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Abstract
In this paper, we investigate the oscillation of the following higher-order dynamic
equation:

{
rn(t)

[
(rn–1(t)(· · · (r1(t)x�(t))� · · · )�

)
�]γ }�

+ F(t, x(τ (t))) = 0

on an arbitrary time scale T, where n ≥ 2, 1
rk (t)

(1≤ k ≤ n) are positive rd-continuous
functions on T, and γ is the quotient of two odd positive integers, τ : T→ T with
τ (t) > t and F ∈ C(T×R,R). We give sufficient conditions under which every solution
of this equation is either oscillatory or tends to zero.
MSC: 34K11; 39A10; 39A99

Keywords: oscillation; dynamic equation; time scale

1 Introduction
Let R be the set of all real numbers, and let T be a time scale (i.e., a closed nonempty
subset of R) with supT = ∞. In this paper, we study Kamenev-type oscillation criteria of
solutions of the following higher-order dynamic equation:

{
rn(t)

[(
rn–(t)

(· · · (r(t)x�(t)
)� · · · )�)�]γ }� + F

(
t,x

(
τ (t)

))
= , t ∈ [t,∞)T , (.)

where t ∈ T is a constant and [t,∞)T = [t,∞) ∩T for any t ∈ T. Throughout this paper,
we assume that the following conditions are satisfied:

(H) 
rk (t)

∈ Crd( [t,∞)T , (,∞)) (≤ k ≤ n).
(H) γ is the quotient of two odd positive integers.
(H)

∫ ∞
t


rk (s)

�s =
∫ ∞
t
[ 
rn(s) ]


γ �s = ∞ ( ≤ k ≤ n – ).

(H) τ : T → T is a nondecreasing function with τ (t) > t for any t ∈ T.
(H) F ∈ C(T×R,R) and there exists a positive rd-continuous function q(t) defined on T

such that for any u 	= ,

F(t,u)
uγ

≥ q(t). (.)
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Write

Sk
(
t,x(t)

)
=

⎧⎪⎪⎨
⎪⎪⎩
x(t) if k = ,

rk(t)S�
k–(t,x(t)) if  ≤ k ≤ n – ,

rn(t)[S�
n–(t,x(t))]γ if k = n.

Then Eq. (.) reduces to the equation

S�
n
(
t,x(t)

)
+ F

(
t,x

(
τ (t)

))
= . (.)

By a solution of Eq. (.) we mean a nontrivial real-valued function x(t) ∈ C
rd( [Tx,∞)T)

with Tx ≥ t, which has the property that Sk(t,x(t)) ∈ C
rd( [Tx,∞)T) for  ≤ k ≤ n and

satisfies Eq. (.) on [Tx,∞)T, where C
rd is the space of differentiable functions whose

derivative is rd-continuous. The solutions vanishing in some neighborhood of infinity will
be excluded from our consideration. A solution x(t) of Eq. (.) is said to be oscillatory if it
is neither eventually positive nor eventually negative; otherwise, it is called nonoscillatory.
The theory of time scales, which has recently received a lot of attention, was introduced

by Stefan Hilger in his PhD thesis [] in order to unify continuous and discrete analysis.
The cases when a time scale T is equal to R or all integers Z represent the classical the-
ories of differential and difference equations. Many results concerning differential equa-
tions carry over quite easily to corresponding results for difference equations, while other
results seem to be completely different from their continuous counterparts. The study of
dynamic equations on time scales reveals such discrepancies and helps avoid proving re-
sults twice - once for differential equations and once again for difference equations. The
general idea is to prove a result for a dynamic equation where the domain of the unknown
function is a time scale T. In this way results not only related to the set of real numbers or
the set of integers but those pertaining tomore general time scales are obtained. Therefore,
not only can the theory of dynamic equations unify the theories of differential equations
and difference equations, but it also extends these classical cases to cases ‘in between’,
e.g., to the so-called q-difference equations when T = qN , which has important applica-
tions in quantum theory (see []). In the last years there has been much research activity
concerning the oscillation and asymptotic behavior of solutions of some dynamic equa-
tions on time scales, and we refer the reader to the papers [–] and the references cited
therein.
Recently, Wang [] extended the Hille and Nehari oscillation theorems to the third-

order dynamic equation

(
r(t)

((
r(t)x�(t)

)�)γ )� + q(t)f
(
x(t)

)
= . (.)

Erbe et al. in [–] considered the third-order dynamic equations

(
a(t)

[
r(t)x�(t)

]�)� + p(t)f
(
x(t)

)
= , (.)

x���(t) + p(t)x(t) =  (.)
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and

(
a(t)

{[
r(t)x�(t)

]�}γ )� + f
(
t,x(t)

)
= , (.)

respectively, and established some sufficient conditions for oscillation.
Hassan [] studied the third-order dynamic equation

(
a(t)

{[
r(t)x�(t)

]�}γ )� + f
(
t,x

(
τ (t)

))
=  (.)

and obtained some oscillation criteria, which improved and extended the results that were
established in [–].
Hassan [] studied the Kamenev-type oscillation criteria of the second-order dynamic

equation

(
r(t)

(
x�(t)

)γ )� + f
(
t,x

(
g(t)

))
=  (.)

and established some new sufficient conditions, which improved some oscillation results
for second-order differential and difference equations.

2 Some auxiliary lemmas
We shall employ the following lemmas.

Lemma . [] Let  ≤ m ≤ n. Then:
() lim inft→∞ Sm(t,x(t)) >  implies limt→∞ Si(t,x(t)) = ∞ for  ≤ i≤ m – .
() lim supt→∞ Sm(t,x(t)) <  implies limt→∞ Si(t,x(t)) = –∞ for  ≤ i≤ m – .

Lemma . Suppose that x(t) is an eventually positive solution of Eq. (.), then there exist
an integer � ∈ [,n] and T ∈ [t,∞)T such that:
() n + � is even.
() � >  implies that Si(t,x(t)) >  for any t ≥ T and  ≤ i≤ � – .
() � ≤ n –  implies that (–)�+iSi(t,x(t)) >  for any t ≥ T and � ≤ i≤ n – .

Proof Since x(t) is an eventually positive solution of Eq. (.), there exists a t ≥ t such
that x(t) >  and x(τ (t)) >  on [t,∞)T. It follows from (.) that

S�
n
(
t,x(t)

)
= –F

(
t,x

(
τ (t)

)) ≤ –q(t)xγ
(
τ (t)

)
<  for t ≥ t.

Hence Sn(t,x(t)) is decreasing on [t,∞)T.
We claim that Sn(t,x(t)) >  for all t ∈ [t,∞)T. If not, there exists a t ∈ [t,∞)T such

that

Sn
(
t,x(t)

) ≤ Sn
(
t,x(t)

)
<  for t ≥ t.

Then we obtain

Sn–
(
t,x(t)

) ≤ Sn–
(
t,x(t)

)
+ S


γ
n

(
t,x(t)

)∫ t

t

[


rn(s)

] 
γ

�s → –∞ (t → ∞).
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By Lemma ., we get limt→∞ x(t) = –∞, which contradicts with x(t) >  eventually. Then
Sn(t,x(t)) >  for all t ∈ [t,∞)T. This implies that exactly one of the following is true:

(a) Sn–(t,x(t)) <  for t ≥ t;
(b) There exists a t ≥ t such that Sn–(t,x(t))≥ Sn–(t,x(t)) >  for t ≥ t.

If (b) holds, then we obtain by Lemma .

lim
t→∞Sn–

(
t,x(t)

)
= lim

t→∞Sn–
(
t,x(t)

)
= · · · = lim

t→∞x(t) = ∞.

Thus the conclusions of Lemma . hold.
If (a) holds, then Sn–(t,x(t)) is strictly decreasing on [t,∞)T and exactly one of the

following is true:

(a) Sn–(t,x(t)) >  for t ≥ t;
(b) There exists a t ≥ t such that Sn–(t,x(t))≤ Sn–(t,x(t)) <  for t ≥ t.

If (b) holds, then we obtain by Lemma .

lim
t→∞Sn–

(
t,x(t)

)
= lim

t→∞Sn–
(
t,x(t)

)
= · · · = lim

t→∞x(t) = –∞,

which contradicts with x(t) >  eventually. Hence (b) is impossible.
From (a), we see that Sn–(t,x(t)) is strictly increasing on [t,∞)T and exactly one of

the following is true:

(a) Sn–(t,x(t)) <  for t ≥ t;
(b) There exists a t ≥ t such that Sn–(t,x(t))≥ Sn–(t,x(t)) >  for t ≥ t.

Therefore we can repeat the above argument and show that the conclusions of Lemma .
hold. The proof is completed. �

Remark . Let rn(t) = · · · = r(t) =  and T be the set of integers. Then Lemma . and
Lemma . are Lemma .. and Theorem .. of [] respectively.

Lemma . Assume that

∫ ∞

t


rn–(s)

{∫ ∞

s

[


rn(u)

∫ ∞

u
q(v)�v

] 
γ

�u
}
�s = ∞ (.)

holds and x(t) is an eventually positive solution of Eq. (.). Then there exists T ∈ [t,∞)T
sufficiently large such that either of the following cases holds:
() Si(t,x(t)) >  for any t ≥ T and ≤ i ≤ n.
() limt→∞ x(t) = .

Proof Since x(t) is an eventually positive solution of Eq. (.), there exists a t ≥ t such
that x(t) >  and x(τ (t)) >  on [t,∞)T. It follows from (.) that

S�
n
(
t,x(t)

)
= –F

(
t,x

(
τ (t)

)) ≤ –q(t)xγ
(
τ (t)

)
<  for t ≥ t.
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By Lemma ., we see that there exists an integer  ≤ � ≤ n, with � + n being even, such
that (–)�+iSi(t,x(t)) >  for t ≥ t and � ≤ i≤ n, and x(t) is eventually monotone.
We claim that limt→∞ x(t) 	=  implies � = n. If not, then Sn–(t,x(t)) <  (t ≥ t) and

Sn–(t,x(t)) >  (t ≥ t). It is easy to see that there exist a t ≥ t and a constantM >  such
that x(τ (t))≥ M on [t,∞)T. Integrating Eq. (.) from t to ∞, we get that for t ≥ t,

–rn(t)
[
S�
n–

(
t,x(t)

)]γ = –Sn
(
t,x(t)

) ≤ –Mγ

∫ ∞

t
q(s)�s.

Thus

Sn–
(
t,x(t)

) ≤ –M
∫ ∞

t

[


rn(s)

∫ ∞

s
q(u)�u

] 
γ

�s for t ≥ t.

Again, integrating the above inequality from t to t, we obtain that for t ≥ t,

Sn–
(
t,x(t)

) ≤ Sn–
(
t,x(t)

)
–M

∫ t

t


rn–(s)

{∫ ∞

s

[


rn(u)

∫ ∞

u
q(v)�v

] 
γ

�u
}
�s.

It follows from (.) that limt→∞ Sn–(t,x(t)) = –∞, which is a contradiction to Sn–(t,
x(t)) >  (t ≥ t). Thus � = n. The proof is completed. �

Lemma . Let x(t) be a solution of Eq. (.) such that case () of Lemma . holds for
t ∈ [T ,∞)T with some T ∈ [t,∞)T. Then we have that for t ∈ [T ,∞)T,

Si
(
t,x(t)

) ≥ S

γ
n

(
t,x(t)

)
ϑi+(t,T),  ≤ i≤ n –  (.)

and

S�
n–(t,x(t))
xσ (t)

≥
[∫ ∞

t q(s)�s
rn(t)

] 
γ

, (.)

where

ϑi(t,T) =

⎧⎨
⎩

∫ t
T [


rn(s) ]


γ �s if i = n,∫ t

T
ϑi+(s,T)

ri(s)
�s if  ≤ i≤ n – .

(.)

Proof Because x(t) is an eventually positive solution of Eq. (.), there exists a T ≥ t suf-
ficiently large such that x(t) >  and x(τ (t)) >  for t ≥ T . Note S�

n (t,x(t)) = –F(t,x(τ (t)))≤
–q(t)xγ (τ (t)) < , we know that Sn(t,x(t)) is strictly decreasing on [T ,∞)T. Then for t ≥ T ,

Sn–
(
t,x(t)

) ≥ Sn–
(
t,x(t)

)
– Sn–

(
T ,x(T)

)

=
∫ t

T

[
Sn(s,x(s))
rn(s)

] 
γ

�s

≥ S

γ
n

(
t,x(t)

)
ϑn(t,T),
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Sn–
(
t,x(t)

) ≥ Sn–
(
t,x(t)

)
– Sn–

(
T ,x(T)

)

=
∫ t

T

Sn–(s,x(s))
rn–(s)

�s

≥ S

γ
n

(
t,x(t)

)
ϑn–(t,T).

Repeating the above process, we have

S
(
t,x(t)

) ≥ S
(
t,x(t)

)
– S

(
T ,x(T)

)

=
∫ t

T

S(s,x(s))
r(s)

�s

≥ S

γ
n

(
t,x(t)

)
ϑ(t,T),

S
(
t,x(t)

) ≥ x(t) – x(T)

=
∫ t

T

S(s,x(s))
r(s)

�s

≥ S

γ
n

(
t,x(t)

)
ϑ(t,T).

Thus it follows

rn(t)
[
S�
n–

(
t,x(t)

)]γ = Sn
(
t,x(t)

) ≥
∫ ∞

t
F
(
s,x

(
τ (s)

))�s

≥
∫ ∞

t
q(s)xγ

(
τ (s)

)�s

≥ xγ
(
τ (t)

)∫ ∞

t
q(s)�s

≥ xγ
(
σ (t)

)∫ ∞

t
q(s)�s.

That is,

S�
n–(t,x(t))
xσ (t)

≥
[∫ ∞

t q(s)�s
rn(t)

] 
γ

.

The proof is completed. �

Lemma . [] Let f : R → R be continuously differentiable and suppose that g : T → R
is delta differentiable. Then f ◦ g is delta differentiable and the formula

(f ◦ g)�(t) = g�(t)
∫ 


f ′(hgσ (t) + ( – h)g(t)

)
dh (.)

holds.

Lemma . [] Suppose that a and b are nonnegative real numbers and λ ≥ . Then

λabλ– – aλ ≤ (λ – )bλ, (.)

where the equality holds if and only if a = b.

http://www.advancesindifferenceequations.com/content/2013/1/248
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3 Main results
For convenience, we writeD≡ {(t, s)|t ≥ s ≥ t}. Nowwe state and prove ourmain results.

Theorem . Assume that (.) holds. Furthermore, suppose that there exist G, g ∈
Crd(D,R) with G�s ∈ Crd(D,R) such that

G(t, t) =  for any t ≥ t and G(t, s) >  for any t > s ≥ t, (.)

where G�s is the �-partial derivative with respect to the second variable, and there exist
m : T → R, such that rn(t)m(t) is a delta differentiable function, and a delta differentiable
function M : T → (,∞) such that

G�s (t, s) +G(t, s)
β(s,T)
Mσ (s)

= –
g(t, s)
Mσ (s)

√
M(s)G(t, s) for t > s≥ t (.)

and

lim sup
t→∞


G(t,T)

∫ t

T

[
G(t, s)ψ(s,T) –

g–(t, s)r(s)
γ η(s,T)

]
�s = ∞ (.)

for all sufficiently large T , where

η(t,T) =

⎧⎨
⎩

ϑ(t,T)(
∫ ∞
t q(s)�s)

–γ
γ if  < γ ≤ ,

ϑ
γ–
 (t,T)ϑ(t,T) if γ ≥ ,

(.)

ψ(t,T) =M(t)q(t) –M(t)
(
rn(t)m(t)

)� + γ
M(t)
r(t)

η(t,T)
((
rn(t)m(t)

)σ ), (.)

β(t,T) =M�(t) + γ
M(t)η(t,T)

r(t)
(
rn(t)m(t)

)σ (.)

and

g–(t, s) =max
{
,–g(t, s)

}
. (.)

Then every solution x(t) of Eq. (.) is either oscillatory or tends to zero.

Proof Assume that Eq. (.) has a nonoscillatory solution x(t) on [t,∞)T. Then, with-
out loss of generality, there is a T ≥ t, sufficiently large, such that x(t) >  for t ≥ T . By
Lemma ., there are two possible cases:
() Si(t,x(t)) >  for any t ≥ T and  ≤ i≤ n.
() limt→∞ x(t) = .

If case () holds, then set

ω(t) =M(t)
[
Sn(t,x(t))
xγ (t)

+ rn(t)m(t)
]

=M(t)rn(t)
[(

S�
n–(t,x(t))

x(t)

)γ

+m(t)
]
, (.)

http://www.advancesindifferenceequations.com/content/2013/1/248
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we have

ω�(t) =
(
M(t)

Sn(t,x(t))
xγ (t)

)�
+

(
M(t)rn(t)m(t)

)�

=
M(t)
xγ (t)

S�
n
(
t,x(t)

)
+

(
M(t)
xγ (t)

)�
Sσ
n
(
t,x(t)

)

+M(t)
(
rn(t)m(t)

)� +M�(t)
(
rn(t)m(t)

)σ

=
M(t)
xγ (t)

S�
n
(
t,x(t)

)
+

(
M�(t)
xγ σ (t)

–
M(t)(xγ (t))�

xγ (t)xγ σ (t)

)
Sσ
n
(
t,x(t)

)

+M(t)
(
rn(t)m(t)

)� +M�(t)
(
rn(t)m(t)

)σ .

It follows from (.) and the definition of ω(t) that for all t ≥ T ,

ω�(t) = –
M(t)
xγ (t)

F
(
t,x

(
τ (t)

))
+M(t)

(
rn(t)m(t)

)�

+
M�(t)
Mσ (t)

ωσ (t) –M(t)
(xγ (t))�

xγ (t)
Sσ
n (t,x(t))
xγ σ (t)

.

Using the fact that F(t,x(τ (t)))≥ q(t)xγ (τ (t)) and x(t) is increasing on [T ,∞)T, we get

ω�(t) ≤ –M(t)q(t) +M(t)
(
rn(t)m(t)

)�

+
M�(t)
Mσ (t)

ωσ (t) –M(t)
(xγ (t))�

xγ (t)
Sσ
n (t,x(t))
xγ σ (t)

. (.)

Now we consider the following two cases.
Case : If  < γ ≤ , then it follows from x�(t) >  and Lemma . that xσ (t) ≥ x(t) and

(
xγ (t)

)� = γ x�(t)
∫ 



(
hxσ (t) + ( – h)x(t)

)γ– dh

≥ γ x�(t)
∫ 



(
hxσ (t) + ( – h)xσ (t)

)γ– dh

= γ
(
xσ (t)

)γ–x�(t). (.)

By (.) and (.), we have

ω�(t) ≤ –M(t)q(t) +M(t)
(
rn(t)m(t)

)�

+
M�(t)
Mσ (t)

ωσ (t) – γM(t)
x�(t)
xσ (t)

xγ σ (t)
xγ (t)

Sσ
n (t,x(t))
xγ σ (t)

. (.)

It follows from Lemma . that

x�(t)

S

γ
n (t,x(t))

≥ ϑ(t,T)
r(t)

,
x(t)

S

γ
n (t,x(t))

≥ ϑ(t,T),

S�
n–(t,x(t))
xσ (t)

≥
[∫ ∞

t q(s)�s
rn(t)

] 
γ

.

(.)

http://www.advancesindifferenceequations.com/content/2013/1/248
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Then

x�(t)
xσ (t)

= r

γ –
n (t)

Sn(t,x(t))
xγ σ (t)

(
S�
n–(t,x(t))
xσ (t)

)–γ x�(t)

S

γ
n (t,x(t))

≥ r

γ –
n (t)

Sn(t,x(t))
xγ σ (t)

((∫ ∞
t q(s)�s
rn(t)

) 
γ
)–γ

ϑ(t,T)
r(t)

≥ ϑ(t,T)
r(t)

(∫ ∞

t
q(s)�s

) –γ
γ Sσ

n (t,x(t))
xγ σ (t)

. (.)

Combining (.) with (.), we get

ω�(t) ≤ –M(t)q(t) +M(t)
(
rn(t)m(t)

)�

+
M�(t)
Mσ (t)

ωσ (t) – γM(t)
ϑ(t,T)
r(t)

[∫ ∞

t
q(s)�s

] –γ
γ

(
Sσ
n (t,x(t))
xγ σ (t)

)

. (.)

Case : If γ ≥ , then it follows from x�(t) >  and Lemma . that xσ (t)≥ x(t) and

(
xγ (t)

)� = γ x�(t)
∫ 



(
hxσ (t) + ( – h)x(t)

)γ– dh

≥ γ x�(t)
∫ 



(
hx(t) + ( – h)x(t)

)γ– dh

= γ
(
x(t)

)γ–x�(t). (.)

By (.) and (.), we have

ω�(t) ≤ –M(t)q(t) +M(t)
(
rn(t)m(t)

)�

+
M�(t)
Mσ (t)

ωσ (t) – γM(t)
x�(t)
x(t)

Sσ
n (t,x(t))
xγ σ (t)

. (.)

It follows from (.) that

x�(t)
x(t)

=
Sn(t,x(t))
xγ (t)

(
x(t)

S

γ
n (t,x(t))

)γ– x�(t)

S

γ
n (t,x(t))

≥ Sn(t,x(t))
xγ (t)

(
ϑ(t,T)

)γ– ϑ(t,T)
r(t)

≥ (
ϑ(t,T)

)γ– ϑ(t,T)
r(t)

Sσ
n (t,x(t))
xγ σ (t)

. (.)

Combining (.) with (.) gives

ω�(t) ≤ –M(t)q(t) +M(t)
(
rn(t)m(t)

)�

+
M�(t)
Mσ (t)

ωσ (t) – γM(t)
(
ϑ(t,T)

)γ– ϑ(t,T)
r(t)

(
Sσ
n (t,x(t))
xγ σ (t)

)

. (.)
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Noting that the definitions of η(t,T), ψ(t,T) and β(t,T). It follows from (.), (.) and
the fact

Sσ
n (t,x(t))
xγ σ (t)

=
ωσ (t)
Mσ (t)

– rσn (t)m
σ (t)

that for γ > ,

ψ(t,T)≤ –ω�(t) +
β(t,T)
Mσ (t)

ωσ (t) –
γM(t)η(t,T)
r(t)(Mσ (t))

(
ωσ (t)

). (.)

Multiplying both sides of (.), with t replaced by s, byG(t, s) and integrating with respect
to s from T to t (t ≥ T ), one gets

∫ t

T
G(t, s)ψ(s,T)�s ≤ –

∫ t

T
G(t, s)ω�(s)�s +

∫ t

T

G(t, s)β(s,T)
Mσ (s)

ωσ (s)�s

–
∫ t

T

γG(t, s)M(s)η(s,T)
r(s)(Mσ (s))

(
ωσ (s)

)�s.

Integrating by parts and using (.) and (.), we have

∫ t

T
G(t, s)ψ(s,T)�s ≤ G(t,T)ω(T) +

∫ t

T
G�s (t, s)ωσ (s)�s +

∫ t

T

G(t, s)β(s,T)
Mσ (s)

ωσ (s)�s

–
∫ t

T

γG(t, s)M(s)η(s,T)
r(s)(Mσ (s))

(
ωσ (s)

)�s

= G(t,T)ω(T) +
∫ t

T

[
–
g(t, s)
Mσ (s)

√
M(s)G(t, s)ωσ (s)

–
γG(t, s)M(s)η(s,T)

r(s)(Mσ (s))
(
ωσ (s)

)]�s

≤ G(t,T)ω(T) +
∫ t

T

[
g–(t, s)
Mσ (s)

√
M(s)G(t, s)ωσ (s)

–
γG(t, s)M(s)η(s,T)

r(s)(Mσ (s))
(
ωσ (s)

)]�s. (.)

It is easy to check that

g–(t, s)
Mσ (s)

√
M(s)G(t, s)ωσ (s) –

γG(t, s)M(s)η(s,T)
r(s)(Mσ (s))

(
ωσ (s)

)

=
g–(t, s)r(s)
γ η(s,T)

–
γM(s)η(s,T)
r(s)(Mσ (s))

(√
G(t, s)ωσ (s) –

g–(t, s)Mσ (s)r(s)
γ

√
M(s)η(s,T)

)

,

which implies

g–(t, s)
Mσ (s)

√
M(s)G(t, s)ωσ (s) –

γG(t, s)M(s)η(s,T)
r(s)(Mσ (s))

(
ωσ (s)

) ≤ g–(t, s)r(s)
γ η(s,T)

. (.)

Combining (.) with (.), it follows


G(t,T)

∫ t

T

[
G(t, s)ψ(s,T) –

g–(t, s)r(s)
γ η(s,T)

]
�s≤ ω(T),
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which contradicts assumption (.). Thus every solution x(t) of Eq. (.) is either oscilla-
tory or tends to zero. The proof is completed. �

Theorem . Assume that (.) holds. Furthermore, suppose that there exist H ,h ∈
Crd(D,R) with H�s ∈ Crd(D,R) such that

H(t, t) =  for any t ≥ t and H(t, s) >  for any t > s ≥ t, (.)

where H�s is the �-partial derivative with respect to the second variable, and there exists
a delta differentiable function M : T → (,∞) such that

H�s (t, s) +H(t, s)
M�(s)
Mσ (s)

= –
h(t, s)
Mσ (s)

(
M(s)H(t, s)

) γ
γ+ for t > s ≥ t (.)

and

lim sup
t→∞


H(t,T)

∫ t

T

[
M(s)q(s)H(t, s) –

hγ+
– (t, s)rγ (s)

(γ + )γ+ϑγ
 (s,T)

]
�s = ∞ (.)

for all sufficiently large T , where

h–(t, s) =max
{
,–h(t, s)

}
. (.)

Then every solution x(t) of Eq. (.) is either oscillatory or tends to zero.

Proof Assume that Eq. (.) has a nonoscillatory solution x(t) on [t,∞)T. Then, with-
out loss of generality, there is a T ≥ t, sufficiently large, such that x(t) >  for t ≥ T . By
Lemma ., there are two possible cases:
() Si(t,x(t)) >  for any t ≥ T and  ≤ i≤ n.
() limt→∞ x(t) = .

If case () holds, then set

ω(t) =M(t)
[
Sn(t,x(t))
xγ (t)

]
=M(t)rn(t)

[(
S�
n–(t,x(t))

x(t)

)γ ]
. (.)

By (.), we have

ω�(t) ≤ –M(t)q(t) +
M�(t)
Mσ (t)

ωσ (t) –M(t)
(xγ (t))�

xγ (t)
Sσ
n (t,x(t))
xγ σ (t)

≤ –M(t)q(t) +
M�(t)
Mσ (t)

ωσ (t) –
M(t)
Mσ (t)

(xγ (t))�

xγ (t)
ωσ (t). (.)

It follows from Lemma . that

(
xγ (t)

)� = γ x�(t)
∫ 



(
hxσ (t) + ( – h)x(t)

)γ– dh

≥
⎧⎨
⎩

γ (xσ (t))γ–x�(t) if  < γ ≤ ,

γ (x(t))γ–x�(t) if γ ≥ .
(.)

http://www.advancesindifferenceequations.com/content/2013/1/248
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Case . If  < γ ≤ , then

ω�(t) ≤ –M(t)q(t) +
M�(t)
Mσ (t)

ωσ (t) – γ
M(t)
Mσ (t)

x�(t)
xσ (t)

xγ σ (t)
xγ (t)

ωσ (t). (.)

Case . If γ ≥ , then

ω�(t) ≤ –M(t)q(t) +
M�(t)
Mσ (t)

ωσ (t) – γ
M(t)
Mσ (t)

x�(t)
x(t)

ωσ (t). (.)

Noting that xσ (t)≥ x(t), we have

ω�(t) ≤ –M(t)q(t) +
M�(t)
Mσ (t)

ωσ (t) – γ
M(t)
Mσ (t)

x�(t)
xσ (t)

ωσ (t). (.)

By (.), we obtain

ω�(t) ≤ –M(t)q(t) +
M�(t)
Mσ (t)

ωσ (t) – γ
M(t)
Mσ (t)

ϑ(t,T)
r(t)

S

γ
n (t,x(t))
xσ (t)

ωσ (t)

≤ –M(t)q(t) +
M�(t)
Mσ (t)

ωσ (t) – γ
M(t)

(Mσ (t))λ
ϑ(t,T)
r(t)

(
ωσ (t)

)λ, (.)

where λ =  + 
γ
. Multiplying both sides of (.), with t replaced by s, by H(t, s) and inte-

grating with respect to s from T to t (t ≥ T ), one gets

∫ t

T
H(t, s)M(s)q(s)�s ≤ –

∫ t

T
H(t, s)ω�(s)�s +

∫ t

T
H(t, s)

M�(s)
Mσ (s)

ωσ (s)�s

–
∫ t

T
γH(t, s)

M(s)ϑ(s,T)
(Mσ (s))λr(s)

(
ωσ (s)

)λ�s.

Integrating by parts and using (.) and (.), we have

∫ t

T
H(t, s)M(s)q(s)�s ≤ H(t,T)ω(T) +

∫ t

T
H�s (t, s)ωσ (s)�s

+
∫ t

T
H(t, s)

M�(s)
Mσ (s)

ωσ (s)�s

–
∫ t

T
γH(t, s)

M(s)ϑ(s,T)
(Mσ (s))λr(s)

(
ωσ (s)

)λ�s

≤ H(t,T)ω(T) +
∫ t

T

[
–
h(t, s)
Mσ (s)

(
M(s)H(t, s)

) γ
γ+ ωσ (s)

– γH(t, s)
M(s)ϑ(s,T)
(Mσ (s))λr(s)

(
ωσ (s)

)λ

]
�s

≤ H(t,T)ω(T) +
∫ t

T

[
h–(t, s)
Mσ (s)

(
M(s)H(t, s)

) 
λ ωσ (s)

– γH(t, s)
M(s)ϑ(s,T)
(Mσ (s))λr(s)

(
ωσ (s)

)λ

]
�s. (.)
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Write

Aλ = γ
H(t, s)M(s)ϑ(s,T)

r(s)(Mσ (s))λ
(
ωσ (s)

)λ, Bλ– =
h–(t, s)r


λ
 (s)

λγ

λ ϑ


λ
 (s,T)

.

It follows from Lemma . that

h–(t, s)
Mσ (s)

(
M(s)H(t, s)

) 
λ ωσ (s) – γH(t, s)

M(s)ϑ(s,T)
(Mσ (s))λr(s)

(
ωσ (s)

)λ ≤ hγ+
– (t, s)rγ (s)

(γ + )γ+ϑγ
 (s,T)

.

Combining the above inequality with (.) gives

∫ t

T

[
M(s)q(s)H(t, s) –

hγ+
– (t, s)rγ (s)

(γ + )γ+ϑγ
 (s,T)

]
�s ≤ H(t,T)ω(T),

which implies


H(t,T)

∫ t

T

[
M(s)q(s)H(t, s) –

hγ+
– (t, s)rγ (s)

(γ + )γ+ϑγ
 (s,T)

]
�s ≤ ω(T),

which contradicts assumption (.). Thus every solution x(t) of Eq. (.) is either oscil-
latory or tends to zero. The proof is completed. �

Theorem . Assume that (.) holds. Furthermore, suppose that for all sufficiently
large T ,

lim sup
t→∞

ϑ
γ
 (t,T)

∫ ∞

t
q(s)�s >  (.)

holds. Then every solution x(t) of Eq. (.) is either oscillatory or tends to zero.

Proof Assume that Eq. (.) has a nonoscillatory solution x(t) on [t,∞)T. Then, with-
out loss of generality, there is a T ≥ t, sufficiently large, such that x(t) >  for t ≥ T . By
Lemma ., there are two possible cases:
() Si(t,x(t)) >  for any t ≥ T and  ≤ i≤ n.
() limt→∞ x(t) = .

If case () holds, then using the fact that S�
n (t,x(t)) < , we obtain

Sn
(
t,x(t)

) ≥
∫ ∞

t
F
(
s,x

(
τ (s)

))�s ≥ xγ (t)
∫ ∞

t
q(s)�s,

which implies

∫ ∞

t
q(s)�s≤

(
S


γ
n (t,x(t))
x(t)

)γ

. (.)

Combining (.) with (.) gives

ϑ
γ
 (t,T)

∫ ∞

t
q(s)�s ≤ .
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Therefore

lim sup
t→∞

ϑ
γ
 (t,T)

∫ ∞

t
q(s)�s≤ ,

which contradicts assumption (.). Thus every solution x(t) of Eq. (.) is either oscil-
latory or tends to zero. The proof is completed. �

4 Examples
In this section, we give some examples to illustrate our main results.

Example . Consider the following higher-order dynamic equation:

S�
n
(
t,x(t)

)
+

ρ

t 
x

(
τ (t)

)
= , t ∈ Z, t ≥ , (.)

where n ≥ , γ = , ρ is a positive constant, Sk(t,x(t)) ( ≤ k ≤ n) are as in Eq. (.) with
rn(t) = t, rn–(t) = · · · = r(t) =  and τ is defined as in (H). If ρ > 

 , then every solution
of Eq. (.) is either oscillatory or tends to zero.

Proof Note that

∫ t

t

[


rn(s)

] 
γ

�s =
∫ t




s
�s = log t –  → ∞ (t → ∞),

∫ ∞

t

�s
ri(s)

=
∫ ∞


�s = ∞ for  ≤ i≤ n – 

and

∫ ∞

t


rn–(s)

{∫ ∞

s

[


rn(u)

∫ ∞

u
q(v)�v

] 
γ

�u
}
�s

=
∫ ∞



{∫ ∞

s

[

u

∫ ∞

u

ρ

v 

�v

] 
 �u

}
�s

=
(

ρ

 – – 


) 

∫ ∞



{∫ ∞

s


u




�u
}
�s

=
(

ρ

 – – 


) 
 
 – –




∫ ∞


s–


 �s

=
(

ρ

 – – 


) 
 
 – – 




 

 – 
lim
t→∞

(
t

 – 



)

= ∞.

TakeM(t) = t,m(t) = 
t and G(t, s) =  if t > s≥  and G(t, t) =  if t ≥ , then

ψ(s,T) =
ρ

s 

+


σ (s)

+
sη(s,T)

σ (s)
,

β(s,T) =  +
sη(s,T)

σ (s)
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and

g(t, s) = –
√
s

(
 +

sη(s,T)
σ (s)

)
.

Note that ϑn(t,T) =
∫ t
T [


rn(s) ]


γ �s =

∫ t
T


s�s = log t – logT . It is easy to see that

lim
t→∞ϑ(t,T) = lim

t→∞ϑ(t,T) = lim
t→∞ϑn(t,T) = ∞. (.)

From (.) and (.), we can find T∗ such that η(t,T) ≥  for all t ≥ T∗. Therefore we have
that if ρ > 

 , then

lim sup
t→∞


G(t,T)

∫ t

T

[
G(t, s)ψ(s,T) –

g–(t, s)r(s)
γ η(s,T)

]
�s

= lim sup
t→∞

∫ t

T

[
ρ

s 

–


sη(s,T)

]
�s

≥
(

ρ –



)
lim sup
t→∞

∫ t

T∗


s 

�s

= ∞.

Thus conditions (H), (.) and (.) are satisfied. By Theorem ., every solution of Eq.
(.) is either oscillatory or tends to zero if ρ > 

 . The proof is completed. �

Example . Consider the following higher-order dynamic equation:

S�
n
(
t,x(t)

)
+

ρ

t 
x



(
τ (t)

)
= , t ∈ Z, t ≥ , (.)

where n ≥ , γ = 
 , Sk(t,x(t)) ( ≤ k ≤ n) are as in Eq. (.) with rn(t) = t 

 , rn–(t) = t 
 ,

rn–(t) = · · · = r(t) = t, τ is defined as in (H) and ρ is a positive constant. If ρ > 

(  )


, then

every solution of Eq. (.) is either oscillatory or tends to zero.

Proof Note that

∫ t

t

[


rn(s)

] 
γ

�s =
∫ t




s 

�s =
t 
 –  



 
 – 

→ ∞ (t → ∞),

∫ t

t


rn–(s)

�s =
∫ t




s 

�s =

t  –  


 
 – 

→ ∞ (t → ∞),

∫ t

t


ri(s)

�s =
∫ t




s
�s = log t –  → ∞ (t → ∞) for  ≤ i ≤ n – 

and

∫ ∞

t


rn–(s)

{∫ ∞

s

[


rn(u)

∫ ∞

u
q(v)�v

] 
γ

�u
}
�s

=
∫ ∞




s 


{∫ ∞

s

[

u 



∫ ∞

u

ρ

v 

�v

] 
 �u

}
�s
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=
(

ρ

 – – 


) 

∫ ∞




s 


{∫ ∞

s



u 

�u

}
�s

=
(

ρ

 – – 


) 
 
 – – 



∫ ∞




s 

�s

=
(

ρ

 – – 


) 
 
 – – 


lim
t→∞

t 
 –  



 
 – 

= ∞.

Note that

ϑ(t,T) =
∫ t

T


r(un–)

[∫ un–

T


r(un–)

[
· · ·

[∫ u

T


rn–(u)

×
[∫ u

T


rn(u)

�u
] 

 �u
]

· · ·
]
�un–

]
�un–

≥
∫ t

n–T


un–

[∫ un–

n–T


un–

×
[
· · ·

[∫ u

T

[


u




∫ u

T



u




�u
] 

 �u
]

· · ·
]
�un–

]
�un–

≥
∫ t

n–T


un–

[∫ un–

n–T


un–

×
[
· · ·

[∫ u

T

[


u




(u – T)
] 

 �u
]

· · ·
]
�un–

]
�un–

≥
(



)n– 
 (
t – n–T

)
. (.)

Pick T∗ > T >  such that


t 


≥ 
t 


≥ 
[(  )

n– 
 (t – n–T)] 

for t ≥ T∗.

TakeM(t) = t and H(t, s) =  for t > s ≥  and H(t, t) =  for t ≥ , then

h(t, s) = –


s


.

Therefore we have that if ρ > 

(  )


, then

lim sup
t→∞


H(t,T)

∫ t

T

[
M(s)q(s)H(t, s) –

hγ+
– (t, s)rγ (s)

(γ + )γ+ϑγ
 (s,T)

]
�s

= lim sup
t→∞

∫ t

T

[
ρ

s 

–



(  )

 [(  )

n– 
 (s – n–T)] 

]
�s

≥
(

ρ –


(  )



)
lim sup
t→∞

∫ t

T∗


s 

�s
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=
(

ρ –


(  )



)
lim sup
t→∞

t 
 – (T∗)




 
 – 

= ∞.

Thus conditions (H), (.) and (.) are satisfied. By Theorem . every solution of Eq.
(.) is either oscillatory or tends to zero if ρ > 

(  )


. The proof is completed. �

Example . Consider the following higher order dynamic equation:

S�
n
(
t,x(t)

)
+

ρ

tσ (t)
xγ

(
τ (t)

)
=  (.)

on an arbitrary time scaleT, where n≥ , γ ≥  is the quotient of two oddpositive integers,
ρ is a positive constant, Sk(t,x(t)) (≤ k ≤ n) are as in Eq. (.) with rn(t) = , rn–(t) = t


γ ,

rn–(t) = · · · = r(t) = t and τ is defined as in (H). If ρ > (n–)γ+, then every solution of Eq.
(.) is either oscillatory or tends to zero.

Proof Note that

∫ ∞

t

[


rn(s)

] 
γ

�s =
∫ ∞

t
�s = ∞,

∫ ∞

t


rn–(s)

�s =
∫ ∞

t



s

γ

�s = ∞

and
∫ ∞

t


ri(s)

�s =
∫ ∞

t


s
�s = ∞ for  ≤ i ≤ n – .

Pick that t∗ ≥ t such that
∫ t∗
t



s

γ

�s > , then

∫ ∞

t


rn–(s)

{∫ ∞

s

[


rn(u)

∫ ∞

u
q(v)�v

] 
γ

�u
}
�s

=
∫ ∞

t



s

γ

{∫ ∞

s

[∫ ∞

u

ρ

vσ (v)
�v

] 
γ

�u
}
�s

≥ (ρ)

γ

∫ ∞

t



s

γ

{∫ ∞

s



u

γ

�u
}
�s

≥ (ρ)

γ

∫ t∗

t



s

γ

�s
∫ ∞

s∗



u

γ

�u

= ∞.

Using arguments similar to that of (.), it is easy to see that ϑ(t,T) ≥ (  )
n–+ 

γ (t–n–T).
Therefore we have that if ρ > (n–)γ+, then

lim sup
t→∞

ϑ
γ
 (t,T)

∫ ∞

t
q(s)�s≥ ρ

(



)(n–)γ+

lim sup
t→∞

(t – n–T)γ

t
≥ ρ

(



)(n–)γ+

> .
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Thus conditions (H), (.) and (.) are satisfied. By Theorem . every solution of Eq.
(.) is either oscillatory or tends to zero if ρ > (n–)γ+. The proof is completed. �

Example . Consider the following third-order dynamic equation:

[(
tx�(t)

)�]� +
t[(t + t + )(t + ) + (t + t + )(t + )]

(t + )(t + )(t + )
x(t) =  (.)

on N = {, , , . . .}, where n = , γ = , r(t) = , r(t) = t and τ (t) = t for any t ∈ N. It is
easy to see that conditions (H)-(H) are satisfied and x(t) = (–)t

t is an oscillatory solution
of Eq. (.), which tends to zero as t → ∞.
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