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Abstract
In the present paper, we deal with the existence of infinitely many homoclinic
solutions for the second-order self-adjoint discrete Hamiltonian system

�[
p(n)�u(n – 1)

]
– L(n)u(n) +∇W(n,u(n)) = 0,

where p(n) and L(n) areN ×N real symmetric matrices for all n ∈ Z, and p(n) is
always positive definite. Under the assumptions that L(n) is allowed to be
sign-changing and satisfies

lim|n|→+∞ inf|x|=1(L(n)x, x) =∞,

W(n, x) is of indefinite sign and superquadratic as |x| → +∞, we establish several
existence criteria to guarantee that the above system has infinitely many homoclinic
solutions.
MSC: 39A11; 58E05; 70H05
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1 Introduction
Consider the second-order self-adjoint discrete Hamiltonian system

�[
p(n)�u(n – )

]
– L(n)u(n) +∇W

(
n,u(n)

)
= , (.)

where n ∈ Z, u ∈R
N , �u(n) = u(n+)–u(n) is the forward difference operator, p,L : Z →

R
N×N andW : Z×R

N →R,W (n,x) is continuously differentiable in x for every n ∈ Z. In
general, system (.) may be regarded as a discrete analogue of the following second-order
Hamiltonian system

[
p(t)u′(t)

]′ – L(t)u(t) +∇W
(
t,u(t)

)
= . (.)

Moreover, system (.) has applications as is shown in themonographs [, ]. In the past 
years, system (.) has been widely investigated, see [–] and references therein. System
(.) is the special form of the Emden-Fowler equation, appearing in the study of astro-
physics, gas dynamics, fluid mechanics, relativistic mechanics, nuclear physics and chem-
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ically reacting systems, and many well-known results concerning properties of solutions
of (.) are collected in [].
As usual, we say that a solution u(n) of system (.) is homoclinic (to ) if u(n) →  as

n→ ±∞. In addition, if u(n) �≡ , then u(n) is called a nontrivial homoclinic solution.
The existence and the multiplicity of homoclinic solutions of system (.) or its special

forms have been investigated by many authors. Papers [–] deal with the periodic case,
where p, L and W are N-periodic in n. If the periodicity is lost, the case is quite different
from the ones just described, because of lack of compactness of the Sobolev embedding.
In this case, either a coercivity condition on L are required to be satisfied, see [–], or
W (n,x) can be dominated by a summable function, see [, ]. In the above-mentioned pa-
pers, except [], L was always required to be positive definite. Meanwhile,W was always
assumed to be superquadratic as x→  uniformly for n ∈ Z, i.e.,
(W) lim|x|→

W (n,x)
|x| =  uniformly for n ∈ Z.

In addition, W (n,x) is subquadratic as |x| → ∞ in [, ], while W (n,x) is su-
perquadratic in [–, , , ]. Moreover, in the superquadratic case, except [],
the well-known global Ambrosetti-Rabinowitz superquadratic condition was always as-
sumed:
(AR) there exists μ >  such that

 < μW (n,x)≤ (∇W (n,x),x
)
, ∀(n,x) ∈ Z×R

N \ {},

where and in the sequel, (·, ·) denotes the standard inner product in R
N , and | · | is

the induced norm.
However, in mathematical physics, it is of frequent occurrence in a system like (.) that

the global positive definiteness of L(n) is not satisfied. This is seen, for example, L(n) =
[l+(n) – l–(n)]IN , where l+(n) ≥ , l+(n) → +∞ as |n| → +∞, and l–(n) is bounded, or
L(n) = l(n)IN , l(n) is a polynomial of degree m with the property that the coefficient of
the leading term is positive.
In this paper, we are interested in the case when L(n) is not global positive definite and

satisfies the following assumption.
(L) L(n) is anN ×N real symmetric matrix for all n ∈ Z and the smallest eigenvalue of

L(n) → ∞ as |n| → ∞, i.e.,

lim|n|→∞

[
inf|x|=

(
L(n)x,x

)]
= ∞.

Under assumption (L) above, wewill use the symmetricmountain pass theorem to study
the existence of infinitelymany homoclinic solutions for (.) in the case, whereW satisfies
the following weaker assumptions than (W) as x→  and (AR) as |x| → ∞.
(W) W (n,x) is continuously differentiable in x for every n ∈ Z,W (n, )≡ , and there

exist constants c >  and R >  such that

∣∣∇W (n,x)
∣∣ ≤ c|x|, ∀(n,x) ∈ Z×R

N , |x| ≤ R; (.)

(W) lim|x|→∞ |W (n,x)|
|x| = ∞ for all n ∈ Z, and

W (n,x)≥ , ∀(n,x) ∈ Z×R
N , |x| ≥ R;
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(W) W (n, –x) =W (n,x), ∀(n,x) ∈ Z×R
N ;

(W) W̃ (n,x) := 
 (∇W (n,x),x) –W (n,x)≥ g(n), ∀(n,x) ∈ Z×R

N , where
|g| ∈ l(Z,R), and there exists c >  such that

∣∣W (n,x)
∣∣ ≤ c|x|W̃ (n,x), ∀(n,x) ∈ Z×R

N , |x| ≥ R;

(W) there exist μ >  and � >  such that

μW (n,x)≤ (∇W (n,x),x
)
+ �|x|, ∀(n,x) ∈ Z×R

N ;

(W) there exists a μ >  such that

μW (n,x)≤ (∇W (n,x),x
)
, ∀(n,x) ∈ Z×R

N , |x| ≥ R.

Now, we are ready to state the main results of this paper.

Theorem . Assume that p(n) is an N × N real symmetric positive definite matrix for
all n ∈ Z, L and W satisfy (L), (W), (W), (W) and (W). Then system (.) possesses
infinitely many nontrivial homoclinic solutions.

Theorem . Assume that p(n) is an N × N real symmetric positive definite matrix for
all n ∈ Z, L and W satisfy (L), (W), (W), (W) and (W). Then system (.) possesses
infinitely many nontrivial homoclinic solutions.

It is easy to check that (W) and (W) imply (W). Thus, we have the following corollary.

Corollary . Assume that p(n) is an N × N real symmetric positive definite matrix for
all n ∈ Z, L and W satisfy (L), (W), (W), (W) and (W). Then system (.) possesses
infinitely many nontrivial homoclinic solutions.

Remark . In our theorems, L(n) is allowed to be sign-changing, for example,

L(n) =
(
n – 

)
IN . (.)

Moreover, W (n,x) is also allowed to be sign-changing. Even if W (n,x) ≥ , assumptions
(W), (W), (W) and (W) are weaker than the superquadratic conditions, obtained in
the aforementioned references. It is easy to check that the following functions W satisfy
(W), (W), (W) and (W) or (W):

W (n,x) =
(
 + sin n

)|x| ln( 

+ |x|

)
, (.)

W (n,x) = e(+n
)|x|/(+n) – , (.)

W (n,x) =


 + n
[
|x| + |x| sin |x| – |x| cos |x|] (.)

and

W (n,x) = a(n)
m∑
i=

bi|x|βi , (.)

http://www.advancesindifferenceequations.com/content/2013/1/242
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where b > , bi ∈ R, i = , , . . . ,m, β > β > · · · > βm ≥ , and  < infZ a ≤ sup
Z
a < ∞.

One can see that they do not satisfy (W) or (AR).

2 Preliminaries
Throughout this section, we always assume that p(n) is real symmetric positive definite
matrix for all n ∈ Z. Set

l(n) = inf
x∈RN ,|x|=

(
L(n)x,x

)
, (.)

and make the following assumption on L(n) instead of (L):

(L′) L(n) is anN ×N real symmetric matrix for all n ∈ Z, lim|n|→∞ l(n) = ∞, and

(
L(n)x,x

) ≥ |x|, ∀(n,x) ∈ Z×R
N .

Let

S =
{{
u(n)

}
n∈Z : u(n) ∈R

N ,n ∈ Z
}
,

E =
{
u ∈ S :

∑
n∈Z

[(
p(n + )�u(n),�u(n)

)
+

(
L(n)u(n),u(n)

)]
< +∞

}
,

and for u, v ∈ E, let

〈u, v〉 =
∑
n∈Z

[(
p(n + )�u(n),�v(n)

)
+

(
L(n)u(n), v(n)

)]
.

Then E is a Hilbert space with the inner product above, and the corresponding norm is

‖u‖ =
{∑
n∈Z

[(
p(n + )�u(n),�u(n)

)
+

(
L(n)u(n),u(n)

)]}/

, u ∈ E.

As usual, for ≤ q < +∞, set

lq
(
Z,RN )

=
{
u ∈ S :

∑
n∈Z

∣∣u(n)∣∣q < +∞
}

and

l∞
(
Z,RN )

=
{
u ∈ S : sup

n∈Z

∣∣u(n)∣∣ < +∞
}
,

and their norms are defined by

‖u‖q =
(∑

n∈Z

∣∣u(n)∣∣q)/q

, ∀u ∈ lq
(
Z,RN )

;

‖u‖∞ = sup
n∈Z

∣∣u(n)∣∣, ∀u ∈ l∞
(
Z,RN )

,
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respectively. Evidently, E is continuously embedded into lq(Z,RN ) for  ≤ q ≤ +∞, i.e.,
there exists γq >  such that

‖u‖q ≤ γq‖u‖, ∀u ∈ E. (.)

Lemma . (Lin and Tang []) For u ∈ E, one has

‖u‖∞ ≤ 
√ + α

‖u‖, (.)

where α = inf{(p(n)x,x) : n ∈ Z,x ∈R
N , |x| = }.

Lemma . (Tang and Lin []) Suppose that L satisfies (L′). Then E is compactly embed-
ded in lq(Z,RN ) for ≤ q < ∞, and

‖u‖qq ≤ [ + α](–q)/‖u‖q, ∀u ∈ E. (.)

Now, we define a functional � on E by

�(u) =



∑
n∈Z

[(
p(n + )�u(n),�u(n)

)
+

(
L(n)u(n),u(n)

)]
–

∑
n∈Z

W
(
n,u(n)

)
. (.)

For any u ∈ E, there exists anN ∈N such that |u(n)| ≤ R for |n| ≥ N . Hence, by (W), one
has

∣∣W(
n,u(n)

)∣∣ ≤ c


∣∣u(n)∣∣, |n| ≥ N . (.)

Consequently, under assumptions (L′) and (W), the functional � is of class C(E,R).
Moreover,

�(u) =


‖u‖ –

∑
n∈Z

W
(
n,u(n)

)
, ∀u ∈ E, (.)

〈
�′(u), v

〉
= 〈u, v〉 –

∑
n∈Z

(∇W
(
n,u(n)

)
, v(n)

)
, ∀u, v ∈ E. (.)

Furthermore, the critical points of � in E are solutions of system (.) with u(±∞) = ,
see [, ].

Lemma . Under assumptions (L′), (W), (W) and (W), any sequence {uk} ⊂ E satis-
fying

�(uk) → c > ,
〈
�′(uk),uk

〉 → , (.)

is bounded in E.

Proof To prove the boundedness of {uk}, arguing by contradiction, suppose that ‖uk‖ →
∞. Let vk = uk/‖uk‖. Then ‖vk‖ =  and ‖vk‖q ≤ γq‖vk‖ = γq for  ≤ q ≤ ∞. Observe that

http://www.advancesindifferenceequations.com/content/2013/1/242
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for k large

c +  ≥ �(uk) –


〈
�′(uk),uk

〉
=

∑
n∈Z

W̃
(
n,uk(n)

)
. (.)

It follows from (.) and (.) that




≤ lim sup
k→∞

∑
n∈Z

|W (n,uk(n))|
‖uk‖ . (.)

For  ≤ a < b, let

�k(a,b) =
{
n ∈ Z : a ≤ ∣∣uk(n)∣∣ < b

}
. (.)

Passing to a subsequence, we may assume that vk ⇀ v in E, then by Lemma ., vk → v in
lq(Z,RN ), ≤ q < ∞, and vk(n)→ v(n) for all n ∈ Z.
If v = , then vk →  in lq(Z,RN ),  ≤ q < ∞, vk(n) →  for all n ∈ Z. Hence, it follows

from (W) that

∑
n∈�k (,R)

|W (n,uk(n))|
|uk(n)|

∣∣vk(n)∣∣ ≤ c


∑
n∈�k (,R)

∣∣vk(n)∣∣ ≤ c


‖vk‖ → . (.)

By virtue of (W) and (.), one can get that

∑
n∈�k (R,∞)

|W (n,uk(n))|
|uk(n)|

∣∣vk(n)∣∣ ≤ ‖vk‖∞
∑

n∈�k (R,∞)

|W (n,uk(n))|
|uk(n)|

≤ c
[ ∑
n∈�k (R,∞)

W̃
(
n,uk(n)

)]∑
n∈Z

∣∣vk(n)∣∣
≤ c

[
c +  –

∑
n∈�k (,R)

W̃
(
n,uk(n)

)]‖vk‖

≤ c
[
c +  –

∑
n∈�k (,R)

g(n)
]
‖vk‖

≤ c
[
c +  +

∑
n∈Z

∣∣g(n)∣∣]‖vk‖ → . (.)

Combining (.) with (.), we have

∑
n∈Z

|W (n,uk(n))|
‖uk‖ =

∑
n∈�k (,R)

|W (n,uk(n))|
|uk(n)|

∣∣vk(n)∣∣
+

∑
n∈�k (R,∞)

|W (n,uk(n))|
|uk(n)|

∣∣vk(n)∣∣ → ,

which contradicts (.).
SetA := {n ∈ Z : |v(n)| �= }. If v �= , thenA �= ∅. For any n ∈ A, we have limk→+∞ |uk(n)| =

∞. HenceA⊂ �k(R,∞) for large k ∈N, and it follows from (.), (W), (W) and Fatou’s

http://www.advancesindifferenceequations.com/content/2013/1/242
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lemma that

 = lim
k→∞

c + o()
‖uk‖ = lim

k→∞
�(uk)
‖uk‖

= lim
k→∞

[


–

∑
n∈Z

W (n,uk(n))
|uk(n)|

∣∣vk(n)∣∣]

= lim
k→∞

[


–

∑
n∈�k (,R)

W (n,uk(n))
|uk(n)|

∣∣vk(n)∣∣ – ∑
n∈�k (R,∞)

W (n,uk(n))
|uk(n)|

∣∣vk(n)∣∣]

≤ lim sup
k→∞

[


+
c


∑
n∈Z

∣∣vk(n)∣∣ – ∑
n∈�k (R,∞)

W (n,uk(n))
|uk(n)|

∣∣vk(n)∣∣]

≤ 

+
cγ 




– lim inf
k→∞

∑
n∈�k (R,∞)

W (n,uk(n))
|uk(n)|

∣∣vk(n)∣∣
=



+
cγ 




– lim inf
k→∞

∑
n∈Z

|W (n,uk(n))|
|uk(n)|

[
χ�k (R,∞)(n)

]∣∣vk(n)∣∣
≤ 


+
cγ 




–
∑
n∈Z

lim inf
k→∞

|W (n,uk(n))|
|uk(n)|

[
χ�k (R,∞)(n)

]∣∣vk(n)∣∣
= –∞, (.)

which is a contradiction. Thus {uk} is bounded in E. �

Lemma . Under assumptions (L′), (W), (W) and (W), any sequence {uk} ⊂ E satis-
fying (.) has a convergent subsequence in E.

Proof Lemma . implies that {uk} is bounded in E. Going if necessary to a subsequence,
we can assume that uk ⇀ u in E. By Lemma ., uk → u in lq(Z,RN ) for  ≤ q < ∞, and
uk(n) → u(n) for all n ∈ Z. By (L′), there exists an integer N ∈N such that

∣∣uk(n)∣∣ ≤ 
min|s|≥|n| l(s)

∑
|s|≥|n|

l(s)
∣∣uk(s)∣∣ ≤ 

min|s|≥|n| l(s)
‖uk‖ < R

, |n| ≥ N . (.)

It is easy to see that

∑
|n|≤N

∣∣∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)∣∣∣∣uk(n) – u(n)
∣∣ → , k → +∞. (.)

Next, we prove that

∑
|n|>N

∣∣∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)∣∣∣∣uk(n) – u(n)
∣∣ → , k → +∞. (.)

If (.) is not true, then there exist a constant ε >  and a subsequence {uki} such that

∑
|n|>N

∣∣∇W
(
n,uki (n)

)
–∇W

(
n,u(n)

)∣∣∣∣uki (n) – u(n)
∣∣ ≥ ε, ∀i ∈N. (.)

http://www.advancesindifferenceequations.com/content/2013/1/242
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Since uk → u in l(Z,RN ), passing to a subsequence if necessary, it can be assumed that∑∞
i= ‖uki – u‖ < +∞. Set

w(n) =

[ ∞∑
i=

∣∣uki (n) – u(n)
∣∣]/

, n ∈ Z. (.)

Then w ∈ l(Z,R). From (.), (.) and (W), one has

∣∣∇W
(
n,uki (n)

)
–∇W

(
n,u(n)

)∣∣∣∣uki (n) – u(n)
∣∣

≤ (∣∣∇W
(
n,uki (n)

)∣∣ + ∣∣∇W
(
n,u(n)

)∣∣)(∣∣uki (n)∣∣ + ∣∣u(n)∣∣)
≤ c

(∣∣uki (n)∣∣ + ∣∣u(n)∣∣)
≤ c

(∣∣uki (n)∣∣ + ∣∣u(n)∣∣)
≤ c

(∣∣uki (n) – u(n)
∣∣ + ∣∣u(n)∣∣)

≤ c
([
w(n)

] + ∣∣u(n)∣∣)
:= h(n), ∀i ∈N, |n| ≥ N (.)

and

∑
|n|>N

h(n) = c
∑
|n|>N

([
w(n)

] + ∣∣u(n)∣∣)
≤ c

(‖w‖ + ‖u‖
)
< +∞. (.)

Since uki (n) → u(n) for all n ∈ Z, then by (.), (.) and Lebesgue’s dominated conver-
gence theorem, we have

lim
i→∞

∑
|n|>N

∣∣∇W
(
n,uki (n)

)
–∇W

(
n,u(n)

)∣∣∣∣uki (n) – u(n)
∣∣ = ,

which contradicts (.). Hence (.) holds. Combining (.) with (.), one has

∑
n∈Z

∣∣∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)∣∣∣∣uk(n) – u(n)
∣∣ → , n→ ∞. (.)

Observe that

‖uk – u‖ = 〈
�′(uk) –�′(u),uk – u

〉
+

∑
n∈Z

(∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)
,uk(n) – u(n)

)
. (.)

It is clear that

〈
�′(uk) –�′(u),uk – u

〉 → , n→ ∞. (.)

From (.), (.) and (.), we have ‖uk – u‖ → , n→ ∞. �

http://www.advancesindifferenceequations.com/content/2013/1/242
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Lemma . Under assumptions (L′), (W) and (W), any sequence {uk} ⊂ E satisfying
(.) has a convergent subsequence in E.

Proof First, we prove that {uk} is bounded in E. To this end, arguing by contradiction,
suppose that ‖uk‖ → ∞. Let vk = uk/‖uk‖. Then ‖vk‖ =  and ‖vk‖q ≤ γq‖vk‖ = γq for
 ≤ q ≤ ∞. By (.), (.), (.) and (W), one has

c +  ≥ �(uk) –

μ

〈
�′(uk),uk

〉
=

μ – 
μ

‖uk‖ +
∑
n∈Z

[

μ

(∇W
(
n,uk(n)

)
,uk(n)

)
–W

(
n,uk(n)

)]

≥ μ – 
μ

‖uk‖ – �

μ
‖uk‖ for large k ∈N, (.)

which implies

 ≤ �
μ – 

lim sup
k→∞

‖vk‖. (.)

Passing to a subsequence, we may assume that vk ⇀ v in E, then by Lemma ., vk →
v in lq(Z,RN ),  ≤ q < ∞, and vk(n) → v(n) for all n ∈ Z. Hence, it follows from (.)
that v �= . Analogous to the proof of (.), we can deduce a contradiction. Thus, {uk} is
bounded in E. The rest of the proof is the same as the one in Lemma .. �

Lemma . Under assumptions (L′), (W) and (W), for any finite-dimensional subspace
Ẽ ⊂ E, there holds

�(u) → –∞, ‖u‖ → ∞,u ∈ Ẽ. (.)

Proof Arguing indirectly, assume that for some sequence {uk} ⊂ Ẽ with ‖uk‖ → ∞, and
there isM >  such that�(uk) ≥ –M for all k ∈ N. Set vk = uk/‖uk‖, then ‖vk‖ = . Passing
to a subsequence, wemay assume that vk ⇀ v in E. Since Ẽ is finite-dimensional, then vk →
v ∈ Ẽ in E, vk(n) → v(n) for all n ∈ Z, and so ‖v‖ = . Hence, we can deduce a contradiction
in the same way as (.). �

Corollary . Under assumptions (L′), (W) and (W), for any finite-dimensional sub-
space Ẽ ⊂ E, there is R = R(Ẽ) >  such that

�(u) ≤ , ∀u ∈ Ẽ,‖u‖ ≥ R. (.)

Let {ej} is an orthonomormal basis of E and define Xj =Rej,

Yk =
k⊕
j=

Xj, Zk =
∞⊕

j=k+

Xj, k ∈N. (.)

Lemma . Under assumption (L′), for  ≤ q <∞,

βk(q) := sup
u∈Zk ,‖u‖=

‖u‖q → , k → ∞. (.)

http://www.advancesindifferenceequations.com/content/2013/1/242
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Proof Since the embedding from E into lq(Z,RN ) is compact for  ≤ q < ∞, then
Lemma . can be proved in a similar way as [, Lemma .]. �

Applying Lemma ., we can choose an integerm ≥  such that

‖u‖ ≤ 
c

‖u‖, ∀u ∈ Zm. (.)

Lemma . Under assumptions (L′) and (W), there exist constants ρ,α >  such that
�|∂Bρ∩Zm ≥ α.

Proof If ‖u‖ = R, then ‖u‖∞ ≤ R. Hence, it follows from (W) that

∣∣W(
n,u(n)

)∣∣ ≤ c


∣∣u(n)∣∣, ∀u ∈ E,‖u‖ = R. (.)

By (.), (.) and (.), we have

�(u) =


‖u‖ –

∑
n∈Z

W
(
n,u(n)

) ≥ 

‖u‖ – c


∑
n∈Z

∣∣u(n)∣∣
=



‖u‖ – c


‖u‖ ≥ 


‖u‖

=


R
 := α, ∀u ∈ Zm,‖u‖ = R := ρ. �

We say that I ∈ C(X,R) satisfies (C)c-condition if any sequence {uk} such that

I(uk) → c,
∥∥I ′(uk)∥∥(

 + ‖uk‖
) →  (.)

has a convergent subsequence.

Lemma. (Bartolo, Benci and Fortunato []) Let X be an infinite-dimensional Banach
space, X = Y ⊕Z, where Y is finite-dimensional. If I ∈ C(X,R) satisfies (C)c-condition for
all c > , and
(I) I() = , I(–u) = I(u) for all u ∈ X ;
(I) there exist constants ρ,α >  such that �|∂Bρ∩Z ≥ α;
(I) for any finite-dimensional subspace X̃ ⊂ X , there is R = R(X̃) >  such that I(u) ≤ 

on X̃ \ BR;
then I possesses an unbounded sequence of critical values.

3 Proofs of themain results
By (L), there exists a constant a >  such that

((
L(n) + aIN

)
x,x

) ≥ |x|, ∀(n,x) ∈ Z×R
N . (.)

Let L̄(n) := L(n) + aIN and W (n,x) =W (n,x) + a|x|. Then it is easy to verify the fol-
lowing lemma.

http://www.advancesindifferenceequations.com/content/2013/1/242
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Lemma . u ∈ S is a solution of system (.) if and only if it is a solution of the following
system

�[
p(n)�u(n – )

]
– L̄(n)u(n) +∇W

(
n,u(n)

)
= . (.)

Proof of Theorem . Let X = E, Y = Ym, and let Z = Zm. Obviously, W satisfies (W),
(W), (W) and (W). By Lemmas ., ., . and Corollary ., all conditions of
Lemma . are satisfied. Thus, system (.) possesses infinitelymany nontrivial solutions.
By Lemma ., system (.) also possesses infinitely many nontrivial solutions. �

Proof of Theorem . Let X = E, Y = Ym, and let Z = Zm. Obviously, W satisfies (W),
(W), (W) and (W). The rest of the proof is the same as that of Theorem . by using
Lemma . instead of Lemmas . and .. �
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