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Abstract
In this paper, we define and study lacunary double almost statistical convergence of
order α. Further, some inclusion relations have been examined. We also introduce a
new sequence space by combining lacunary double almost statistical convergence
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1 Introduction
The notion of convergence of a real sequence was extended to a statistical convergence by
Fast [] (see also Schoenberg []) as follows. If N denotes the set of natural numbers and
K ⊂ N, then K(m,n) denotes the cardinality of the set K ∩ [m,n]. The upper and lower
natural density of the subset K is defined by

d(K) = lim
n→∞ sup

K(,n)
n

and d(K) = lim
n→∞ inf

K(,n)
n

.

If d(K) = d(K), then we say that the natural density of K exists, and it is denoted simply by
d(K). Clearly d(K) = limn→∞ K (,n)

n .
A sequence x = (xk) of real numbers is said to be statistically convergent to L if for arbi-

trary ε > , the set K(ε) = {k ∈N : |xk – L| ≥ ε} has a natural density zero.
Statistical convergence turned out to be one of the most active areas of research in

summability theory after the works of Fridy [] and Šalát []. For some very interesting
investigations concerning statistical convergence, one may consult the papers of Cakalli
[], Miller [], Maddox [] and many others, where more references on this important
summability method can be found.
On the other hand, in [, ], a different direction was given to the study of statistical

convergence, where the notion of statistical convergence of order α,  < α <  was intro-
duced by replacing n by nα in the denominator in the definition of statistical convergence.
It was observed in [] that the behaviour of this new convergence was not exactly parallel
to that of statistical convergence, and some basic properties were obtained. One can also
see [] for related works.
In this paper, we define and study lacunary double almost statistical convergence of or-

der α. Also some inclusion relations have been examined.
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Letw be the set of all real or complex double sequences. By the convergence of a double
sequence, we mean the convergence on the Pringsheim sense, that is, double sequence
x = (xij) has a Pringsheim limit L, denoted by P-limx = L, provided that given ε > , and
there exists N ∈ N such that |xij – L| < ε whenever i, j ≥ N . We shall describe such an
x more briefly as ‘P-convergent’ (see, []). We denote by c the space of P-convergent
sequences. A double sequence x = (xij) is bounded if ‖x‖ = supi,j≥ |xij| < ∞. Let l∞ and
c∞ be the set of all real or complex bounded double sequences and the set bounded and
convergent double sequences, respectively. Moricz and Rhoades [] defined the almost
convergence of double sequence as follows: x = (xij) is said to be almost convergent to a
number L if

P- lim
p,q→∞ sup

m,n

∣∣∣∣∣ 
(p + )(q + )

m+p∑
i=m

n+q∑
j=n

xij – L

∣∣∣∣∣ = ,

that is, the average value of (xij) taken over any rectangle

D =
{
(i, j) :m ≤ i≤ m + p,n ≤ j ≤ n + q

}
,

tends to L as both p and q tend to ∞, and this convergence is uniform in m and n. We
denote the space of almost convergent double sequence by ĉ, as

ĉ =
{
x = (xij) : lim

k,l→∞
∣∣tklpq(x) – L

∣∣ = , uniformly in p,q
}
,

where

tklpq(x) =


(k + )(l + )

k+p∑
i=p

l+q∑
j=q

xij.

The notion of almost convergence for single sequences was introduced by Lorentz []
and some others.
A double sequence x is called strongly double almost convergent to a number L if

P- lim
k,l→∞


(k + )(l + )

k+p∑
i=p

l+q∑
j=q

|xij – L| = , uniformly in p,q.

By [ĉ], we denote the space of strongly almost convergent double sequences.
The notion of strong almost convergence for single sequences has been introduced by

Maddox [].
The idea of statistical convergence was extended to double sequences byMursaleen and

Edely []. More recent developments on double sequences can be found in [, –]. For
the single sequences; statistical convergence of orderα and strongly p-Cesàro summability
of order α introduced by Çolak []. Quite recently, in [], Çolak and Bektaş generalized
this notion by using de la Valée-Poussin mean.
LetK ⊆N×N be a two-dimensional set of positive integers, and letKm,n be the numbers

of (i, j) in K such that i≤ n and j ≤ m.
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Then the lower asymptotic density of K is defined as

P-lim inf
m,n

Km,n

mn
= δ(K).

In the case when the sequence (Km,n
mn )∞,∞

m,n=, has a limit, we say that K has a natural density
and is defined as

P-lim
m,n

Km,n

mn
= δ(K).

For example, let K = {(i, j) : i, j ∈N}, where N is the set of natural numbers. Then

δ(K) = P-lim
m,n

Km,n

mn
≤ P-lim

m,n

√
m

√
n

mn
= 

(i.e., the set K has a double natural density zero).
Mursaleen and Edely [] presented the notion of a statistical convergence for the dou-

ble sequence x = (xij) as follows: A real double sequence x = (xij) is said to be statistically
convergent to L, provided that for each ε > 

P-lim
m,n


mn

∣∣{(i, j) : i ≤ m and j ≤ n, |xij – L| ≥ ε
}∣∣ = .

We now write the following definition.
The double statistical convergence of order α is defined as follows. Let  < α ≤  be

given. The sequence (xij) is said to be statistically convergent of order α if there is a real
number L such that

P- lim
mn→∞


(mn)α

∣∣{i≤ m and j ≤ n : |xij – L| ≥ ε
}∣∣ = 

for every ε > , in this, case we say that x is double statistically convergent of order α to L.
In this case, we write Sα

 -limxij = L. The set of all double statistically convergent sequences
of order α will be denoted by Sα

 . If we take α =  in this definition , we can have the previous
definition.
By a lacunary θ = (kr); r = , , , . . . , where k = , we shall mean an increasing sequence

of nonnegative integers with kr – kr– → ∞ as r → ∞. The intervals determined by θ will
be denoted by Ir = (kr–,kr] and hr = kr – kr–. The ratio kr

kr–
will be denoted by qr .

Fridy and Orhan [] introduced the idea of lacunary statistical convergence for single
sequence as follows.
The number sequence x = (xi) is said to be lacunary statistically convergent to the num-

ber � if for each ε > ,

lim
n


hr

∣∣{k ∈ Ir : |xi – L| ≥ ε
}∣∣ = .

In this case, we write Sθ -limi xi = �, and we denote the set of all lacunary statistically con-
vergent sequences by Sθ .
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Definition . By a double lacunary θrs = {(krls)}, r, s = , , , . . . , where k =  and l = ,
we shall mean two increasing sequences of nonnegative integers with

hr = kr – kk– → ∞ as r → ∞

and

h̄s = ls – ls– → ∞ as s → ∞.

Let us denote krs = krls, hrs = hrh̄s and the intervals determined by θrs will be denoted by
Irs = {(k, l) : kr– < k ≤ kr and ls– < l ≤ ls}, qr = kr

kr–
, q̄s = ls

ls–
, and qrs = qrq̄s. We will denote

the set of all double lacunary sequences by Nθrs .
Let K ⊆N ×N have double lacunary density δθ

 (K) if

P-lim
rs


hrs

∣∣{(k, l) ∈ Irs : (k, l) ∈ K
}∣∣

exists.

Example  Let θ = {(r – , s – )} and K = {(k, l) : k, l ∈ N ×N}. Then δθ
 (K) = . But it

is obvious that δ(K) = /.

In , Patterson and Savaş [] studied double lacunary statistical convergence by
giving the definition for complex sequences as follows.

Definition . Let θrs be a double lacunary sequence; the double number sequence x is
Sθ -convergent to L, provided that for every ε > ,

P-lim
rs


hrs

∣∣{(k, l) ∈ Irs : |xkl – L| ≥ ε
}∣∣ = .

In this case, write Sθ -limx = L or xkl
P→ L(Sθ ).

More investigation in this direction and more applications of double lacunary and dou-
ble sequences can be found in [–] and [].

2 Main results
In this section, we define lacunary double almost statistically convergent sequences of
order α. Also we shall prove some inclusion theorems.
We now have the following.

Definition . Let  < α ≤  be given. The sequence x = (xij) ∈ w is said to be Ŝα
θrs -

statistical convergence of order α if there is a real number L such that

P-lim
rs


hα
rs

∣∣{(k, l) ∈ Irs :
∣∣tklpq(x) – L

∣∣ ≥ ε
}∣∣ = , uniformly in p,q,

where hα
rs denote the αth power (hrs)α of hrs. In case x = (xij) is Ŝα

θrs -statistically convergent
of order α to L, wewrite Ŝα

θrs-limxij = L.We denote the set of all Ŝα
θrs -statistically convergent

sequences of order α by Ŝα
θrs .
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We know that the Ŝα
θrs -statistical convergence of order α is well defined for  < α ≤ ,

but it is not well defined for α >  in general. It is easy to see by taking x = (xij) as
fixed.

Definition . Let  < α ≤  be any real number, and let t be a positive real number.
A sequence x is said to be strongly ŵα

θrs (t)-summable of order α, if there is a real number
L such that

P-lim
rs


hα
rs

∑
(k,l)∈Irs

∣∣tklpq(x) – L
∣∣t = , uniformly in p,q.

If we take α = , the strong ŵα
θrs (t)-summability of order α reduces to the strong ŵθrs (t)-

summability.
We denote the set of all strongly ŵα

θrs (t)-summable sequence of order α by ŵα
θrs (t).

We now state the following theorem.

Theorem . If  < α ≤ β ≤ , then Ŝα
θrs ⊂ Ŝβ

θrs .

Proof Let  < α ≤ β ≤ . Then


hβ
rs

∣∣{(k, l) ∈ Irs :
∣∣tklpq(x) – L

∣∣ ≥ ε
}∣∣ ≤ 

hα
rs

∣∣{(k, l) ∈ Irs :
∣∣tklpq(x) – L

∣∣ ≥ ε
}∣∣

for every ε > , and finally, we have that Ŝα
θrs ⊂ Ŝβ

θrs . This proves the result. �

Theorem . For any lacunary sequences θ , Ŝα
 ⊆ Ŝα

θrs , if lim infqr >  and lim inf q̄s > .

Proof Suppose that lim infqα
r >  and lim infqα

s > , lim infqα
r = α and lim infqα

s = α, say.
Write β = (α – )/ and β = (α – )/. Then there exist a positive integer r and s such
that qα

r ≥  + β for r ≥ r and qs ≥  + β for s ≥ s. Hence for r ≥ r, and s ≥ s,

hα
rs


(krls)α

=  –
(
kα
r–
kα
r

)
×  –

(
lαs–
lαs

)

=
(
 –


qα
r

)
×

(
 –


qα
s

)

≥  –


( + β)
×  –


( + β)

=
β

 + β
× β

 + β
.

Take any (xkl) ∈ Ŝα
 , and Ŝα

 -lim(k,l)→∞ xkl = L, say. We prove that Ŝα
θrs-lim(k,l)→∞ xkl = L.

Then for r ≥ r and s≥ s, we have


(krls)α

∣∣{k ≤ kr , l ≤ ls :
∣∣tklpq(x) – L

∣∣ ≥ ε
}∣∣

≥ 
(krls)α

∣∣{(k, l) ∈ Irs :
∣∣tklpq(x) – L

∣∣ ≥ ε
}∣∣

http://www.advancesindifferenceequations.com/content/2013/1/254
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= hα
rs


(krls)α


hα
rs

∣∣{(k, l) ∈ Irs :
∣∣tklpq(x) – L

∣∣ ≥ ε
}∣∣

≥ β

 + β
× β

 + β


hα
rs

∣∣{(k, l) ∈ Irs :
∣∣tklpq(x) – L

∣∣ ≥ ε
}∣∣.

Therefore, Ŝα
θrs-lim(k,l)→∞ x(k, l) = L. �

Remark . The converse of this result is true for α = . However, for α <  it is not clear,
and we leave it as an open problem.

Theorem . For any double lacunary sequence θrs, Ŝα
θrs ⊆ Ŝα

 if limsupr qα
r < ∞ and

lim sups qα
s <∞.

Proof Suppose that lim supr qα
r < ∞ and lim sups qα

s <∞. Then there existsH >  such that
qα
r <H and qα

s <H for all r and s. Suppose that xkl → L(Sθα
rs ) and

Nrs =
∣∣{(k, l) ∈ Irs :

∣∣tklpq(x) – L
∣∣ ≥ ε

}∣∣
by the definition of xkl → L(Sθrs ) given ε > , there exists r, s ∈N such that Nrs

hα
rs
< ε for all

r > r and s > s. Let

M :=max{Nrs :  ≤ r ≤ r and ≤ s ≤ s}.

Let n andm be such that kr– <m≤ kr and ls– < n≤ ls. Therefore, we obtain the following:


(mn)α

∣∣{k ≤ m and l ≤ n :
∣∣tklpq(x) – L

∣∣ ≥ ε
}∣∣

≤ 
(kr–ls–)α

∣∣{k ≤ kr and l ≤ ls :
∣∣tklpq(x) – L

∣∣ ≥ ε
}∣∣

=


(kr–ls–)α

{ r,s∑
i,j=,

Ni,j

}

≤ Mrs
(kr–ls–)α

+


(kr–ls–)α

{ r,s∑
i,j=r+,r+

Ni,j

}

≤ Mrs
(kr–ls–)α

+


(kr–ls–)α

{ r,s∑
i,j=r+,r+

Ni,jhα
i,j

hα
i,j

}

≤ Mrs
kr–ls–

+


(kr–ls–)α

(
sup

i,j≥r,r

Ni,j

hα
i,j

){ r,s∑
i,j=r+,r+

hα
i,j

}

≤ Mrs
(kr–ls–)α

+ ε

{ r,s∑
i,j=r+,r+

hα
i,j

}

≤ Mrs
(kr–ls–)α

+ εH.

This completes the proof of the theorem. �

Theorem . Let  < α ≤ β ≤  and t be a positive real number, then ŵα
θrs (t)⊆ ŵβ

θrs (t).

http://www.advancesindifferenceequations.com/content/2013/1/254
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Proof Let x = (xij) ∈ ŵα
θrs (t). Then given α and β such that  < α ≤ β ≤  and a positive real

number t we write


hβ
rs

∑
(k,l)∈Irs

∣∣tklpq(x) – L
∣∣t ≤ 

hα
rs

∑
(k,l)∈Irs

∣∣tklpq(x) – L
∣∣t ,

and we get that ŵα
θrs (t) ⊆ ŵβ

θrs (t). �

As a consequence of Theorem ., we have the following.

Corollary . Let  < α ≤ β ≤  and t be a positive real number. Then:
(i) If α = β , then ŵα

θrs (t) = ŵβ

θrs (t).
(ii) ŵα

θrs (t) ⊆ ŵθrs (t) for each α ∈ (, ] and  < t < ∞.

Theorem. Let α and β be fixed real numbers such that  < α ≤ β ≤  and  < t <∞. If a
sequence is a strongly ŵα

θrs (t)-summable sequence of order α, to L, then it is Ŝβ

θrs -statistically
convergent of order β , to L, i.e., ŵα

θrs (t) ⊂ Ŝβ

θrs .

Proof For any sequence x = (xij) and ε > , we write

∑
(k,l)∈Irs

∣∣tklpq(x) – L
∣∣t = ∑

(k,l)∈Irs|tklpq(x)–L|≥ε

∣∣tklpq(x) – L
∣∣t + ∑

(k,l)∈Irs|tklpq(x)–L|<ε

∣∣tklpq(x) – L
∣∣t

≥
∑

(k,l)∈Irs|tklpq(x)–L|≥ε

∣∣tklpq(x) – L
∣∣t ≥ ∣∣{(k, l) ∈ Irs :

∣∣tklpq(x) – L
∣∣ ≥ ε

}∣∣ · εt

and so that


hα
rs

∑
(k,l)∈Irs

∣∣tklpq(x) – L
∣∣t ≥ 

hα
rs

∣∣{(k, l) ∈ Irs :
∣∣tklpq(x) – L

∣∣ ≥ ε
}∣∣ · εt

≥ 
hβ
rs

∣∣{(k, l) ∈ Irs :
∣∣tklpq(x) – L

∣∣ ≥ ε
}∣∣ · εt ,

this shows that if x = (xij) is strongly ŵα
θrs (t)-summable sequence of order α to L, then it is

Ŝβ

θrs -statistically convergent of order β to L. This completes the proof. �

We have the following.

Corollary . Let α be fixed real numbers such that  < α ≤  and  < t < ∞.
(i) If a sequence is strongly ŵα

θrs (t)-summable sequence of order α to L, then it is
Ŝα

θrs -statistically convergent of order α to L, i.e., ŵα
θrs (t)⊂ Ŝα

θrs .
(ii) ŵα

θrs (t) ⊂ Ŝθrs , for  < α ≤ .

3 New sequence space
In this section, we study the inclusion relations between the set of Ŝα

θrs -statistical conver-
gent sequences of order α and strongly ŵα

θrs [M, t]-summable sequences of order α with
respect to an Orlicz functionM.

http://www.advancesindifferenceequations.com/content/2013/1/254
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The study of Orlicz sequence spaces was initiated with a certain specific purpose in
Banach space theory. Lindenstrauss and Tzafriri [] investigated Orlicz sequence spaces
in more detail, and they proved that every Orlicz sequence space lM contains a subspace
isomorphic to lp ( ≤ p < ∞). The Orlicz sequence spaces are the special cases of Orlicz
spaces studied in []. Orlicz spaces find a number of useful applications in the theory of
nonlinear integral equations. Whereas the Orlicz sequence spaces are the generalization
of lp spaces, the lp-spaces find themselves enveloped in Orlicz spaces [].
Recall in [] that an Orlicz function M : [,∞) → [,∞) is continuous, convex, non-

decreasing function such thatM() =  andM(x) >  for x > , andM(x)→ ∞ as x → ∞.
An Orlicz function M is said to satisfy �-condition for all values of u, if there exists

K >  such thatM(u) ≤ KM(u), u≥ .
In the later stage different classes of Orlicz sequence spaces were introduced and studied

by Parashar and Choudhary [], Savaş [–] and many others.

Definition . LetM be an Orlicz function, t = (tkl) be a sequence of strictly positive real
numbers, and let α ∈ (, ] be any real number. Now, we write

ŵα
θrs [M, t] =

{
x = (xkl) : P-limrs


hα
rs

∑
(k,l)∈Irs

[
M(|tklpq(x) – L|)

ρ

]tkl
= ,

uniformly in p,q, for some L and ρ > 
}
.

If x ∈ ŵα
θrs [M, t], then we say that x is strongly double almost lacunary summable of order

α with respect to the Orlicz functionM.

If we consider various assignments ofM, θrs and t in the sequence spaces above, we are
granted the following:
() IfM(x) = x, θ = rs, and tk,l =  for all (k, l) then ŵα

θrs [M, t] = [ŵα].
() If tk,l =  for all (k, l), then ŵα

θrs [M, t] = ŵα
θrs [M].

() If tk,l =  for all (k, l) and θ = rs, then ŵα
θrs
[M, t] = ŵα[M].

() If θ = rs, then ŵα
θ [M, t] = ŵα[M, t].

In the followings theorems, we shall assume that t = (tkl) is bounded and  < h =
infkl tkl ≤ tkl ≤ supkl tkl =H < ∞.

Theorem . Let α,β ∈ (, ] be real numbers such that α ≤ β , and let M be an Orlicz
function, then ŵα

θrs
[M, t] ⊂ Ŝβ

θrs
.

Proof Let x ∈ ŵα
θ [M, t], ε >  be given and

∑
 and

∑
 denote the sums over (k, l) ∈ Irs,

|tklpq(x) – L| ≥ ε and (k, l) ∈ Irs, |tklpq(x) – L| < ε, respectively. Since hα
rs ≤ hβ

rs for each r, s
we write


hα
rs

∑
(k,l)∈Irs

[
M(|tklpq(x) – L|)

ρ

]tkl

=

hα
rs

[∑


[
M(|tklpq(x) – L|)

ρ

]tkl
+

∑


[
M(|tklpq(x) – L|)

ρ

]tkl]

≥ 
hβ
rs

[∑


[
M(|tklpq(x) – L|)

ρ

]tkl
+

∑


[
M(|tklpq(x) – L|)

ρ

]tkl]

http://www.advancesindifferenceequations.com/content/2013/1/254
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≥ 
hβ
rs

[∑


[
M(ε/ρ)

]]tkl

≥ 
hβ
rs

∑


min
([
M(ε)

]h, [M(ε)
]H)

, ε =
ε

ρ

≥ 
hβ
rs

∣∣{(k, l) ∈ Irs :
∣∣tklpq(x) – L

∣∣ ≥ ε
}∣∣min

([
M(ε)

]h, [M(ε)
]H)

.

Since x ∈ ŵα
θrs
[M, t], the left hand side of the inequality above tends to zero as r, s → ∞

uniformly in p, q. Hence the right hand side tends to zero as r, s → ∞ uniformly in p, q,
and, therefore, x ∈ Ŝβ

θrs . This proves the result. �

Corollary . Let α ∈ (, ] and M be an Orlicz function, then ŵα
θrs [M, t] ⊂ Ŝα

θrs .

We finally prove the following theorem.

Theorem . Let M be an Orlicz function, and let x = (xij) be a bounded sequence, then
Ŝα

θrs ⊂ ŵα
θrs [M, t].

Proof Suppose that x ∈ �∞
 and Ŝα

θrs-limxij = L. Since x ∈ �∞
 , then there is a constant K > 

such that |tklpq(x)| ≤ K . Given ε > , we write for all p, q


hα
rs

∑
(k,l)∈Irs

[
M

( |tklpq(x) – L|
ρ

)]rkl
=


hα
rs

∑


[
M

( |tklpq(x) – L|
ρ

)]rkl

+

hα
rs

∑


[
M

( |tklpq(x) – L|
ρ

)]rkl

≤ 
hα
rs

∑


max

{[
M

(
K
ρ

)]h

,
[
M

(
K
ρ

)]H}

+

hα
rs

∑


[
M

(
ε

ρ

)]tkl

≤ max
{[
M(T)

]h, [M(T)
]H}

× 
hα
rs

∣∣{(k, l) ∈ Irs :
∣∣tklpq(x) – L

∣∣ ≥ ε
}∣∣

+ max
{[
M(ε)

]h, [M(ε)
]H}

,
K
ρ

= T ,
ε

ρ
= ε.

Therefore, x ∈ x ∈ ŵα
θrs [M, t]. This proves the result. �
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23. Savaş, E, Patterson, RF: Double σ -convergence lacunary statistical sequences. J. Comput. Anal. Appl. 11(4), 610-615

(2009)
24. Lindenstrauss, J, Tzafriri, L: On Orlicz sequence spaces. Isr. J. Math. 101, 379-390 (1971)
25. Krasnoselskii, MA, Rutisky, YB: Convex Function and Orlicz Spaces. Noordhoff, Groningen (1961)
26. Kamthan, PK, Gupta, M: Sequence Spaces and Series. Dekker, New York (1980)
27. Parashar, SD, Choudhury, B: Sequence space defined by Orlicz function. Indian J. Pure Appl. Math. 25(14), 419-428

(1994)
28. Savaş, E: (A,λ)-Double sequence spaces defined by Orlicz function and double statistical convergence. Comput.

Math. Appl. 55(6), 1293-1301 (2008)
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