On the Smarandache-Pascal derived sequences and some of their conjectures

Xiaoxue Li and Di Han*

"Correspondence:
handi515@163.com
Department of Mathematics, Northwest University, Xi'an, Shaanxi, P.R. China

Abstract

For any sequence $\left\{b_{n}\right\}$, the Smarandache-Pascal derived sequence $\left\{T_{n}\right\}$ of $\left\{b_{n}\right\}$ is defined as $T_{1}=b_{1}, T_{2}=b_{1}+b_{2}, T_{3}=b_{1}+2 b_{2}+b_{3}$, generally, $T_{n+1}=\sum_{k=0}^{n}\binom{n}{k} \cdot b_{k+1}$ for all $n \geq 2$, where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is the combination number. In reference (Murthy and Ashbacher in Generalized Partitions and New Ideas on Number Theory and Smarandache Sequences, 2005), authors proposed a series of conjectures related to Fibonacci numbers and its Smarandache-Pascal derived sequence, one of them is that if $\left\{b_{n}\right\}=\left\{F_{1}, F_{9}, F_{17}, \ldots\right\}$, then we have the recurrence formula $T_{n+1}=49 \cdot\left(T_{n}-T_{n-1}\right), n \geq 2$. The main purpose of this paper is using the elementary method and the properties of the second-order linear recurrence sequence to study these problems and to prove a generalized conclusion.

Keywords: Smarandache-Pascal derived sequence; Fibonacci number; combination number; elementary method; conjecture

1 Introduction

For any sequence $\left\{b_{n}\right\}$, we define a new sequence $\left\{T_{n}\right\}$ through the following method: $T_{1}=b_{1}, T_{2}=b_{1}+b_{2}, T_{3}=b_{1}+2 b_{2}+b_{3}$, generally, $T_{n+1}=\sum_{k=0}^{n}\binom{n}{k} \cdot b_{k+1}$ for all $n \geq 2$, where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is the combination number. This sequence is called the Smarandache-Pascal derived sequence of $\left\{b_{n}\right\}$. It was introduced by professor Smarandache in [1] and studied by some authors. For example, Murthy and Ashbacher [2] proposed a series of conjectures related to Fibonacci numbers and its Smarandache-Pascal derived sequence; three of them are as follows.

Conjecture 1 Let $\left\{b_{n}\right\}=\left\{F_{8 n+1}\right\}=\left\{F_{1}, F_{9}, F_{17}, F_{25}, \ldots\right\},\left\{T_{n}\right\}$ be the Smarandache-Pascal derived sequence of $\left\{b_{n}\right\}$, then we have the recurrence formula

$$
T_{n+1}=49 \cdot\left(T_{n}-T_{n-1}\right), \quad n \geq 2 .
$$

Conjecture 2 Let $\left\{b_{n}\right\}=\left\{F_{10 n+1}\right\}=\left\{F_{1}, F_{11}, F_{21}, F_{31}, \ldots\right\}$, $\left\{T_{n}\right\}$ be the Smarandache-Pascal derived sequence of $\left\{b_{n}\right\}$, then we have the recurrence formula

$$
T_{n+1}=125 \cdot\left(T_{n}-T_{n-1}\right), \quad n \geq 2 .
$$

Conjecture 3 Let $\left\{b_{n}\right\}=\left\{F_{12 n+1}\right\}=\left\{F_{1}, F_{13}, F_{25}, F_{37}, \ldots\right\},\left\{T_{n}\right\}$ be the Smarandache-Pascal derived sequence of $\left\{b_{n}\right\}$, then we have the recurrence formula

$$
T_{n+1}=324 \cdot\left(T_{n}-T_{n-1}\right), \quad n \geq 2 .
$$

Regarding these conjectures, it seems that no one has studied them yet; at least, we have not seen any related results before. These conjectures are interesting; they reveal the profound properties of the Fibonacci numbers. The main purpose of this paper is using the elementary method and the properties of the second-order linear recurrence sequence to study these problems and to prove a generalized conclusion. That is, we shall prove the following.

Theorem Let $\left\{X_{n}\right\}$ be a second-order linear recurrence sequence with $X_{0}=u, X_{1}=v, X_{n+1}=$ $a X_{n}+b X_{n-1}$ for all $n \geq 1$, where $a^{2}+4 b>0$. For any positive integer $d \geq 2$, we define the Smarandache-Pascal derived sequence of $\left\{X_{d n+1}\right\}$ as

$$
T_{n+1}=\sum_{k=0}^{n}\binom{n}{k} \cdot X_{d k+1} .
$$

Then we have the recurrence formula

$$
T_{n+1}=\left(2+A_{d}+b \cdot A_{d-2}\right) \cdot T_{n}-\left(1+A_{d}+b \cdot A_{d-2}+(-b)^{d}\right) \cdot T_{n-1},
$$

where the sequence $\left\{A_{n}\right\}$ is defined as $A_{0}=1, A_{1}=a, A_{n+1}=a \cdot A_{n}+b \cdot A_{n-1}$ for all $n \geq 1$. In fact this time, the general term is

$$
A_{n}=\frac{1}{\sqrt{a^{2}+4 b}}\left[\left(\frac{a+\sqrt{a^{2}+4 b}}{2}\right)^{n+1}-\left(\frac{a-\sqrt{a^{2}+4 b}}{2}\right)^{n+1}\right] .
$$

Now we take $b=1$, then from our theorem, we may immediately deduce the following three corollaries.

Corollary 1 Let $\left\{X_{n}\right\}$ be a second-order linear recurrence sequence with $X_{0}=u, X_{1}=v$, $X_{n+1}=a X_{n}+X_{n-1}$ for all $n \geq 1$. For any even number $d \geq 2$, we have the recurrence formula

$$
T_{n+1}=\left(2+A_{d}+A_{d-2}\right) \cdot\left(T_{n}-T_{n-1}\right), \quad n \geq 2 .
$$

Corollary 2 Let $\left\{X_{n}\right\}$ be a second-order linear recurrence sequence with $X_{0}=u, X_{1}=v$, $X_{n+1}=a X_{n}+X_{n-1}$ for all $n \geq 1$. For any odd number $d \geq 2$, we have the recurrence formula

$$
T_{n+1}=\left(2+A_{d}+A_{d-2}\right) \cdot T_{n}-\left(A_{d}+A_{d-2}\right) \cdot T_{n-1}, \quad n \geq 2,
$$

where

$$
A_{n}=A_{n}(a)=\frac{1}{\sqrt{a^{2}+4}}\left[\left(\frac{a+\sqrt{a^{2}+4}}{2}\right)^{n+1}-\left(\frac{a-\sqrt{a^{2}+4}}{2}\right)^{n+1}\right] .
$$

It is clear that $F_{n+1}(a)=A_{n}(a)$ is a polynomial of a; sometimes, it is called a Fibonacci polynomial, because $F_{n}(1)=F_{n}$ is Fibonacci number, see [3-5].
If we take $a=1, X_{0}=0, X_{1}=1$ in Corollary 1 , then $\left\{X_{n}\right\}=\left\{F_{n}\right\}$ is a Fibonacci sequence. Note that $A_{n}=F_{n+1}, 2+A_{8}+A_{6}=2+F_{9}+F_{7}=2+34+13=49,2+A_{10}+A_{8}=2+F_{11}+F_{9}=$ $2+89+34=125,2+A_{12}+A_{10}=2+F_{13}+F_{11}=2+233+89=324$; from Corollary 1, we may immediately deduce that the three conjectures above are true.

If we take $a=2, X_{0}=P_{0}=0, X_{1}=P_{1}=1$ and $P_{n+1}=2 P_{n}+P_{n-1}$ for all $n \geq 1$, then P_{n} are the Pell numbers. From Corollary 1, we can also deduce the following.

Corollary 3 Let P_{n} be the Pell number. Then for any positive integer d and

$$
T_{n+1}=\sum_{k=0}^{n}\binom{n}{k} \cdot P_{2 d k+1},
$$

we have the recurrence formula

$$
T_{n+1}=\left(2+P_{2 d+1}+P_{2 d-1}\right) \cdot\left(T_{n}-T_{n-1}\right), \quad n \geq 2 .
$$

On the other hand, from our theorem, we know that if $\left\{b_{n}\right\}$ is a second-order linear recurrence sequence, then its Smarandache-Pascal derived sequence $\left\{T_{n}\right\}$ is also a secondorder linear recurrence sequence.

2 Proof of the theorem

To complete the proof of our theorem, we need the following.

Lemma Let integers $m \geq 0$ and $n \geq 2$. If the sequence $\left\{X_{n}\right\}$ satisfying the recurrence relations $X_{n+2}=a \cdot X_{n+1}+b \cdot X_{n}, n \geq 0$, then we have the identity

$$
X_{m+n}=A_{n-1} \cdot X_{m+1}+b \cdot A_{n-2} \cdot X_{m},
$$

where A_{n} is defined as $A_{0}=1, A_{1}=a$ and $A_{n+1}=a \cdot A_{n}+b \cdot A_{n-1}$ for all $n \geq 1$, or

$$
A_{n}=\frac{1}{\sqrt{a^{2}+4 b}}\left[\left(\frac{a+\sqrt{a^{2}+4 b}}{2}\right)^{n+1}-\left(\frac{a-\sqrt{a^{2}+4 b}}{2}\right)^{n+1}\right] .
$$

Proof Now we prove this lemma by mathematical induction. Note that the recurrence formula $X_{m+2}=a \cdot X_{m+1}+b \cdot X_{m}, A_{1}=a, A_{0}=1, A_{n+1}=a \cdot A_{n}+b \cdot A_{n-1}$ for all $n \geq 1$. So $X_{m+2}=A_{1} \cdot X_{m+1}+b \cdot A_{0} \cdot X_{m}$. That is, the lemma holds for $n=2$. Since $X_{m+3}=a \cdot X_{m+2}+$ $b \cdot X_{m+1}=a \cdot\left(a \cdot X_{m+1}+b \cdot X_{m}\right)+b \cdot X_{m+1}=\left(a^{2}+b\right) \cdot X_{m+1}+b a \cdot X_{m}=A_{2} \cdot X_{m+1}+b A_{1} \cdot X_{m}$. That is, the lemma holds for $n=3$. Suppose that for all integers $2 \leq n \leq k$, we have $X_{m+n}=$ $A_{n-1} \cdot X_{m+1}+b \cdot A_{n-2} \cdot X_{m}$. Then for $n=k+1$, from the recurrence relations for X_{m} and the inductive hypothesis, we have

$$
\begin{aligned}
X_{m+k+1} & =a \cdot X_{m+k}+b \cdot X_{m+k-1} \\
& =a \cdot\left(A_{k-1} \cdot X_{m+1}+b \cdot A_{k-2} \cdot X_{m}\right)+b \cdot\left(A_{k-2} \cdot X_{m+1}+b \cdot A_{k-3} \cdot X_{m}\right) \\
& =\left(a \cdot A_{k-1}+b \cdot A_{k-2}\right) \cdot X_{m+1}+b \cdot\left(a \cdot A_{k-2}+b \cdot A_{k-3}\right) \cdot X_{m} \\
& =A_{k} \cdot X_{m+1}+b \cdot A_{k-1} \cdot X_{m-1} .
\end{aligned}
$$

That is, the lemma also holds for $n=k+1$. This completes the proof of our lemma by mathematical induction.

Now, we use this lemma to complete the proof of our theorem. For any positive integer d, from the definition of T_{n} and the properties of the binomial coefficient $\binom{n}{k}$, we have

$$
\begin{align*}
\binom{n-1}{k}+\binom{n-1}{k-1} & =\frac{(n-1)!}{k!(n-1-k)!}+\frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-1)!}{(k-1)!(n-k-1)!}\left(\frac{1}{k}+\frac{1}{n-k}\right)=\binom{n}{k} \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
T_{n+1} & =\sum_{k=0}^{n}\binom{n}{k} \cdot X_{d k+1} \\
& =X_{1}+X_{d n+1}+\sum_{k=1}^{n-1}\left(\binom{n-1}{k}+\binom{n-1}{k-1}\right) X_{d k+1} \\
& =\sum_{k=0}^{n-1}\binom{n-1}{k} \cdot X_{d k+1}+\sum_{k=0}^{n-2}\binom{n-1}{k} \cdot X_{d k+d+1}+X_{d n+1} \\
& =T_{n}+\sum_{k=0}^{n-1}\binom{n-1}{k} X_{d k+d+1} . \tag{2}
\end{align*}
$$

From the lemma, we have $X_{d k+d+1}=A_{d} \cdot X_{d k+1}+b \cdot A_{d-1} \cdot X_{d k}$, by (2) and the definition of T_{n}, we may deduce that

$$
\begin{align*}
T_{n+1} & =T_{n}+\sum_{k=0}^{n-1}\binom{n-1}{k} \cdot\left(A_{d} \cdot X_{d k+1}+b \cdot A_{d-1} \cdot X_{d k}\right) \\
& =T_{n}+A_{d} \cdot \sum_{k=0}^{n-1}\binom{n-1}{k} \cdot X_{d k+1}+b \cdot A_{d-1} \cdot \sum_{k=0}^{n-1}\binom{n-1}{k} \cdot X_{d k} \\
& =\left(1+A_{d}\right) \cdot T_{n}+b \cdot A_{d-1} \cdot \sum_{k=0}^{n-1}\binom{n-1}{k} \cdot X_{d k} . \tag{3}
\end{align*}
$$

On the other hand, from the lemma, we also have $X_{d k+d}=A_{d-1} \cdot X_{d k+1}+b \cdot A_{d-2} \cdot X_{d k}$, from this and formula (1), we have

$$
\begin{align*}
\sum_{k=0}^{n-1}\binom{n-1}{k} \cdot X_{d k} & =X_{0}+X_{d(n-1)}+\sum_{k=1}^{n-2}\binom{n-1}{k} \cdot X_{d k} \\
& =X_{0}+X_{d(n-1)}+\sum_{k=1}^{n-2}\left(\binom{n-2}{k}+\binom{n-2}{k-1}\right) \cdot X_{d k} \\
& =\sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k}+\sum_{k=0}^{n-3}\binom{n-2}{k} \cdot X_{d k+d}+X_{d(n-1)} \\
& =\sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k}+\sum_{k=0}^{n-2}\binom{n-2}{k} \cdot\left(A_{d-1} \cdot X_{d k+1}+b \cdot A_{d-2} \cdot X_{d k}\right) \\
& =\left(1+b \cdot A_{d-2}\right) \cdot \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k}+A_{d-1} \cdot T_{n-1} . \tag{4}
\end{align*}
$$

From (3), we can also deduce that

$$
\begin{equation*}
T_{n}=\left(1+A_{d}\right) \cdot T_{n-1}+b \cdot A_{d-1} \cdot \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k} \tag{5}
\end{equation*}
$$

Now, combining (3), (4) and (5), we may immediately get

$$
\begin{aligned}
T_{n+1} & =\left(1+A_{d}\right) \cdot T_{n}+b \cdot A_{d-1} \cdot\left(\left(1+b \cdot A_{d-2}\right) \cdot \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k}+A_{d-1} \cdot T_{n-1}\right) \\
& =\left(1+A_{d}\right) \cdot T_{n}+b \cdot A_{d-1}^{2} \cdot T_{n-1}+\left(1+b \cdot A_{d-2}\right) \cdot\left(T_{n}-\left(1+A_{d}\right) \cdot T_{n-1}\right)
\end{aligned}
$$

or equivalent to

$$
\begin{align*}
T_{n+1} & =\left(2+A_{d}+b \cdot A_{d-2}\right) \cdot T_{n}-\left(1+A_{d}+b \cdot A_{d-2}+b \cdot A_{d} \cdot A_{d-2}-b \cdot A_{d-1}^{2}\right) \cdot T_{n-1} \\
& =\left(2+A_{d}+b \cdot A_{d-2}\right) \cdot T_{n}-\left(1+A_{d}+b \cdot A_{d-2}+(-b)^{d}\right) \cdot T_{n-1}, \tag{6}
\end{align*}
$$

where we have used the identity

$$
\begin{aligned}
A_{d} \cdot A_{d-2}-A_{d-1}^{2} & =\frac{-(-b)^{d-1}}{a^{2}+4 b}\left[\left(\frac{a+\sqrt{a^{2}+4 b}}{2}\right)^{2}+\left(\frac{a-\sqrt{a^{2}+4 b}}{2}\right)^{2}\right]+\frac{2(-b)^{d}}{a^{2}+4 b} \\
& =-(-b)^{d-1} \cdot \frac{a^{2}+2 b+2 b}{a^{2}+4 b}=-(-b)^{d-1} .
\end{aligned}
$$

Now, our theorem follows from formula (6).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

XL studied the Smarandache-Pascal derived sequences and proved a generalized conclusion. DH participated in the research and summary of the study

Acknowledgements

The authors would like to thank the referee for carefully examining this paper and providing a number of important comments. This work is supported by the N.S.F. (11071194, 11001218) of P.R. China and G.I.C.F. (YZZ12062) of NWU.

Received: 9 June 2013 Accepted: 23 July 2013 Published: 8 August 2013

References

1. Smarandache, F: Only Problems, Not Solutions. Xiquan Publishing House, Chicago (1993)
2. Murthy, A, Ashbacher, C: Generalized Partitions and New Ideas on Number Theory and Smarandache Sequences, p. 79. Hexis, Phoenix (2005)
3. Rong, M, Wenpeng, Z : Several identities involving the Fibonacci numbers and Lucas numbers. Fibonacci Q .45 , 164-170 (2007)
4. Yuan, Y, Wenpeng, Z: Some identities involving the Fibonacci polynomials. Fibonacci Q. 40, 314-318 (2002)
5. Tingting, W, Wenpeng, Z: Some identities involving Fibonacci, Lucas polynomials and their applications. Bull. Math. Soc. Sci. Math. Roum. 55(1), 95-103 (2012)
[^0]
[^0]: doi:10.1186/1687-1847-2013-240
 Cite this article as: Li and Han: On the Smarandache-Pascal derived sequences and some of their conjectures.
 Advances in Difference Equations 2013 2013:240.

