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Abstract
This paper is concerned with the regularity properties of weak solutions to the
obstacle problem for Clifford-valued functions. Our main results are a global reverse
Hölder inequality and stability of the weak solutions to the obstacle problem.
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1 Introduction
Let e, e, . . . , en be the standard basis of Rn with the relation eiej + ejei = –δij. For k =
, , . . . ,n, we denote by C�kn = C�kn(Rn) the linear space of all k-multivectors, spanned
by the reduced products eI = eiei · · · eik , corresponding to all ordered k-tuples I =
(i, i, . . . , ik),  ≤ i < i < · · · < ik ≤ n. Thus, Clifford algebra C�n =

⊕
k C�kn is a graded

algebra, especially C�n =R and C�n =R
n. R ⊂ C ⊂ H ⊂ C�n ⊂ · · · is an increasing chain,

where H is the Hamilton’s algebra of quaternions. For u ∈ C�n, u can be written as

u =
∑
I

uIeI =
∑

≤i<···<ik≤n

ui,...,ik ei · · · eik ,

where  ≤ k ≤ n.
The norm of u ∈ C�n is given by |u| = (

∑
I uI )/. Clifford conjugation eα · · · eαk =

(–)keαk · · · eα . For u =
∑

I uIeI ∈ C�n, v =
∑

J vJ eJ ∈ C�n,

〈u, v〉 =
〈∑

I

uIeI ,
∑
J

vJ eJ
〉
=

∑
I

uIvI

defines the corresponding inner product on C�n . Denote by Sc(u) the scalar part of u, the
coefficient of the element e, and we also have 〈u, v〉 = Sc(uv).
The Dirac operator used in this paper is given by

D =
n∑
j=i

ej
∂

∂xj
. ()

Throughout this paper, we write D′(�,C�n) for the space of Clifford-valued functions
whose coefficients are Schwartz distributions on �. For p > , we write Lp(�,C�kn) for the
space of Clifford-valued functions u, whose coefficients belong to the usual Lp(�) space.
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It is a reflexive Banach space endowed with the norm

‖u‖p =
(ˆ

�

|u|p dx
) 

p
.

Also,W ,p(�,C�kn) is the Sobolev space of Clifford-valued functions u, whose coefficients
belong toW ,p(�). It is a reflexive Banach space endowed with the norm

‖u‖,p = ‖u‖p + ‖�u‖p,

where �u = ( ∂u
∂x

, . . . , ∂u
∂xn ),

∂u
∂xi

=
∑

I
∂uI
∂xi

eI .
Let � be a bounded domain. This paper is concerned with the A-Dirac equation

DAp(x,Du) = , ()

where  < p < ∞, Ap : � × C�n → C�n preserves the grading of the Clifford algebra and
satisfies the following conditions for some constants  < a ≤ b <∞:

(i) The mapping x→ Ap(x, ξ ) is measurable for all ξ ∈ C�kn.
(ii) The mapping ξ → Ap(x, ξ ) is continuous for a.e. x ∈ �.
(iii) |Ap(x, ξ )| ≤ b|ξ |p–.
(iv) 〈Ap(x, ξ ) –Ap(x,η), ξ – η〉 ≥ a|ξ – η|p for all x ∈ � with ξ �= η.

Definition . [] A Clifford-valued function u ∈W ,p(�,C�kn) for k = , , . . . ,n, is a weak
solution to equation () if for all ϕ ∈W ,p(�,C�kn) with compact support, we have

ˆ
�

Ap(x,Du)Dϕ = . ()

In [, ], Nolder explained how quasi-linear elliptic equations

–divAp(x,∇u) =  ()

arise as components of Dirac systems () and discussed some properties of the weak so-
lutions to the scalar parts of equations, such as the Caccioppoli estimate and the remov-
ability theorem. In [], Heinonen et al. studied the quasi-linear elliptic equations () by
means of potential theory systematically. Many other mathematicians also work on prop-
erties of solutions to equations (), such as the regularity, stability, convergence and so on,
see [–].
This paper is organized as follows. In Section , some preliminary results about Clifford-

valued functions are presented. In Section , higher integrability of weak solutions to ob-
stacle problem for Clifford-valued functions are obtained. Section  is concerned with the
stability of the weak solutions to obstacle problem. For other works about Clifford analysis
and Dirac equations, see [, , –].

2 Preliminary results
Lemma . C∞

 (�,C�kn) is dense in W ,p
 (�,C�kn) for  ≤ p <∞.
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Proof Let u =
∑

I uI(x)eI ∈ W ,p
 (�,C�kn), then uI ∈ W ,p

 (�). Since C∞
 (�) is dense in

W ,p
 (�), we can find a sequence {ukI } ⊂ C∞

 (�) converges to uI in W ,p
 (�). Let uk =∑

I u
k
I eI , then {uk} ⊂ C∞

 (�,C�kn).

ˆ
�

|uk – u|p dx +
ˆ

�

|�uk –�u|p dx

≤
ˆ

�

(∑
I

∣∣ukI – uI
∣∣) p


dx +

ˆ
�

( n∑
i=

∣∣∣∣∂uk∂xi
–

∂u
∂xi

∣∣∣∣

) p



dx

≤ c(n,p)
∑
I

ˆ
�

∣∣ukI – uI
∣∣p dx + ˆ

�

( n∑
i=

∑
I

(
∂ukI
∂xi

–
∂uI
∂xi

)
) p



dx

≤ c(n,p)
∑
I

ˆ
�

∣∣ukI – uI
∣∣p dx + c(n,p)

∑
I

ˆ
�

∣∣�ukI –�uI
∣∣p dx.

Since {ukI } converges to uI inW ,p
 (�). Then

´
�

|ukI – uI |p dx → ,
´

�
|�ukI –�uI |dx → .

Thus,

ˆ
�

|uk – u|p dx +
ˆ

�

|�uk –�u|p dx→  (k → ∞).

This means uk converges to u inW ,p
 (�,C�kn). �

Here, we denote the Grassmann algebra
∧

=
⊕

k
∧k , d is the exterior derivative opera-

tor, and d∗ is the formal adjoint operator. For more details about differential form, see [].
From [], we know that the linear mapping

λ : ei ∧ · · · ∧ eik → ei · · · eik (k ≥ )

to all of
∧
(Rn) defines a linear isomorphism form

∧
(Rn) onto C�n(Rn) independently of

the choice of orthonormal basis {ej} for Rn.
For a Clifford-valued function u, we write u� for λ–u. Via λ, the operator d + d∗ is

mapped to D, it means

(Du)� = du� + d∗u�. ()

Then, if u ∈D′(�,C�kn), there exists a constant C, such that

max
{∣∣du�

∣∣, ∣∣d∗u�
∣∣} ≤ C|Du|. ()

In [], Iwaniec gave the following Poincaré inequality for differential forms.

Theorem . For each u� ∈ C∞
 (�,

∧k), there exits a constant C(n,p),  < p < ∞ such that

∥∥∇u�
∥∥
p ≤ C(n,p)

(∥∥du�
∥∥
p +

∥∥d∗u�
∥∥
p

)
. ()

Combining (), () and Lemma ., we have the following Poincaré-Sobolev inequality.
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Proposition . For each u ∈W ,p
 (�,C�kn),  < p < ∞, there exists a constant C, such that

ˆ
�

|�u|p ≤ c(n,p)
ˆ

�

|Du|p dx. ()

Using the Poincaré inequality of the real function and |∇|u|| ≤ c(n)|∇u|, we have

Corollary . For each u ∈ W ,p
 (�,C�kn),  < p < n, there exists a constant C such that

(ˆ
�

|u| np
n–p dx

) n–p
np

≤ C
(ˆ

�

|Du|p dx
) 

p
. ()

Similar to the process of the Ponicaré inequality for differential forms in [], the fol-
lowing inequalities for Clifford-valued function can be obtained.

Corollary . Let u ∈W ,s
 (�,C�kn),  < s <∞, then, there exists a constant C such that

( 
�

|u|s dx
) 

s
≤ C|�| n

( 
�

|Du| ns
n+s– dx

) n+s–
ns

. ()

Proof If  < s < n
n– , then

ns
n– ≥ {s, n

n– }. From the Hölder inequality and Corollary ., we
have

( 
�

|u|s dx
) 

s
≤

( 
�

|u| ns
n– dx

) n–
ns

≤ C|�| n
( 

�

|Du| ns
n+s– dx

) n+s–
ns

.

If s > n
n– , then

(ˆ
�

|u|s dx
) 

s
≤ C

(ˆ
�

|Du| ns
n+s dx

) n+s
ns

≤ C|�| n+sns

(ˆ
�

|Du| ns
n+s– dx

) n+s–
ns

.

Thus, we have

( 
�

|u|s dx
) 

s
≤ C|�| n

( 
�

|Du| ns
n+s– dx

) n+s–
ns

. �

3 Higher integrability
In this section, we will prove the higher integrability of the weak solutions to the obstacle
problem Kf ,p

ψ (�,C�kn). Here, we assume that the complement of � satisfies the measure
density condition, it means that there exists a positive constant C >  such that

∣∣�c ∩ B
∣∣ ≥ C|B|, ()

where B is a ball in R
n. In order to prove the higher integrability, we need the following

Gehring’s lemma, which appeared in [].
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Lemma . Let B be a ball in R
n, and let g,h ∈ Lp(B) be a nonnegative function satisfy-

ing

 
B
gp dx ≤ c

[( 
B
g dx

)p

+
 
B
hq dx

]
()

for all balls B ⊂ B ⊂ B,  < p < ∞. Then, for each  < σ < , p < s < p + p–
n–pnkp , we

have

( 
σB

gs dx
) 

s
≤ n

σ
n
s ( – σ )

n
p

[( 
B
gp dx

) 
p
+

( 
B
hs dx

) 
s
]
. ()

Definition . For Clifford-valued functions a =
∑

I aI(x)eI and b =
∑

I bI(x)eI , we say
that a≥ b in � if aI(x)≥ bI(x) for a.e. x ∈ � and all ordered tuple I .

Let ψ =
∑

I ψIeI be a Clifford-valued function in W ,p(�,C�kn), where ψI : � →
[–∞, +∞). f ∈ W ,p(�,C�kn) is a function, which gives the boundary. We consider the
obstacle problem

Kf ,p
ψ

(
�,C�kn

)
=

{
v ∈W ,p(�,C�kn

)
: v – f ∈W ,p


(
�,C�kn

)
, v≥ ψ a.e. �

}
()

for Clifford-valued functions. To avoid trivialities, we always assume that the set Kf ,p
ψ (�,

C�kn) is not empty.

Definition . We say that a function u ∈ W ,p
loc (�,C�kn) is a weak solution to the obstacle

problem Kf ,p
ψ (�,C�kn), if

ˆ
�

〈
Ap(x,Du),Dv –Du

〉
dx ≥ , ()

whenever v ∈Kf ,p
ψ (�,C�kn).

Remark . If u is a weak solution to obstacle problem (), then u holds for the scalar
part of (), i.e.,

ˆ
�

Sc
(
A(x,Du)Dϕ

)
dx = . ()

Remark . We assume f ≥ ψ in �. Indeed, denote f =
∑

I fIeI , ψ =
∑

I ψIeI . Then, since
u – f ∈W ,p

 (�,C�kn),

 ≤ (ψI – fI)+ ≤ (u – fI)+.

Thus, we have (ψI – fI)+ ∈ W ,p
 (�) and f I = (ψI – fI)+ + fI ≥ ψI in �. Let f =

∑
I f I eI , then

f ≥ ψ in �.

Theorem . Suppose that the complement of � satisfies the measure density condition
(), and let u ∈ W ,p

loc (�,C�kn) be a weak solution to the obstacle problem (), where f ∈

http://www.advancesindifferenceequations.com/content/2013/1/250
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W ,p+δ(�,C�kn) for some δ > . Then, there exists a positive number ε >  and a constant
C, independent of u, such that |Du| ∈ Lp+ε(�), whenever  < ε < ε, and

ˆ
�

|Du|p+ε dx ≤ C
[(ˆ

�

|Du|p dx
)+ ε

p
+
ˆ

�

|Df |p+ε dx
]
. ()

Proof First, let B be a ball with � ⊂ 
B, B ⊂ B be a ball such that � ∩ B �= ∅ and

η ∈ C∞
 (B) be the cut-off function such that η|B = ,  ≤ η ≤ , |�η| ≤ c(n)

|B| n
. Denote by

D = B∩�, now we test () with v = u–ηp(u– f ). Since u– f ∈W ,p
 (�,C�kn), then v– f ∈

W ,p
 (�,C�kn). For any I , we get

vI –ψI =
(
 – ηp)(uI –ψI) + ηp(fI –ψI) ≥ 

a.e. �. Thus, v is an admissible test function, and we have

 ≤
ˆ

�

〈
Ap(x,Du),Dv –Du

〉
dx

≤
ˆ
D

〈
Ap(x,Du), –ηpDu + ηpDf – pηp–Dη(u – f )

〉
dx. ()

Since A satisfies (iii), (iv), combining the Hölder inequality and the Young inequality, it
follows from () that

a
ˆ
D

ηp|Du|p dx ≤ b
ˆ
D

ηp|Du|p–|Df |dx + p
ˆ
D

|Du|p–ηp–|Dη||u – f |dx

≤ b
(ˆ

D
ηp|Du|p dx

) p–
p

(ˆ
D

ηp|Df |p dx
) 

p

+ bp
(ˆ

D
ηp|Du|p dx

) p–
p

(ˆ
D

ηp|u – f |p dx
) 

p

≤ bε (p – )
p

ˆ
D

ηp|Du|p dx + bc(p, ε)
ˆ
D

ηp|Df |p dx

+
bε (p – )

p

ˆ
D

ηp|Du|p dx + bc(p, ε)
ˆ
D

|Dη|p|u – f |p dx.

Choose ε, ε such that

bε (p – )
p

+
bε (p – )

p
≤ a


.

Since u – f ∈W ,p
 (�,C�kn), using Lemma ., we have

ˆ
B∩�

|Du|p dx ≤ c
ˆ
B∩�

|Df |p dx + c
|B| n

ˆ
B∩�

|u – f |p dx

≤ c
ˆ
B∩�

|Df |p dx + c
|B| n

|B∩ �| pn
(ˆ

B∩�

|Du –Df | pθ dx
)θ

, ()
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where θ = n+p–
n > . By means of condition (), we have |B∩ �| ≤ ( –C)|B|, then ()

becomes


|B|

ˆ
B∩�

|Du|p dx ≤ c


|B|
ˆ
B∩�

|Df |p dx + c


|B|θ
(ˆ

B∩�

|Du| pθ + |Df | pθ dx
)θ

. ()

Let

g(x) =

⎧⎨
⎩|Du| pθ , if x ∈ �,

, otherwise,

and

h(x) =

⎧⎨
⎩|Df | pθ , if x ∈ �,

, otherwise.

Then, the following reverse Hölder estimate

 
B
gθ dx ≤ c

 
B
hθ dx + c

( 
B
g + hdx

)θ

≤ c
( 

B
g dx

)θ

+ c
 
B
hθ dx ()

holds when B⊂ B. According to Lemma ., () becomes

( 
B
|g|θ (+ ε

p ) dx
) 

θ (+ ε
p ) ≤ C

[( 
B

|g|θ dx
) 

θ

+
( 

B
hθ (+ ε

p ) dx
) 

θ (+ ε
p )

]

≤ C
[( 

�

|g|θ dx
) 

θ

+
( 

�

hθ (+ ε
p ) dx

) 
θ (+ ε

p )
]
.

That is,

ˆ
B
|Du|p+ε dx ≤ C

[(ˆ
�

|Du|p dx
)+ ε

p
+
ˆ

�

|Df |p+ε dx
]
.

Since � is a bounded domain, � can be covered by a finite number of balls such that the
previous inequality holds, then the estimates () follows immediately. �

4 Stability
In this section, we will show that the weak solutions to obstacle problem are stable under
some suitable assumptions.
Suppose that {pi} is a sequence such that pi → p and for each i = , , . . . , there is an

operator Api satisfying (i)-(iv) for p = pi and for a.e. x ∈ �,

Api (x, ξ )→ Ap(x, ξ ) ()

http://www.advancesindifferenceequations.com/content/2013/1/250
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uniformly on compact subset of Rn. We consider the obstacle problem

Kf ,pi
ψ

(
�,C�kn

)
=

{
v ∈W ,pi

(
�,C�kn

)
: v – f ∈ W ,pi


(
�,C�kn

)
, v ≥ ψ a.e. �

}
. ()

Assume that Api preserves the grading of the Clifford algebra and converges to Ap(x, ξ )
uniformly on compact subset of Rn. Suppose that ui ∈ W ,pi (�,C�kn) is the weak solution
to the following Kf ,pi

ψ (�,C�kn)-obstacle problem

ˆ
�

〈
Api (x,Dui),Dv –Dui

〉
dx ≥  ()

for each v ∈Kf ,pi
ψ (�,C�kn) and u ∈ W ,p(�,C�kn) is the weak solution to

ˆ
�

〈
Ap(x,Du),Dv –Du

〉
dx ≥  ()

for all v ∈Kf ,p
ψ (�,C�kn).

Definition . We call a sequence uj ∈ Lp(�,C�n) converges weakly in Lp(�,C�n) to u if

ˆ
�

vuj dx →
ˆ

�

vudx, ()

whenever v ∈ L
p

p– (�,C�n). Denote it by uj ⇀ u.

Remark . Suppose that ui weakly converges to u in Lp(�,C�kn), then

ˆ
�

〈v,ui〉dx →
ˆ

�

〈v,u〉dx, ()

whenever v ∈W ,p(�,C�kn).

Now, we start with the main result of this section.

Theorem . Suppose that the complement of � satisfies the measure density condition
(). Let pi, Api (x, ξ ), Ap(x, ξ ) be defined as described above. Let the boundary value func-
tion f be in W ,p+τ (�,C�kn) for some τ > . Then, there is a small number δ such that the
sequence {ui} of weak solutions to the obstacle problem () has a subsequence, which con-
verges to the weak solution u of () in W ,p+δ(�,C�kn) for any δ < δ.

Before proving Theorem ., we need the following lemmas.

Lemma . [] Suppose that a bounded open set � satisfies (). Let pi >  and ui ∈
W ,pi (�), i = , , . . . , and suppose that pi → p and ui → u a.e in �. If θ ∈ W ,p+ε(�),
ε >  and if ui – θ ∈W ,pi

 (�) with

ˆ
�

∣∣∇(ui – θ )
∣∣pi dx ≤ M ()

i = , , . . . , where M < ∞ is independent of i, then u ∈W ,p
 (�).

http://www.advancesindifferenceequations.com/content/2013/1/250
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Lemma . Let ui be described in Theorem .. There exists a constant γ >  such that
for each γ ∈ [,γ],

ˆ
�

|Dui|p+ γ
 dx ≤ C, ()

where i is sufficiently large and C is independent of i.

Proof By virtue of Remark ., we can use f as a test function in (), so that

ˆ
�

〈
Api (x,Dui),Df –Dui

〉
dx≥ .

From the structure conditions on Ai and the Hölder inequality, it follows

a
ˆ

�

|Dui|pi dx ≤ b
(ˆ

�

|Dui|pi dx
) pi–

pi
(ˆ

�

|Df |pi dx
) 

pi
.

Then we have
ˆ

�

|Dui|pi dx ≤ C
ˆ

�

|Df |pi dx. ()

By the Hölder inequality and Young’s inequality, () becomes

ˆ
�

|Dui|pi dx ≤ C
(

|�| +
ˆ

�

|Df |p+σ dx
)
, ()

when i is sufficiently large and σ > . According to Theorem ., there exists a constant
γ >  such that for each γ ∈ [,γ],

(ˆ
�

|Dui|pi+γ dx
) pi

pi+γ

≤ C
[ˆ

�

|Dui|pi dx +
(ˆ

�

|Df |pi+γ dx
) pi

pi+γ
]
. ()

Since pi → p, choose i sufficiently large such that p – γ

 ≤ pi ≤ p + γ

 . Then p + γ

 ≤ p + γ .
So, there exists a constant C, such that

ˆ
�

|Dui|p+ γ
 dx ≤ C. �

Proof of Theorem . Let κ = n
n– . Since ui – f ∈ W ,p

 (�,C�kn), we choose i so large that
p + γ

 ≤ κpi and pi ≤ p + γ

 , using Lemma ., we get

‖ui – f ‖p+ γ


≤ C‖ui – f ‖κpi

≤ C‖ui – f ‖ npi
n–pi

≤ C‖Dui –Df ‖pi
≤ C

(‖Dui‖p+ γ

+ ‖Df ‖p+ γ



)
.

http://www.advancesindifferenceequations.com/content/2013/1/250
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Implied by the Minkowski inequality that

‖ui‖p+ γ


≤ ‖ui – f ‖p+ γ

+ ‖f ‖p+ γ



≤ C
(‖Dui‖p+ γ


+ ‖Df ‖p+ γ


+ ‖f ‖p+ γ



)
.

Then it follows from Lemma . that

‖ui‖W ,p+ γ
 (�,C�kn)

≤ C. ()

Write δ = γ

 , ui =
∑

I uiIeI , according to (), we have ui ∈ W ,p+δ(�,C�kn). So, we can ex-
tract a subsequence, still denote by uiI , such that

⎧⎪⎪⎨
⎪⎪⎩
uiI ⇀ uI , inW ,p+δ(�),

uiI → uI , in Lp+δ(�),

uiI → uI , pointwise a.e. in �.

()

Then ∇uiI → ∇uI . Let u =
∑

I uIeI , then ui → u in Lp+δ(�); ui → u pointwise a.e. in �.
Since ∇uiI ⇀ ∇uI , for each j = , , . . . ,n, we have

ˆ
�

yα

∂uiI
∂xj

dx →
ˆ

�

yα

∂uI
∂xj

dx,

whenever yα ∈ W ,p(�). Then,
´

�
yDui dx → ´

�
yDudx for each y ∈ W ,p(�,C�n). This

yields Dui ⇀ Du in Lp(�,C�n).
The next stage is to extract a further subsequence, so that Dui → Du pointwise almost

everywhere in �.
Because of ui – f ∈W ,pi

 (�,C�kn) and ui – f → u – f , we get u – f ∈ W ,pi
 (�,C�kn) a.e. in

�, that is to say, u ∈Kf ,pi
ψ (�,C�kn). So,

ˆ
�

〈
Api (x,Dui),Du –Dui

〉
dx ≥ . ()

Moreover, by the convergence assumption, we obtain

Api (x,Du)→ Ap(x,Du)

almost everywhere in �.
From this, if follows that ui → u inW ,p+δ′ (�,C�kn) for all δ′ < δ.
At last, we will show that u = u. Using Lemma (.), we get u – f ∈ W ,p

 (�,C�kn), then
u ∈Kf ,p

ψ (�,C�kn). This yields

ˆ
�

〈
Ap(x,Du),Du –Du

〉
dx ≥ . ()

On the other hand,
ˆ

�

〈
Api (x,Dui),Du –Dui

〉
dx ≥ .
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Let i → ∞, since ui → u inW ,p(�,C�kn), we get

ˆ
�

〈
Ap(x,Du),Du –Du

〉
dx≥ . ()

Combining () and (), we have

 ≤
ˆ

�

〈
Ap(x,Du) –Ap(x,Du),Du –Du

〉
dx≤ .

It follows that u = u. This proof is completed. �
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