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1 Introduction
As an important branch of the Gronwall-Bellman inequality, various weakly singular inte-
gral inequalities and their discrete analogues have attracted more and more attention and
play a fundamental role in the study of the theory of singular differential equations and
integral equations (for example, see [–] and []). When many problems such as the be-
havior, the perturbation and the numerical treatment of the solution for the Volterra type
weakly singular integral equation are studied, they often involve some certain integral in-
equalities and discrete inequalities. Dixon andMcKee [] investigated the convergence of
discretization methods for the Volterra integral and integro-differential equations, using
the following inequalities

x(t)≤ ψ(t) +M
∫ t



x(s)
(t – s)α

ds, m > , < α < 

and

xi ≤ ψi +Mh–α

i–∑
j=

xj
(i – j)α

, i = , , . . . ,N ,n > ,Nh = T . (.)

As for the second kind Abel-Volterra singular integral equation, Beesack [] also dis-
cussed the inequalities

x(t)≤ ψ(t) +M
∫ t



sσx(s)
(tβ – sβ )α

ds
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and

xi ≤ ψi +Mh+σ–αβ

i–∑
j=

jσxj
(iβ – jβ )α

, (.)

where  < α < , β ≥  and σ ≥ β – . It should be noted that the above mentioned results
are based on the assumption that themesh size is uniformly bounded. Unfortunately, such
technique leads to weak results, which do not reflect the true order of consistency of the
scheme and may not even yield a convergence result at all. To avoid the shortcoming of
these results, Norbuy and Stuart [, ] presented some new inequalities to describe the
numerical method for weakly singular Volterra integral equations, which is based on a
variable mesh.
Another purpose of studying weakly singular integral inequalities and their discrete ver-

sions is related to the theory of the parabolic equation (for example, see [–] and the
references therein). Consider the weakly singular integral inequality

x(t)≤ a(t) +
∫ t


(t – s)β–b(s)ω

(
x(s)

)
ds,  < β < ,

and the corresponding discrete inequality of multi-step,

xn ≤ an +
n–∑
k=

(tn – tk)β–τkbkω(xk), (.)

where t = , τk = tk+ – tk , supk∈N τk = τ and limt→∞ tk = ∞. Henry [] and Slodicka []
discussed the linear case ω(ξ ) = ξ of the two inequalities above and obtained the estimate
of the solution. Furthermore, Medveď [, ] studied the general nonlinear case. How-
ever, his results are based on the ‘(q) condition’: () ω satisfies e–qt[ω(u)]q ≤ R(t)ω(e–qt)uq;
() there exists c >  such that ane–τ tn ≤ c. Later, Yang and Ma [] generalized the results
to a new case

xα
n ≤ an +

n–∑
k=

(tn – tk)β–τkbkxλ
k . (.)

In this paper, we are concerned with the following weakly singular inequality on a vari-
able mesh

xμ
n ≤ an +

n–∑
k=

(
tαn – tαk

)β–tγ–k τkbkxλ
k , (.)

where μ > , λ > , and  < β ,γ ≤ . Our proposed method can avoid the so-called
‘q-condition,’ and under a new assumption, the more concise results are derived. More-
over, to show the application of the more general inequality to a Volterra-type difference
equation, some examples are presented.

2 Preliminaries
In what follows, we denote R by the set of real numbers. Let R+ = (,∞) and N =
{, , , . . .}. C(X,Y ) denotes the collection of continuous functions from the set X to the
set Y . As usual, the empty sum is taken to be .
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Lemma . (Discrete Jensen inequality, see []) Let A,A, . . . ,An be nonnegative real
numbers, and let r >  be a real number. Then

(A +A + · · · +An)r ≤ nr–
(
Ar
 +Ar

 + · · · +Ar
n
)
.

Lemma . (Discrete Hölder inequality, see []) Let ai, bi (i = , , . . . ,n) be nonnegative
real numbers, and p, q be positive numbers such that 

p +

q =  (or p = , q = ∞). Then

n∑
i=

aibi ≤
( n∑

i=

api

)/p( n∑
i=

bqi

)/q

.

Definition . (See []) Let [x, y, z] be an ordered parameter group of nonnegative real
numbers. The group is said to belong to the first-class distribution and is denoted by
[x, y, z] ∈ I if conditions x ∈ (, ], y ∈ (/, ), z ≥ / – y and z > y are satisfied; it is
said to belong to the second-class distribution and is denoted by [x, y, z] ∈ II if conditions
x ∈ (, ], y ∈ (, /] and z > –y

–y are satisfied.

Lemma . (See []) Let α, β , γ and p be positive constants. Then

∫ t



(
tα – sα

)p(β–)sp(γ–) ds = tθ

α
B
[
p(γ – ) + 

α
,p(β – ) + 

]
, t ∈ R+,

where B[ξ ,η] =
∫ 
 s

ξ–( – s)η– ds (Re ξ > , Reη > ) is the well-known B-function and
θ = p[α(β – ) + γ – ] + .

Lemma . Suppose that ω(u) ∈ C(R+,R+) is nondecreasing with ω(u) >  for u > . Let
an, cn be nonnegative and nondecreasing in n. If yn is nonnegative such that

yn ≤ an + cn
n–∑
k=

bkω(yk), n ∈N.

Then

yn ≤ –

[
(an) + cn

n–∑
k=

bk

]
,  ≤ n≤ M,

where (v) =
∫ v
v


ω(s) ds, v ≥ v, – is the inverse function of , and M is defined by

M = sup

{
i :(ai) + ci

i–∑
k=

bk ∈Dom
(
–)}.

Remark . Martyniuk et al. [] studied the inequality yn ≤ c +
∑n–

k= bkω(yk), n ∈ N.
Obviously, our result is a more general case of the nonlinear difference inequality.
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Lemma . If [α,β ,γ ] ∈ I , then p = 
β
; if [α,β ,γ ] ∈ II , then p = +β

+β . Furthermore, for
sufficiently small τk , we have

n–∑
k=

(
tαn – tαk

)pi(β–)tpi(γ–)k τk

≤
∫ tn



(
tαn – sα

)pi(β–)spi(γ–) ds
=
tθin
α
B
[
pi(γ – ) + 

α
,pi(β – ) + 

]
(.)

for i = , , where θi = pi[α(β – ) + γ – ] + .

Proof By the definition of θi, θi ≥ . For its proof, see []. On one hand, when [α,β ,γ ] ∈ I ,
it follows from Definition . that γ > β . On the other hand, when [α,β ,γ ] ∈ II , that is,
α ∈ (, ], β ∈ (,  ], we have that

γ >
 – β

 – β >



≥ β (.)

holds, since

 – β

 – β >



⇔  – β >  – β ⇔  – β > . (.)

According to the condition β ∈ (,  ],  – β >  holds, which yields (.) holds directly.
Thus, when [α,β ,γ ] ∈ I or [α,β ,γ ] ∈ II , we have

γ > β .

Next, we consider the integrated function in the B-function in (.).

B
[
pi(γ – ) + 

α
,pi(β – ) + 

]
=

∫ 


( – s)pi(β–)+–s

pi(γ–)+
α – ds

:=
∫ 


( – s)n–sn– ds. (.)

Denote f (s) := ( – s)n–sn– for s ∈ (, ), where n = pi(γ–)+
α

and n = pi(β – ) + . If
n = n, then f (s) is symmetric about s = 

 . In fact, because of α ∈ (, ], we get

 > n =
pi(γ – ) + 

α
> pi(γ – ) +  > pi(β – ) +  = n > ,

i.e.,

 > n –  > n –  > –. (.)

Moreover, we can obtain the zero-point of f ′(s) as follows

s =
n – 

n + n – 
<


. (.)

http://www.advancesindifferenceequations.com/content/2013/1/239
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Therefore, the function f (s) is decreasing on the interval (, s] while increasing sharply
on the interval [s, ). So, for some given sufficiently small τk , by the properties of the left-
rectangle integral formula, we have

n–∑
k=

(
α – tαk

)n–tn–k τk ≤
∫ 



(
 – sα

)n–sn– ds
= B

[
pi(γ – ) + 

α
,pi(β – ) + 

]
, (.)

where  = t < t < · · · < tn = .
As for the general interval (, tn], we can easily obtain the corresponding result (.),

which is similar to (.). We omit the details here. �

3 Main result
To state our result conveniently, we fist introduce the following function

(u) =
∫ u

u



s
λ
μ

ds, u≥ u > ,μ > ,λ > .

Thus, we have

(u) =

⎧⎨
⎩ln u

u
, μ = λ,u > ,

μ

μ–λ
u

μ–λ
μ , μ 	= λ,u = 

and

–(ξ ) =

⎧⎨
⎩u exp ξ ,

(μ–λ

μ
ξ )

μ
μ–λ .

Denote ãn =max≤k≤n,k∈N ak , where τ =max≤k≤n–,k∈N τk .

Theorem . Suppose that an, bn are nonnegative functions for n ∈ N. Let μ > , λ > ,
μ 	= λ. If xn is nonnegative function such that (.), then for some sufficiently small τk :
() [α,β ,γ ] ∈ I , letting p = 

β
, q = 

–β
, we have

xn ≤
[(


β

–β a


–β

ñ
)μ–λ

μ +
μ – λ

μ


β
–β τ

(
tθn
α

) β
–β

B
β

–β



n–∑
k=

b


–β

k

] –β
μ–λ

(.)

for n ∈N (μ > λ) or  ≤ n≤ N (μ < λ), where

θ = p
[
α(β – ) + γ – 

]
+  =

α(β – ) + γ – 
β

+ ,

B = B
[

γ –  + β

αβ
,
β – 

β

]
,
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and N is the largest integer number such that,

μ

μ – λ

(


β
–β a


–β

ñ
)μ–λ

μ + 
β

–β τ

(
tθn
α

) β
–β

B
β

–β



n–∑
k=

b


–β

k > ; (.)

() [α,β ,γ ] ∈ II , letting p = +β

+β , q =
+β

β
, we have

xn ≤
[(


+β

β a
+β

β

ñ
)μ–λ

μ +
μ – λ

μ


+β
β τ

(
tθn
α

) +β
β

B
+β

β



n–∑
k=

b
+β

β

k

] +β
β(μ–λ)

(.)

for n ∈N (μ > λ) or  ≤ n≤ N (μ < λ), where

θ =
 + β

 + β
[
α(β – ) + γ – 

]
+ ,

B = B
[
γ ( + β) – β

α( + β)
,
β

 + β

]
,

and N is the largest integer number such that

μ

μ – λ

(


+β
β a

+β
β

ñ
)μ–λ

μ + 
+β

β τ

(
tθn
α

) +β
β

(B)
+β

β

n–∑
k=

b
+β

β

k > . (.)

Proof By the definition of ãn, obviously, ãn is nonnegative and nondecreasing, that is,
ãn ≥ an. It follows from (.) that

xμ
n ≤ ãn +

n–∑
k=

(
tαn – tαk

)β–tγ–k τkbkxλ
k , (.)

where τk is the variable time step.
Next, for convenience, we take the indices pi, qi. Denote that if [α,β ,γ ] ∈ I , let p = 

β

and q = 
–β

; if [α,β ,γ ] ∈ II , let p = +β

+β , and let q = +β

β
. Then 

pi
+ 

qi
=  holds for

i = , .
Using Lemma . with indices pi, qi in (.), we have

xμ
n ≤ ãn +

n–∑
k=

(
tαn – tαk

)β–tγ–k τ

pi
k τ


qi
k bkxλ

k

≤ ãn + τ

qi

n–∑
k=

(
tαn – tαk

)β–tγ–k τ

pi
k bkxλ

k

≤ ãn + τ

qi

[ n–∑
k=

(
tαn – tαk

)pi(β–)tpi(γ–)k τk

] 
pi

( n–∑
k=

bqik x
qiλ
k

) 
qi

. (.)

By Lemma ., the inequality above can be rewritten as

xqiμn ≤ qi–ãqin + qi–τ

[ n–∑
k=

(
tαn – tαk

)pi(β–)tpi(γ–)k τk

] qi
pi

( n–∑
k=

bqik x
qiλ
k

)
. (.)

http://www.advancesindifferenceequations.com/content/2013/1/239
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By Lemma .,

n–∑
k=

(
tαn – tαk

)pi(β–)tpi(γ–)k τk ≤
∫ tn



(
tαn – sα

)pi(β–)spi(γ–) ds
=
tθin
α
B
[
pi(γ – ) + 

α
,pi(β – ) + 

]
=
tθin
α
Bi, (.)

where Bi = B[ pi(γ–)+
α

,pi(β – ) + ], we get

xqiμn ≤ qi–ãqin + qi–τ
(
tθin
α

) qi
pi
(Bi)

qi
pi

( n–∑
k=

bqik x
qiλ
k

)
, (.)

and θi is given in Lemma . for i = , .

Let yn = xqiμn . Then xqiλk = x
qiμ λ

μ

k = y
λ
μ

k . It follows from (.) that

yn ≤ qi–ãqin + qi–τ
(
tθin
α

) qi
pi
(Bi)

qi
pi

( n–∑
k=

bqik y
λ
μ

k

)
. (.)

According to Lemma ., we have

yn ≤ –

[


(
qi–ãqin

)
+ qi–τ

(
tθin
α

) qi
pi
(Bi)

qi
pi

n–∑
k=

bqik

]
(.)

for  ≤ n≤ M, whereM is the largest integer number such that


(
qi–ãqin

)
+ qi–τ

(
tθin
α

) qi
pi
(Bi)

qi
pi

n–∑
k=

bqik ∈Dom
(
–).

() For [α,β ,γ ] ∈ I , p = 
β
, q = 

–β
. By the definitions of  and –, we can compute

that


(
q–ãqn

)
=

μ

μ – λ

(


β
–β a


–β

ñ
)μ–λ

μ ,

θ = p
[
α(β – ) + γ – 

]
+  =

α(β – ) + γ – 
β

+ , (.)

B = B
[

γ –  + β

αβ
,
β – 

β

]
.

Then

yn ≤ –

[


(
q–ãqn

)
+ q–τ

(
tθn
α

) q
p
B

q
p


n–∑
k=

bqk

]

≤ –

[
μ

μ – λ

(


β
–β ã


–β
n

)μ–λ
μ + 

β
–β τ

(
tθn
α

) β
–β

B
β

–β



n–∑
k=

b


–β

k

]

≤
[(


β

–β ã


–β
n

)μ–λ
μ +

μ – λ

μ


β
–β τ

(
tθn
α

) β
–β

B
β

–β



n–∑
k=

b


–β

k

] μ
μ–λ

. (.)
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Observe the second formula in (.). To ensure that

μ

μ – λ

(


β
–β ã


–β
n

)μ–λ
μ + 

β
–β τ

(
tθn
α

) β
–β

B
β

–β



n–∑
k=

b


–β

k ∈Dom
(
–),

we may take M = ∞ for μ > λ and M = N for μ < λ, respectively, where N is the largest
integer number such that

μ

μ – λ

(


β
–β ã


–β
n

)μ–λ
μ + 

β
–β τ

(
tθn
α

) β
–β

B
β

–β



n–∑
k=

b


–β

k > .

Since xn ≤ y


qμ
n = y

–β
μ

n , substituting it into (.), we can get (.).
() For [α,β ,γ ] ∈ II , p = +β

+β , q =
+β

β
. Similarly to the computation above, we have


(
q–ãqn

)
=

μ

μ – λ

(


+β
β ã

+β
β

n
)μ–λ

μ ,

θ =
 + β

 + β
[
α(β – ) + γ – 

]
+ , (.)

B = B
[
γ ( + β) – β

α( + β)
,
β

 + β

]
.

Then

yn ≤ –

[


(
q–ãqn

)
+ q–τ

(
tθn
α

) q
p
B

q
p


n–∑
k=

bqk

]

≤ –

[
μ

μ – λ

(


+β
β ã

+β
β

n
)μ–λ

μ + 
+β

β τ

(
tθn
α

) +β
β

B
+β

β



n–∑
k=

b
+β

β

k

]

≤
[(


+β

β ã
+β

β
n

)μ–λ
μ +

μ – λ

μ


+β
β τ

(
tθn
α

) +β
β

B
+β

β



n–∑
k=

b
+β

β

k

] μ
μ–λ

. (.)

Observe the second formula in (.). To ensure that

μ

μ – λ

(


+β
β ã

+β
β

n
)μ–λ

μ + 
+β

β τ

(
tθn
α

) +β
β

B
+β

β



n–∑
k=

b
+β

β

k ∈Dom
(
–),

we takeM = ∞ forμ > λ andM =N forμ < λ, respectively, whereN is the largest integer
number such that

μ

μ – λ

(


+β
β ã

+β
β

n
)μ–λ

μ + 
+β

β τ

(
tθn
α

) +β
β

B
+β

β



n–∑
k=

b
+β

β

k > .

Because xn ≤ y


qμ

n = y
–β
μ

n , substituting it into (.), we can get (.). This completes the
proof. �
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For the case that μ = λ, let yn = xμ
n , we obtain from (.)

yn ≤ an +
n–∑
k=

(
tαn – tαk

)β–tγ–k τkbkyk (.)

and derive the estimation of the upper bound as follows.

Theorem . Let an, bn be defined as in Theorem .. If yn is nonnegative function such
that (.), then for some sufficiently small τk :
() [α,β ,γ ] ∈ I , p = 

β
, q = 

–β
, we have

yn ≤
[


β
–β ã


–β
n exp

{


β
–β τ

(
tθn
α

) β
–β

B
β

–β



n–∑
k=

b


–β

k

}]–β

(.)

for n ∈N, where θ, B are defined in Theorem .;
() [α,β ,γ ] ∈ II , p = +β

+β , q =
+β

β
, we have

yn ≤
[


+β
β ã

+β
β

n exp

{


+β
β τ

(
tθn
α

) +β
β

B
+β

β



n–∑
k=

b
+β

β

k

}] β
+β

(.)

for n ∈N, where θ, B are defined in Theorem ..

Proof In the proof of Theorem ., before we apply Lemma ., it is independent of the
comparison of μ and λ. Hence, taking yn = xμ

n = xλ
n in (.), we have

yqin ≤ qi–ãqin + qi–τ
(
tθin
α

) qi
pi
B

qi
pi
i

( n–∑
k=

bqik y
qi
k

)
. (.)

We denote zn = yqin and get

zn ≤ qi–ãqin + qi–τ
(
tθin
α

) qi
pi
B

qi
pi
i

( n–∑
k=

bqik zk

)
.

By Lemma . and the definitions of  and – for μ = λ, we have the following result

zn ≤ –

[


(
qi–ãqin

)
+ qi–τ

(
tθin
α

) qi
pi
B

qi
pi
i

n–∑
k=

bqik

]

= –

[
ln

(qi–ãqin )
u

+ qi–τ
(
tθin
α

) qi
pi
B

qi
pi
i

n–∑
k=

bqik

]

= exp

{[
ln

(
qi–ãqin

)
+ qi–τ

(
tθin
α

) qi
pi
B

qi
pi
i

n–∑
k=

bqik

]}

= qi–aqiñ exp

{
qi–τ

(
tθin
α

) qi
pi
B

qi
pi
i

n–∑
k=

bqik

}
, (.)

http://www.advancesindifferenceequations.com/content/2013/1/239
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which yields

yn ≤
[
qi–ãqin exp

{
qi–τ

(
tθin
α

) qi
pi
B

qi
pi
i

n–∑
k=

bqik

}] 
qi

. (.)

Finally, considering two situations for i = ,  and using paremeters α, β , γ to denote pi, qi,
Bi and θi in (.), we can obtain the estimations, respectively. We omit the details here.

�

Remark . Henry [] and Slodicka [] discussed the special case of Theorem ., that
is, α =  and γ = . Moreover, our result is simpler and has a wider range of applications.

Remark . Although Medveď [, ] investigated the more general nonlinear case, his
result is under the assumption that ‘w(u) satisfies the condition (q).’ In our result, the ‘(q)
condition’ is eliminated.

Letting μ =  and λ =  in Theorem ., we have the following corollary.

Corollary . Suppose that an, bn are nonnegative functions for n ∈ N, and un is nonde-
creasing such that

xn ≤ an +
n–∑
k=

(
tαn – tαk

)β–tγ–k τkbkxk , (.)

then for some sufficiently small τk :
() when [α,β ,γ ] ∈ I , p = 

β
, q = 

–β
, we have

xn ≤
[(


β

–β a


–β

ñ
) 
 + 

β–
–β τ

(
tθn
α

) β
–β

B
β

–β



n–∑
k=

b


–β

k

]–β

(.)

for n ∈N, where θ, B are defined in Theorem .;
() when [α,β ,γ ] ∈ II , p = +β

+β , q =
+β

β
, we have

xn ≤
[(


+β

β a
+β

β

ñ
) 
 + 

+β
β τ

(
tθn
α

) +β
β

B
+β

β



n–∑
k=

b
+β

β

k

] +β
β

(.)

for n ∈N, where θ, B are defined in Theorem ..

Remark . Inequality (.) is the extension of the well-knownOu-Iang-type inequality.
Clearly, our inequality enriches the results for such an inequality.

4 Applications
In this section, we apply our results to discuss the boundedness and uniqueness of solu-
tions of a Volterra-type difference equation with a weakly singular kernel.

http://www.advancesindifferenceequations.com/content/2013/1/239
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Example  Suppose that xn satisfies the equation

xn =


+

n–∑
k=

(tn – tk)–

 t–




k τkbkxk (.)

for n ∈N. Then we get

|xn| ≤ 

+

n–∑
k=

(tn – tk)–

 t–




k τkbk|xk|. (.)

Letting |xn| = yn changes (.) into

yn ≤ 

+

n–∑
k=

(tn – tk)–

 t–




k τkbkyk . (.)

From (.), we can see that

an =


, α = , β =



, γ =



, γ > β .

Obviously, [α,β ,γ ] ∈ I . Letting p = 
 , q = , we have

ãn =


, bk = ,

θ =



[(


– 

)
+


– 

]
+  =



, B = B

[


,



]
.

Using Corollary ., we get

|xn| ≤
[√




+ nτ t


n B

[


,



]] 

, n ∈N, (.)

which implies that xn in (.) is upper bounded.

Example  Consider the linear weakly singular difference equation

xn ≤ an +
n–∑
k=

(
tαn – tαk

)β–tγ–k τkbkxk (.)

and

yn ≤ cn +
n–∑
k=

(
tαn – tαk

)β–tγ–k τkbkyk , (.)

where |an – cn| < ε, ε is an arbitrary positive number, and [α,β ,γ ] ∈ I or [α,β ,γ ] ∈ II .
From (.) and (.), we get

|xn – yn| ≤ |an – cn| +
n–∑
k=

(
tαn – tαk

)β–tγ–k τkbk|xk – yk|, (.)

http://www.advancesindifferenceequations.com/content/2013/1/239
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which is the form of inequality (.). Applying Theorem ., we have

|xn – yn| ≤
[


β
–β ε


–β exp

{


β
–β τ

(
tθn
α

) β
–β

B
β

–β



n–∑
k=

b


–β

k

}]–β

or

|xn – yn| ≤
[


+β
β ε

+β
β exp

{


+β
β τ

(
tθn
α

) +β
β

B
+β

β



n–∑
k=

b
+β

β

k

}] β
+β

for n ∈ N. If an = cn, let ε → , and we obtain the uniqueness of the solution of equa-
tion (.).
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