get

qn(x) = x
(
t{( + t) – (t + ) log ( – t)}

t( – t)

)n

x–pn(x)

= x

( ∞∑
b=

(b + )(b + )Hb+tb
)n

x–pn(x)

= x
∞∑
b=

( ∑
b+···+bn=b

( b∏
i=

(bi + )(bi + )Hbi+

)
tb

)

× –n
n∑

m=

{n–m∑
l=

n–m–l∑
a=

∑
j+···+ja=n–a–l–m

(–)l
(
n + l – 

l

)(
l
a

)
l–a

× (n – )n–m
a∏
i=

(ji + )
(ji + )(ji + )

}
xm–

= –n
n∑

m=

n–m∑
l=

n–m–l∑
a=

∑
j+···+ja=n–a–l–m

(–)l
(
n + l – 

l

)(
l
a

)
l–a(n – )n–m

×
( a∏

i=

(ji + )
(ji + )(ji + )

) m–∑
b=

∑
b+···+bn=b

( n∏
i=

(bi + )(bi + )Hbi+

)

× (m – )bxm–b. ()

By the same method, we can derive the following identity from ():

qn(x) = –n
n∑
k=

{ n∑
m=k

n–m∑
l=

n–m–l∑
a=

∑
j+···+ja=n–a–l–m

∑
b+···+bn=m–k

(–)l

×
(
n + l – 

l

)(
l
a

)
l–a(n – )n–m(m – )m–k

( a∏
i=

(ji + )
(ji + )(ji + )

)

×
n∏
i=

(bi + )(bi + )Hbi+

}
xk . ()

By comparing coefficients on both sides of () and (), we get

(
n – k – 
n – k

)
(n – )n–k

= –n
n∑

m=k

n–m∑
l=

n–m–l∑
a=

∑
j+···+ja=n–a–l–m

∑
b+···+bn=m–k

(–)l
(
n + l – 

l

)(
l
a

)

× l–a(n – )n–m(m – )m–k

( a∏
i=

(ji + )
(ji + )(ji + )

)

×
( n∏

i=

(bi + )(bi + )Hbi+

)
. ()
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Remark Recently, several authors have studied the q-extension of harmonic and hyper-
harmonic numbers (see [–]).
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