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Abstract
In this paper, we consider higher-order Frobenius-Euler polynomials, associated
with poly-Bernoulli polynomials, which are derived from polylogarithmic function.
These polynomials are called higher-order Frobenius-Euler and poly-Bernoulli
mixed-type polynomials. The purpose of this paper is to give various identities of
those polynomials arising from umbral calculus.

1 Introduction
For λ ∈ C with λ �= , the Frobenius-Euler polynomials of order α (α ∈ R) are defined by
the generating function to be
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(see [–]). (.)

When x = , H (α)
n (λ) =H (α)

n (|λ) are called the Frobenius-Euler numbers of order α. As
is well known, the Bernoulli polynomials of order α are defined by the generating function
to be
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When x = , B(α)
n = B

(α)
n (x) is called the nth Bernoulli number of order α. In the special

case, α = , B()
n (x) = Bn(x) is called the nth Bernoulli polynomial. When x = , Bn = Bn()

is called the nth ordinary Bernoulli number. Finally, we recall that the Euler polynomials
of order α are given by

(


et + 

)α

ext =
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n=

E(α)
n (x)

tn

n!
(see [–]). (.)

When x = , E(α)
n = E(α)

n () is called the nth Euler number of order α. In the special case,
α = , E()

n (x) = En(x) is called the nth ordinary Euler polynomial. The classical polyloga-
rithmic function Lik(x) is defined by

Lik(x) =
∞∑
n=

xn

nk
(k ∈ Z) (see []). (.)

© 2013 Kim and Kim; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2013/1/251
mailto:tkkim@kw.ac.kr
http://creativecommons.org/licenses/by/2.0


Kim and Kim Advances in Difference Equations 2013, 2013:251 Page 2 of 13
http://www.advancesindifferenceequations.com/content/2013/1/251

As is known, poly-Bernoulli polynomials are defined by the generating function to be

Lik( – e–t)
 – e–t

ext =
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n=

B(k)
n (x)

tn

n!
(cf. []). (.)

Let C be the complex number field, and let F be the set of all formal power series in the
variable t over C with

F =

{
f (t) =

∞∑
k=

ak
k!
tk

∣∣∣ ak ∈C

}
. (.)

Now,we use the notationP =C[x]. In this paper,P∗ will be denoted by the vector space of
all linear functionals on P. Let us assume that 〈L|p(x)〉 be the action of the linear functional
L on the polynomial p(x), andwe remind that the vector space operations onP∗ are defined
by 〈L +M|p(x)〉 = 〈L|p(x)〉 + 〈M|p(x)〉, 〈cL|p(x)〉 = c〈L|p(x)〉, where c is a complex constant
in C. The formal power series

f (t) =
∞∑
k=

ak
k!
tk ∈F (.)

defines a linear functional on P by setting

〈
f (t)|xn〉 = an, for all n≥  (see [, ]). (.)

From (.) and (.), we note that

〈
tk|xn〉 = n!δn,k (see [, ]), (.)

where δn,k is the Kronecker symbol.
Let us consider fL(t) =

∑∞
k=

〈L|xn〉
k! tk . Then we see that 〈fL(t)|xn〉 = 〈L|xn〉, and so L = fL(t)

as linear functionals. The map L 	→ fL(t) is a vector space isomorphism from P∗ onto F .
Henceforth, F will denote both the algebra of formal power series in t and the vector
space of all linear functionals on P, and so an element f (t) of F will be thought of as
both a formal power series and a linear functional (see []). We shall call F the umbral
algebra. The umbral calculus is the study of umbral algebra. The order o(f (t)) of a nonzero
power series f (t) is the smallest integer k, for which the coefficient of tk does not vanish.
A series f (t) is called a delta series if o(f (t)) = , and an invertible series if o(f (t)) = . Let
f (t), g(t) ∈F . Then we have

〈
f (t)g(t)|p(x)〉 = 〈

f (t)|g(t)p(x)〉 = 〈
g(t)|f (t)p(x)〉 (see []). (.)

For f (t), g(t) ∈ F with o(f (t)) = , o(g(t)) = , there exists a unique sequence Sn(x)
(degSn(x) = n) such that 〈g(t)f (t)k|Sn(x)〉 = n!δn,k for n,k ≥ . The sequence Sn(x) is called
the Sheffer sequence for (g(t), f (t)), which is denoted by Sn(x) ∼ (g(t), f (t)) (see [, ]).
Let f (t) ∈F and p(t) ∈ P. Then we have

f (t) =
∞∑
k=

〈
f (t)|xk 〉 tk

k!
, p(x) =

∞∑
k=

〈
tk|p(x)〉xk

k!
. (.)
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From (.), we note that

p(k)() =
〈
tk|p(x)〉 = 〈

|p(k)(x)〉. (.)

By (.), we get

tkp(x) = p(k)(x) =
dkp(x)
dxk

(see [, ]). (.)

From (.), we easily derive the following equation

eytp(x) = p(x + y),
〈
eyt|p(x)〉 = p(y). (.)

For p(x) ∈ P, f (t) ∈F , it is known that

〈
f (t)|xp(x)〉 = 〈

∂t f (t)|p(x)
〉
=

〈
f ′(t)|p(x)〉 (see []). (.)

Let Sn(x)∼ (g(t), f (t)). Then we have


g(f̄ (x))

eyf̄ (t) =
∞∑
n=

Sn(y)
tn

n!
for all y ∈C, (.)

where f̄ (t) is the compositional inverse of f (t) with f̄ (f (t)) = t, and

f (t)Sn(x) = nSn–(x) (see [, ]). (.)

The Stirling number of the second kind is defined by the generating function to be

(
et – 

)m =m!
∞∑
l=m

S(l,m)
tm

m!
(m ∈ Z≥). (.)

For Sn(x)∼ (g(t), t), it is well known that

Sn+(x) =
(
x –

g ′(t)
g(t)

)
Sn(x) (n≥ ) (see [, ]). (.)

Let Sn(x)∼ (g(t), f (t)), rn(x)∼ (h(t), l(t)). Then we have

Sn(x) =
n∑

m=

Cn,mrm(x), (.)

where

Cn,m =

m!

〈
h(f̄ (t))
g(f̄ (t))

l
(
f̄ (t)

)m∣∣∣xn〉 (see [, ]). (.)

In this paper, we study higher-order Frobeniuns-Euler polynomials associatedwith poly-
Bernoulli polynomials, which are called higher-order Frobenius-Euler and poly-Beroulli
mixed-type polynomials. The purpose of this paper is to give various identities of those
polynomials arising from umbral calculus.
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2 Higher-order Frobenius-Euler polynomials, associated poly-Bernoulli
polynomials

Let us consider the polynomials T (r,k)
n (x|λ), called higher-order Frobenius-Euler and poly-

Bernoulli mixed-type polynomials, as follows:

(
 – λ

et – λ

)r Lik( – e–t)
 – e–t

ext =
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n=

T (r,k)
n (x|λ) t

n

n!
, (.)

where λ ∈C with λ �= , r,k ∈ Z.
When x = , T (r,k)

n (λ) = T (r,k)
n (|λ) is called the nth higher-order Frobenius-Euler and

poly-Bernoulli mixed type number.
From (.) and (.), we note that
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, t

)
. (.)

By (.) and (.), we get

tT (r,k)
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n– (x|λ). (.)

From (.), we can easily derive the following equation
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By (.) and (.), we get
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Thus, by (.) and (.), we get
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By (.), we easily see that

H (r)
n (x|λ) =

n∑
l=

(
n
l

)
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n–l(λ)x
l. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For r,k ∈ Z, n≥ , we have
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Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For r,k ∈ Z, n ∈ Z≥, we have
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Now, we note that
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By (.) and (.), we get
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It is easy to show that
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For any delta series f (t), we have

f (t)
t

xn = f (t)


n + 
xn+. (.)

Thus, by (.), (.) and (.), we get
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Therefore, by (.), we obtain the following theorem.

Theorem . For r,k ∈ Z, n ∈ Z≥, we have
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Thus, by (.), we get B(k)
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From (.), we have
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n (x|λ) = t
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x
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(
n
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)
H (r)

n–l(λ)B
(k)
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)
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(
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l

)
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{
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l–(x) + B(k)
l (x)

}
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(
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l

)
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n––l(λ)B
(k)
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n∑
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(
n
l

)
H (r)

n–l(λ)B
(k)
l (x)

= nxT (r,k)
n– (x|λ) + T (r,k)

n (x|λ). (.)

Applying t on both sides of Theorem ., we get

(n + )T (r,k)
n (x|λ)

= nxT (r,k)
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rnλ
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–
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Thus, by (.), we have

(n + )T (r,k)
n (x|λ) + n

(
r –



– x

)
T (r,k)
n– (x|λ) +

n–∑
l=

(
n
l

)
Bn–lT (r,k)

l (x|λ)

= –
rλn
 – λ

T (r+,k)
n– (x|λ) +

n∑
l=

(
n
l

)
Bn–lT (r,k–)

l (x|λ). (.)

Therefore, by (.), we obtain the following theorem.

Theorem . For r,k ∈ Z, n ∈ Z with n≥ , we have

(n + )T (r,k)
n (x|λ) + n

(
r –



– x

)
T (r,k)
n– (x|λ) +

n–∑
l=

(
n
l

)
Bn–lT (r,k)

l (x|λ)

= –
rλn
 – λ

T (r+,k)
n– (x|λ) +

n∑
l=

(
n
l

)
Bn–lT (r,k–)

l (x|λ).

From (.) and (.), we note that

T (r,k)
n (y|λ) =

〈(
 – λ

et – λ

)r Lik( – e–t)
 – e–t

eyt
∣∣∣xn〉

=
〈(

 – λ

et – λ

)r Lik( – e–t)
 – e–t

eyt
∣∣∣xxn–〉. (.)

By (.) and (.), we get

T (r,k)
n (y|λ) =

〈
∂t

((
 – λ

et – λ

)r Lik( – e–t)
 – e–t

eyt
)∣∣∣xn–〉

=
〈(

∂t

(
 – λ

et – λ

)r)Lik( – e–t)
 – e–t

eyt
∣∣∣xn–〉

+
〈(

 – λ

et – λ

)r(
∂t
Lik( – e–t)
 – e–t

)
eyt

∣∣∣xn–〉

+
〈(

 – λ

et – λ

)r Lik( – e–t)
 – e–t

∂teyt
∣∣∣xn–〉. (.)

Therefore, by (.), we obtain the following theorem.

Theorem . For r,k ∈ Z, n≥ , we have

T (r,k)
n (x|λ) = (x – r)T (r,k)

n– (x|λ) –
rλ

 – λ
T (r+,k)
n– (x|λ)

+
n–∑
l=

{
(–)n––l

(
n – 
l

) n––l∑
m=

(–)m
(m + )!
(m + )k

S(n –  – l,m)

}
H (r)

l (x – |λ).

Now, we compute 〈( –λ
et–λ

)rLik( – e–t)|xn+〉 in two different ways.
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On the one hand,

〈(
 – λ

et – λ

)r

Lik
(
 – e–t

)∣∣∣xn+〉

=
〈(

 – λ

et – λ

)r Lik( – e–t)
 – e–t

∣∣∣( – e–t
)
xn+

〉

=
〈(

 – λ

et – λ

)r Lik( – e–t)
 – e–t

∣∣∣xn+ – (x – )n+
〉

=
n∑

m=

(
n + 
m

)
(–)n–m

〈(
 – λ

et – λ

)r Lik( – e–t)
 – e–t

∣∣∣xm〉

=
n∑

m=

(
n + 
m

)
(–)n–m

〈
|T (r,k)

m (x|λ)〉

=
n∑

m=

(
n + 
m

)
(–)n–mT (r,k)

m (λ). (.)

On the other hand, we get

〈(
 – λ

et – λ

)r

Lik
(
 – e–t

)∣∣∣xn+〉

=
〈
Lik

(
 – e–t

)∣∣∣(  – λ

et – λ

)r

xn+
〉

=
〈∫ t



(
Lik

(
 – e–s

))′ ds
∣∣∣H (r)

n+(x|λ)
〉

=
〈∫ t


e–s

Lik( – e–s)
( – e–s)

ds
∣∣∣H (r)

n+(x|λ)
〉

=
n∑
l=

( l∑
m=

(
l
m

)
(–)l–mB(k–)

m

)

l!

〈∫ t


sl ds

∣∣∣H (r)
n+(x|λ)

〉

=
n∑
l=

l∑
m=

(
l
m

)
(–)l–m

B(k–)
m

(l + )!
〈
tl+|H (r)

n+(x|λ)
〉

=
n∑
l=

l∑
m=

(
l
m

)(
n + 
l + 

)
(–)l–mB(k–)

m H (r)
n–l(λ). (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For r,k ∈ Z, n ∈ Z≥, we have

n∑
m=

(
n + 
m

)
(–)n–mT (r,k)

m (λ)

=
n∑
l=

l∑
m=

(–)l–m
(
l
m

)(
n + 
l + 

)
B(k–)
m H (r)

n–l(λ).
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Now, we consider the following two Sheffer sequences:

T (r,k)
n (x|λ)∼

((
et – λ

 – λ

)r  – e–t

Lik( – e–t)
, t

)
,

B
(s) ∼

((
et – 
t

)s

, t
)
,

(.)

where s ∈ Z≥, r,k ∈ Z and λ ∈C with λ �= . Let us assume that

T (r,k)
n (x|λ) =

n∑
m=

Cn·mB(s)
m (x). (.)

By (.) and (.), we get

Cn,m =

m!

〈(
et – 
t

)s(  – λ

et – λ

)r Lik( – e–t)
 – e–t

tm
∣∣∣xn〉

=

m!

〈(
et – 
t

)s(  – λ

et – λ

)r Lik( – e–t)
 – e–t

∣∣∣tmxn〉

=
(
n
m

)〈(
et – 
t

)s(  – λ

et – λ

)r Lik( – e–t)
 – e–t

∣∣∣xn–m〉

=
(
n
m

) n–m∑
l=

s!
(l + s)!

S(l + s, s)
〈(

 – λ

et – λ

)r Lik( – e–t)
 – e–t

∣∣∣tlxn–m〉

=
(
n
m

) n–m∑
l=

s!l!
(l + s)!

(n –m)l
l!

S(l + s, s)
〈
|T (r,k)

n–m–l(x|λ)
〉

=
(
n
m

) n–m∑
l=

(n–m
l

)
(s+l

l
) S(l + s, s)T (r,k)

n–m–l(λ). (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For r,k ∈ Z, s ∈ Z≥, we have

T (r,k)
n (x|λ) =

n∑
m=

{(
n
m

) n–m∑
l=

(n–m
l

)
(s+l

l
) S(l + s, s)T (r,k)

n–m–l(λ)

}
B
(s)
m (x).

From (.) and (.), we note that

T (r,k)
n (x|λ)∼

((
et – λ

 – λ

)r  – e–t

Lik( – e–t)
, t

)
,

E(r,s)
n (x)∼

((
et + 


)s

, t
)
,

(.)

where r,k ∈ Z, s ∈ Z≥.
By the same method, we get

T (r,k)
n (x|λ) = 

s

n∑
m=

{(
n
m

) s∑
j=

(
s
j

)
T (r,k)
n–m(j)

}
E(s)
m (x). (.)
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From (.) and (.), we note that

T (r,k)
n (x|λ)∼

((
et – λ

 – λ

)r  – e–t

Lik( – e–t)
, t

)
,

H (s)
n (x|μ) ∼

((
et –μ

 –μ

)s

, t
)
,

(.)

where r,k ∈ Z, and λ,μ ∈C with λ �= , μ �= , s ∈ Z≥.
Let us assume that

T (r,k)
n (x|λ) =

n∑
m=

Cn,mH (s)
m (x|μ). (.)

By (.) and (.), we get

Cn,m =

m!

〈(
et –μ

 –μ

)s(  – λ

et – λ

)r Lik( – e–t)
 – e–t

tm
∣∣∣xn〉

=
(n
m
)

( –μ)s

〈(
et –μ

)s∣∣∣(  – λ

et – λ

)r Lik( – e–t)
 – e–t

xn–m
〉

=
(n
m
)

( –μ)s

s∑
j=

(
s
j

)
(–μ)s–j

〈
ejt|T (r,k)

n–m(x|λ)
〉

=
(n
m
)

( –μ)s

s∑
j=

(
s
j

)
(–μ)s–jT (r,k)

n–m(j|λ). (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For r,k ∈ Z, s ∈ Z≥, we have

T (r,k)
n (x|λ) = 

( –μ)s

n∑
m=

{(
n
m

) s∑
j=

(
s
j

)
(–μ)s–jT (r,k)

n–m(j|λ)
}
H (s)

m (x|μ).

It is known that

T (r,k)
n (x|λ)∼

((
et – λ

 – λ

)r  – e–t

Lik( – e–t)
, t

)
,

(x)n ∼ (
, et – 

)
.

(.)

Let

T (r,k)
n (x|λ) =

n∑
m=

Cn,m(x)m. (.)

Then, by (.) and (.), we get

Cn,m =

m!

〈(
 – λ

et – λ

)r Lik( – e–t)
 – e–t

(
et – 

)m∣∣∣xn〉

=
∞∑
l=

S(l +m,m)
(l +m)!

〈(
 – λ

et – λ

)r Lik( – e–t)
 – e–t

∣∣∣tm+lxn
〉
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=
n–m∑
l=

S(l +m,m)
(l +m)!

(n)m+l

〈

∣∣∣(  – λ

et – λ

)r Lik( – e–t)
 – e–t

xn–m–l
〉

=
n–m∑
l=

(
n

l +m

)
S(l +m,m)T (r,k)

n–m–l(λ). (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For r,k ∈ Z, we have

T (r,k)
n (x|λ) =

n∑
m=

{n–m∑
l=

(
n

l +m

)
S(l +m,m)T (r,k)

n–m–l(λ)

}
(x)m.

Finally, we consider the following two Sheffer sequences:

T (r,k)
n (x|λ)∼

((
et – λ

 – λ

)r  – e–t

Lik( – e–t)
, t

)
,

x[n] ∼ (
,  – e–t

)
,

(.)

where x[n] = x(x + ) · · · (x + n – ).
Let us assume that

T (r,k)
n (x|λ) =

n∑
m=

Cn,mx[m]. (.)

Then, by (.) and (.), we get

Cn,m =

m!

〈(
 – λ

et – λ

)r Lik( – e–t)
 – e–t

(
 – e–t

)m∣∣∣xn〉

=
∞∑
l=

(–)lS(l +m,m)
(l +m)!

〈(
 – λ

et – λ

)r Lik( – e–t)
 – e–t

∣∣∣tm+lxn
〉

=
n–m∑
l=

(–)lS(l +m,m)
(l +m)!

(n)m+l

〈

∣∣∣(  – λ

et – λ

)r Lik( – e–t)
 – e–t

xn–m–l
〉

=
n–m∑
l=

(–)l
(

n
l +m

)
S(l +m,m)T (r,k)

n–m–l(λ). (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For r,k ∈ Z, n≥ , we have

T (r,k)
n (x|λ) =

n∑
m=

{n–m∑
l=

(–)l
(

n
l +m

)
S(l +m,m)T (r,k)

n–m–l(λ)

}
x[m].
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