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1 Introduction
Fractional differential equations have gained much importance and attention due to the
fact that they have been proved to be valuable tools in the modeling of many phenomena
in engineering and sciences such as physics, mechanics, economics and biology, etc. [–
]. For some developments on the existence results of fractional differential equations, we
can refer to [–] and the references therein.
In recent years, there has been a great deal of research on the questions of existence and

uniqueness of solutions to boundary value problems for differential equations of fractional
order. For example, Ahmad and Nieto [] investigated the existence and uniqueness of
solutions for an anti-periodic fractional boundary value problem

{
cDαx(t) = f (t,x(t)), t ∈ [,T],  < α ≤ ,T > ,
x() = –x(T), cDγ x() = –cDγ x(T),  < γ < ,

()

where cDα denotes the Caputo fractional derivative of order α, f is a given continuous
function.
In [], the author discussed the existence of solutions for the following nonlinear frac-

tional differential equations with anti-periodic-type fractional boundary conditions

{
cDαx(t) = f (t,x(t), cDβx(t)), t ∈ [,T],  < α ≤ ,  < β ≤ ,
x() +μx(T) = σ, cDγ x() +μ

cDγ x(T) = σ,  < γ < ,
()

where cDq denotes the Caputo fractional derivative of order q, μ �= –, μ �= , σ, σ are
real constants, and f is a given continuous function.
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Fractional differential equations with three-point integral boundary conditions of the
following form were considered in [] by Ahmad et al.

{
cDαx(t) = f (t,x(t)), t ∈ [, ],  < α ≤ ,
x() = , x() = a

∫ η

 x(s)ds,  < η < ,
()

where cDα denotes the Caputo fractional derivative of order α, f is a given continuous
function, and a ∈R with aη �= .
By a simple computation, we observed that cDγ x() =  in equations () and (). This im-

plies that the boundary conditions cDγ x() = –cDγ x(T) in () and cDγ x() +μ
cDγ x(T) =

σ in () actually are equivalent to the boundary conditions cDγ x(T) =  and μ
cDγ x(T) =

σ, respectively.
Motivated by the papers above, in this article, firstly, we study fractional differential

equations with the three-point boundary conditions in the following form

⎧⎪⎨
⎪⎩

cDαx(t) = f (t,x(t)), t ∈ [,T],  < α ≤ ,T > ,
ax() + bx(T) = c,
a(cDγ x(η)) + b(cDγ x(T)) = c,  < η < T ,  < γ < ,

()

where cDq denotes the Caputo fractional derivative of order q, ai, bi, ci, i = ,  are real
constants such that a + b �= , aη–γ + bT –γ �= , and f is a given continuous function.
Then we consider the fractional differential equations with three-point integral bound-

ary conditions

{
cDαx(t) = f (t,x(t), cDβx(t)), t ∈ [, ],  < α ≤ ,  < β < ,
x() = , aIγ x(η) + bx() = c,  < η < ,

()

where cDq denotes the Caputo fractional derivative of order q, Iγ the Riemann-Liouville
fractional integral of order γ , f is a given continuous function, and a, b, c are real constants
with aη+γ �= –b�(β + ).
We remark that when ai = bi = , ci =  and η → , problem () reduces to the anti-

periodic fractional boundary value problem () (cf. []).
The paper is organized as follows: in Section  we present the notations, definitions and

give some preliminary results that we need in the sequel, Sections  and  are dedicated
to the existence results of problems () and (), respectively, in the final Section , two
examples are given to illustrate the results.

2 Preliminaries
Definition . [] The Riemann-Liouville fractional integral of order q for a continuous
function f : [,∞)→R is defined as

Iqf (t) =


�(q)

∫ t



f (s)
(t – s)–q

ds, q > ,

provided the integral exists.
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Definition . [] For (n – ) times absolutely continuous function f : [,∞) → R, the
Caputo derivative of fractional order q is defined as

cDqf (t) =


�(n – q)

∫ t


(t – s)n–q–f (n)(s)ds, n –  < q < n,n = [q] + ,

where [q] denotes the integer part of the real number q.

Lemma . [] Let α > , then the differential equation

cDαh(t) = 

has solutions h(t) = c + ct + ct + · · · + cn–tn– and

IαcDαh(t) = h(t) + c + ct + ct + · · · + cn–tn–,

here ci ∈R, i = , , , . . . ,n – , n = [α] + .

The following are two standard fixed point theorems, which will be used in Sections 
and  (see []).

Theorem . Let X be a Banach space, let B be a nonempty closed convex subset of X.
Suppose that F : B → B is a continuous compact map. Then F has a fixed point in B.

Theorem . (Nonlinear alternative for single-valued maps) Let X be a Banach space, let
B be a closed, convex subset of X, let U be an open subset of B and  ∈ U . Suppose that
P : U → B is a continuous and compact map. Then either (a) P has a fixed point in U , or
(b) there exist an x ∈ ∂U (the boundary of U) and λ ∈ (, ) with x = λP(x).

3 Existence results for problem (4)
Lemma . For any y ∈ C([,T],R), the unique solution of the three-point boundary value
problem

⎧⎪⎨
⎪⎩

cDαx(t) = y(t), t ∈ [,T],  < α ≤ ,
ax() + bx(T) = c,
a(cDγ x(η)) + b(cDγ x(T)) = c,  < η < T ,  < γ < ,

()

is given by

x(t) =
∫ t



(t – s)α–

�(α)
y(s)ds –

b
a + b

∫ T



(T – s)α–

�(α)
y(s)ds

+
c

a + b
+
bT�( – γ ) – (a + b)�( – γ )t

(a + b)(aη–γ + bT –γ )

×
(
a

∫ η



(η – s)α–γ–

�(α – γ )
y(s)ds + b

∫ T



(T – s)α–γ–

�(α – γ )
y(s)ds – c

)
.
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Proof For  < α ≤ , by Lemma ., we know that the general solution of the equation
cDαx(t) = y(t) can be written as

x(t) = Iαy(t) – k – kt =
∫ t



(t – s)α–

�(α)
y(s)ds – k – kt, ()

where k,k ∈ R are arbitrary constants. Since cDγ k = , cDγ t = t–γ

�(–γ ) ,
cDγ Iαy(t) =

Iα–γ y(t), we have

cDγ x(t) = Iα–γ y(t) –
kt–γ

�( – γ )
=

∫ t



(t – s)α–γ–

�(α – γ )
y(s)ds –

kt–γ

�( – γ )
.

Using the boundary conditions, we obtain

a(–k) + b
(∫ T



(T – s)α–

�(α)
y(s)ds – k – kT

)
= c,

a
∫ η



(η – s)α–γ–

�(α – γ )
y(s)ds + b

∫ T



(T – s)α–γ–

�(α – γ )
y(s)ds –

k(aη–γ + bT –γ )
�( – γ )

= c.

Therefore, we have

k =
b

a + b

∫ T



(T – s)α–

�(α)
y(s)ds –

c
a + b

–
bT�( – γ )

(a + b)(aη–γ + bT –γ )

×
(
a

∫ η



(η – s)α–γ–

�(α – γ )
y(s)ds + b

∫ T



(T – s)α–γ–

�(α – γ )
y(s)ds – c

)
,

k =
�( – γ )(a

∫ η


(η–s)α–γ–

�(α–γ ) y(s)ds + b
∫ T


(T–s)α–γ–

�(α–γ ) y(s)ds – c)
aη–γ + bT –γ

.

Substituting the values of k, k in (), we obtain the result. This completes the proof. �

From the proof of Lemma., we note thatwhen  < γ < , cDγ x(η) =
∫ η


(η–s)α–γ–

�(α–γ ) y(s)ds–
kη–γ

�(–γ ) , that is to say, the non-separateness feature in () ismore expressed than those in ().
Let J = [,T] and C = C(J ,R) be the Banach space of all continuous real functions from

J into R equipped with the norm ‖x‖ = supt∈J |x(t)|. In view of Lemma ., we define an
operator F : C → C as follows

(Fx)(t)

=
∫ t



(t – s)α–

�(α)
f
(
s,x(s)

)
ds –

b
a + b

∫ T



(T – s)α–

�(α)
f
(
s,x(s)

)
ds

+
bT�( – γ ) – (a + b)�( – γ )t

(a + b)(aη–γ + bT –γ )
×

(
a

∫ η



(η – s)α–γ–

�(α – γ )
f
(
s,x(s)

)
ds

+ b
∫ T



(T – s)α–γ–

�(α – γ )
f
(
s,x(s)

)
ds – c

)
+

c
a + b

.

Note that problem () has solutions if and only if the operator Fx has fixed points. We
denote by Fx =Fx +Fx, where

(Fx)(t) =
∫ t



(t – s)α–

�(α)
f
(
s,x(s)

)
ds, (Fx)(t) = –kx t – kx.
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Here the constants kx and kx are given by

kx =
b

a + b

∫ T



(T – s)α–

�(α)
f
(
s,x(s)

)
ds –

c
a + b

–
bT�( – γ )

(a + b)(aη–γ + bT –γ )

×
(
a

∫ η



(η – s)α–γ–

�(α – γ )
f
(
s,x(s)

)
ds + b

∫ T



(T – s)α–γ–

�(α – γ )
f
(
s,x(s)

)
ds – c

)
,

kx =
�( – γ )(a

∫ η


(η–s)α–γ–

�(α–γ ) f (s,x(s))ds + b
∫ T


(T–s)α–γ–

�(α–γ ) f (s,x(s))ds – c)
aη–γ + bT –γ

.

Now, we are in a position to present our main results.

Theorem . Suppose that f : J ×R →R is continuous and satisfies

∣∣f (t,x) – f (t, y)
∣∣ ≤ m(t)|x – y|

for t ∈ J , x, y ∈R, and m ∈ L∞(J ,R+). If

(U +V )
(
 +

|b|
|a + b|

)
< , ()

then problem () has a unique solution, where

‖m‖ = sup
t∈J

∣∣m(t)
∣∣, U =

Tα‖m‖
�(α + )

, V =
‖m‖�( – γ )(Tηα–γ |a| + Tα–γ+|b|)

�(α – γ + )|aη–γ + bT –γ | .

Proof DenoteN (x, y) = f (s,x(s)) – f (s, y(s)). For any x, y ∈ C and each t ∈ J , we have

∣∣(Fx)(t) – (Fy)(t)
∣∣ ≤

∫ t



(t – s)α–

�(α)
∣∣N (x, y)

∣∣ds
≤ ‖m‖‖x – y‖

∫ t



(t – s)α–

�(α)
ds

≤ U‖x – y‖,∣∣(Fx)(t) – (Fy)(t)
∣∣ ≤ T

∣∣kx – ky
∣∣ + ∣∣kx – ky

∣∣,
T

∣∣kx – ky
∣∣ ≤ T�( – γ )|a|

|aη–γ + bT –γ |
∣∣∣∣
∫ η



(η – s)α–γ–

�(α – γ )
N (x, y)ds

∣∣∣∣
+

T�( – γ )|b|
|aη–γ + bT –γ |

∣∣∣∣
∫ T



(T – s)α–γ–

�(α – γ )
N (x, y)ds

∣∣∣∣
≤ ‖m‖T�( – γ )|a|

|aη–γ + bT –γ | ‖x – y‖ + ‖m‖T�( – γ )|b|
|aη–γ + bT –γ | ‖x – y‖

= V‖x – y‖,
∣∣kx – ky

∣∣ ≤
∣∣∣∣ b
a + b

∣∣∣∣
∣∣∣∣
∫ T



(T – s)α–

�(α)
N (x, y)ds

∣∣∣∣
+

|ba|T�( – γ )
|a + b||aη–γ + bT –γ |

∣∣∣∣
∫ η



(η – s)α–γ–

�(α – γ )
N (x, y)ds

∣∣∣∣
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+
|bb|T�( – γ )

|a + b||aη–γ + bT –γ |
∣∣∣∣
∫ T



(T – s)α–γ–

�(α – γ )
N (x, y)ds

∣∣∣∣
≤

(
U|b|

|a + b| +
V |b|

|a + b|
)

‖x – y‖.

Therefore, we have

∥∥(Fx)(t) – (Fy)(t)
∥∥ ≤ (U +V )

(
 +

|b|
|a + b|

)
‖x – y‖.

This together with () implies that F is a contraction mapping. The contraction mapping
principle yields that F has a unique fixed point, which is the unique solution of prob-
lem (). This completes the proof. �

Corollary . Suppose that f : J ×R→R is continuous and satisfies

∣∣f (t,x) – f (t, y)
∣∣ ≤ L|x – y|

for t ∈ J , x, y ∈R, and L > . Then problem () has a unique solution, provided

(
TαL

�(α + )
+
L�( – γ )(Tηα–γ |a| + Tα–γ+|b|)

�(α – γ + )|aη–γ + bT –γ |
)(

 +
|b|

|a + b|
)
< .

Theorem . Let f : J ×R→R be a continuous function. Assume that

∣∣f (t,x)∣∣ ≤ m(t) + d|x|ρ

for each t ∈ J , x ∈R,m ∈ L∞(J ,R+), d ≥  and  ≤ ρ < . Then problem () has at least one
solution.

Proof Let Br = {x ∈ C : ‖x(t)‖ ≤ r and t ∈ J},M = ‖m‖ + drρ , where

r ≥ max
{
K , (Ld)


–ρ

}
,

K =
(
 +

|b|
|a + b|

)(
Tα‖m‖
�(α + )

+
T‖m‖�( – γ )(ηα–γ |a| + Tα–γ |b|)

�(α – γ + )|aη–γ + bT –γ |
)

+
T�( – γ )|c|

|aη–γ + bT –γ | +
∣∣∣∣ bcT�( – γ )
(a + b)(aη–γ + bT –γ )

–
c

a + b

∣∣∣∣,
L =

(
 +

|b|
|a + b|

)(
Tα

�(α + )
+
T�( – γ )(ηα–γ |a| + Tα–γ |b|)
�(α – γ + )|aη–γ + bT –γ |

)
.

Observe that Br is a closed, bounded convex subset of the Banach space C .
Firstly, we prove that F : Br → Br . For any x ∈ Br , we have

∣∣(Fx)(t)
∣∣ ≤

∫ t



(t – s)α–

�(α)
(
m(s) + d

∣∣x(s)∣∣ρ)ds≤ TαM
�(α + )

,

T
∣∣kx ∣∣ ≤ T�( – γ )|c|

|aη–γ + bT –γ | +
T�( – γ )|a

∫ η

 (η – s)α–γ–f (s,x(s))ds|
�(α – γ )|aη–γ + bT –γ |
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+
T�( – γ )|b

∫ T
 (T – s)α–γ–f (s,x(s))ds|

�(α – γ )|aη–γ + bT –γ |

≤ T�( – γ )|c|
|aη–γ + bT –γ | +

TM�( – γ )(ηα–γ |a| + Tα–γ |b|)
�(α – γ + )|aη–γ + bT –γ | ,

∣∣kx∣∣ ≤
∣∣∣∣ bcT�( – γ )
(a + b)(aη–γ + bT –γ )

–
c

a + b

∣∣∣∣
+

∣∣∣∣ b
a + b

∫ T



(T – s)α–

�(α)
f
(
s,x(s)

)
ds

∣∣∣∣ + T�( – γ )|b|
|(a + b)(aη–γ + bT –γ )|

×
(∣∣∣∣a

∫ η



(η – s)α–γ–

�(α – γ )
f
(
s,x(s)

)
ds

∣∣∣∣ +
∣∣∣∣b

∫ T



(T – s)α–γ–

�(α – γ )
f
(
s,x(s)

)
ds

∣∣∣∣
)

≤
∣∣∣∣ bcT�( – γ )
(a + b)(aη–γ + bT –γ )

–
c

a + b

∣∣∣∣ + TαM|b|
�(α + )|a + b|

+
TM�( – γ )|b|(ηα–γ |a| + Tα–γ |b|)
�(α – γ + )|(a + b)(aη–γ + bT –γ )| .

Hence, we have

‖Fx‖ ≤
(
 +

|b|
|a + b|

)(
Tα‖m‖
�(α + )

+
T‖m‖�( – γ )(ηα–γ |a| + Tα–γ |b|)

�(α – γ + )|aη–γ + bT –γ |
)

+
T�( – γ )|c|

|aη–γ + bT –γ | +
∣∣∣∣ bcT�( – γ )
(a + b)(aη–γ + bT –γ )

–
c

a + b

∣∣∣∣
+ drρ

(
 +

|b|
|a + b|

)(
Tα

�(α + )
+
T�( – γ )(ηα–γ |a| + Tα–γ |b|)
�(α – γ + )|aη–γ + bT –γ |

)

≤ K + drρL ≤ r

+
r

= r.

This implies that F : Br → Br .
Secondly, we prove that F maps bounded sets into equicontinuous sets. Let B be any

bounded set of C . Notice that f is continuous on J , therefore, without loss of generality,
we can assume that there is an N such that

∣∣f (t,x(t))∣∣ ≤ N

for any t ∈ J and x ∈ B. Now, we let ≤ t ≤ t ≤ T . Then for each x ∈ B, we have

∣∣(Fx)(t) – (Fx)(t)
∣∣

≤
∣∣∣∣
∫ t



(t – s)α– – (t – s)α–

�(α)
f
(
s,x(s)

)
ds

∣∣∣∣ +
∣∣∣∣
∫ t

t

(t – s)α–

�(α)
f
(
s,x(s)

)
ds

∣∣∣∣
≤ N(t – t)α

�(α + )
+
N(tα + (t – t)α – tα )

�(α + )
≤ N(t – t)α

�(α + )

and

∣∣(Fx)(t) – (Fx)(t)
∣∣

≤ ∣∣kx ∣∣(t – t)

≤ �( – γ )(Nηα–γ |a| +NTα–γ |b| + �(α – γ + )|c|)(t – t)
�(α – γ + )|aη–γ + bT –γ | .
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Hence, we have

∥∥(Fx)(t) – (Fx)(t)
∥∥ →  as t → t,

and the limit is independent of x ∈ B. Therefore, the operator F : Br → Br is equicontin-
uous and uniformly bounded. The Arzela-Ascoli theorem implies that F (Br) is relatively
compact in C . By Theorem ., we know that problem () has at least one solution. The
proof is completed. �

Corollary . Assume that |f (t,x)| ≤ ν(t) for t ∈ J , x ∈R with ν ∈ C(J ,R+). Then problem
() has at least one solution.

Theorem . Let f : J ×R →R be a continuous function. Assume that
() there exists a function m ∈ L∞(J ,R+) and a non-decreasing function

ϕ : [,∞) → [,∞) such that

∣∣f (t,x)∣∣ ≤ m(t)ϕ
(‖x‖),

where t ∈ J , x ∈R;
() there exists a constant K >  such that

K
R + ϕ(K)Q

> ,

where

R =
T�( – γ )|c|

|aη–γ + bT –γ | +
∣∣∣∣ c
a + b

–
bcT�( – γ )

(a + b)(aη–γ + bT –γ )

∣∣∣∣,
Q =

Tα‖m‖
�(α + )

+
T�( – γ )‖m‖(|a|η–γ + |b|T –γ )

�(α – γ + )|aη–γ + bT –γ |

+
‖m‖|b|
|a + b|

(
T�( – γ )(|a|η–γ + |b|T –γ )
�(α – γ + )|aη–γ + bT –γ | +

Tα

�(α + )

)
.

Then problem () has at least one solution.

Proof Firstly, we prove that F maps bounded sets into bounded sets in C . Let B be a
bounded subset of C and ‖x‖ ≤ r for any x ∈ B. As in the proof of Theorem ., we have

∣∣(Fx)(t)
∣∣ ≤

∣∣∣∣
∫ t



(t – s)α–

�(α)
f
(
s,x(s)

)∣∣∣∣ds≤ Tα‖m‖ϕ(r)
�(α + )

,

∣∣(Fx)(t)
∣∣ ≤ T

∣∣kx ∣∣ + ∣∣kx∣∣,
T

∣∣kx ∣∣ ≤ T�( – γ )‖m‖ϕ(r)(|a|η–γ + |b|T –γ )
�(α – γ + )|aη–γ + bT –γ | +

T�( – γ )|c|
|aη–γ + bT –γ | ,

∣∣kx∣∣ ≤ ‖m‖ϕ(r)|b|
|a + b|

(
T�( – γ )(|a|η–γ + |b|T –γ )
�(α – γ + )|aη–γ + bT –γ | +

Tα

�(α + )

)

+
∣∣∣∣ c
a + b

–
bcT�( – γ )

(a + b)(aη–γ + bT –γ )

∣∣∣∣.
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Hence,

‖Fx‖ ≤ R + ϕ(r)Q.

Secondly, we claim that F is equicontinuous. The proof of this claim is the same as the
one in the proof of Theorem ..
Finally, we let x = λFx for some λ ∈ (, ). Then for each t ∈ J , we have

|x| = |λFx| ≤ R + ϕ
(‖x‖)Q.

This implies that

‖x‖
R + ϕ(‖x‖)Q ≤ .

According to the assumptions, we know that there exists K such that K �= ‖x‖. Let

O =
{
y ∈ C : ‖y‖ < K

}
.

The operator F :O → C is continuous and completely continuous. Combining the choice
of O and Theorem ., we can deduce that F has a fixed point in O, which is a solution of
problem (). �

4 Existence results for problem (5)
Lemma . For any y ∈ C([, ],R), the unique solution of the three-point boundary value
problem

{
cDαx(t) = y(t), t ∈ [, ],  < α ≤ ,
x() = , aIγ x(η) + bx() = c,  < η < ,

()

is given by

x(t) =
∫ t



(t – s)α–

�(α)
y(s)ds +

t(c – b
∫ 


(–s)α–
�(α) y(s)ds)

aη+γ

�(γ+) + b

–
ta

∫ η


(η–s)α+γ–

�(α+γ ) y(s)ds
aη+γ

�(γ+) + b
.

Proof For  < α ≤  and some constants c, c ∈ R, the general solution of the equation
cDαx(t) = y(t) can be written as

x(t) = Iαy(t) + c + ct. ()

From x() = , it follows that c = . Using the integral boundary conditions of (), we
obtain

(
aη+γ

�(γ + )
+ b

)
c + aIα+γ y(η) + b

∫ 



( – s)α–

�(α)
y(s)ds = c.

http://www.advancesindifferenceequations.com/content/2013/1/257
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Therefore, we have

c =
c – b

∫ 


(–s)α–
�(α) y(s)ds – a

∫ η


(η–s)α+γ–

�(α+γ ) y(s)ds
aη+γ

�(γ+) + b
.

Substituting the values of c, c, we obtain the result. This completes the proof. �

Define the space X = {x : x and cDβx ∈ C([, ],R),  < β < } endowed with the norm
‖x‖∗ =maxt∈[,] |x(t)|+maxt∈[,] |cDβx(t)|. Obviously, (X,‖·‖∗) is a Banach space. In order
to obtain the existence results of problem (), by Lemma., we define an operatorS : X →
X as follows

(Sx)(t) =
∫ t



(t – s)α–

�(α)
(Nx)(s)ds +

t(c – b
∫ 


(–s)α–
�(α) (Nx)(s)ds)

aη+γ

�(γ+) + b

–
ta

∫ η


(η–s)α+γ–

�(α+γ ) (Nx)(s)ds
aη+γ

�(γ+) + b
,

where

(Nx)(t) = f
(
t,x(t), cDβx(t)

)
.

Since f is continuous, it is easy to see that

(cDβSx
)
(t) =

(
Iα–βNx

)
(t) –

kt–β

�( – β)
,

here k is a constant given by

k =
b
∫ 


(–s)α–
�(α) (Nx)(s)ds + a

∫ η


(η–s)α+γ–

�(α+γ ) (Nx)(s)ds – c
aη+γ

�(γ+) + b
.

Theorem . Let f : [, ]×R×R →R be a continuous function satisfying that

∣∣f (t,x, y) – f (t,x, y)
∣∣ ≤ m(t)

(|x – x| + |y – y|
)

for t ∈ [, ], xi, yi ∈R, i = ,  and m(t) ∈ L 
τ ([, ],R+), τ ∈ (,α –). Then problem () has

a unique solution provided that � +� < , where �, � are given by

� =
‖m‖( –τ

α–τ
)–τ

�(α)

(
 +

|b|
| aη+γ

�(γ+) + b|

)
+

‖m‖|a|ηα+γ–τ ( –τ
α+γ–τ

)–τ

�(α + γ )| aη+γ

�(γ+) + b|
,

� =
‖m‖

�( – β)

( |b|
�(α)

(
 – τ

α – τ

)–τ

+
|a|ηα+γ–τ

�(α + γ )

(
 – τ

α + γ – τ

)–τ)

+
‖m‖( –τ

α–β–τ
)–τ

�(α – β)
.
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Proof Let x, y ∈ X and ‖m‖ = (
∫ 
 |m(s)| τ ds)τ . Then for each t ∈ [, ], we have

∣∣(Sx)(t) – (Sy)(t)
∣∣ ≤

∫ t



(t – s)α–

�(α)
∣∣(Nx)(s) –N(y)(s)

∣∣ds
+

|b| ∫ 
 ( – s)α–|(Nx)(s) –N(y)(s)|ds

�(α)| aη+γ

�(γ+) + b|

+
|a| ∫ η

 (η – s)α+γ–|(Nx)(s) –N(y)(s)|ds
�(α + γ )| aη+γ

�(γ+) + b|

≤
∫ t



(t – s)α–

�(α)
m(s)‖x – y‖∗ ds +

|b| ∫ 
 ( – s)α–m(s)‖x – y‖∗ ds

�(α)| aη+γ

�(γ+) + b|

+
|a| ∫ η

 (η – s)α+γ–m(s)‖x – y‖∗ ds

�(α + γ )| aη+γ

�(γ+) + b|
.

By the Hölder inequality, we have

∣∣(Sx)(t) – (Sy)(t)
∣∣

≤
{‖m‖( –τ

α–τ
)–τ

�(α)

(
 +

|b|
| aη+γ

�(γ+) + b|

)
+

‖m‖|a|ηα+γ–τ ( –τ
α+γ–τ

)–τ

�(α + γ )| aη+γ

�(γ+) + b|

}
‖x – y‖∗

= �‖x – y‖∗.

Similarly, we have

∣∣(cDβSx
)
(t) –

(cDβSy
)
(t)

∣∣
≤ ‖m‖

�( – β)

( |b|
�(α)

(
 – τ

α – τ

)–τ

+
|a|ηα+γ–τ

�(α + γ )

(
 – τ

α + γ – τ

)–τ)
‖x – y‖∗

+
‖m‖( –τ

α–β–τ
)–τ‖x – y‖∗

�(α – β)

= �‖x – y‖∗.

From the inequalities above, we can deduce that

∥∥(Sx)(t) – (Sy)(t)
∥∥∗ ≤ (� +�)‖x – y‖∗.

By the contraction principle, we know that problem () has a unique solution. �

Theorem . Assume that
() there exist two non-decreasing functions ρ,ρ : [,∞)→ [,∞) and a function

m ∈ L 
τ ([, ],R+) with τ ∈ (,α – ) such that

∣∣f (t,x, y)∣∣ ≤ m(t)
(
ρ

(|x|) + ρ
(|y|))

for t ∈ [, ] and x, y ∈R;

http://www.advancesindifferenceequations.com/content/2013/1/257
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() there exists a constant Z >  such that

Z
|c|(+�(–β))

�(–β)| aη+γ

�(γ+) +b|
+ ‖m‖W (ρ(Z) + ρ(Z))

> ,

where ‖m‖ = (
∫ 
 |m(s)| τ ds)τ and

W =


�(α)

(
 +

|b|
| aη+γ

�(γ+) + b|
+

|b|
�( – β)| aη+γ

�(γ+) + b|

)(
 – τ

α – τ

)–τ

+
|a|ηα+γ–τ

�(α + γ )| aη+γ

�(γ+) + b|

(
 +


�( – β)

)(
 – τ

α + γ – τ

)–τ

+


�(α – β)

(
 – τ

α – β – τ

)–τ

.

Then problem () has at least one solution on [, ].

Proof The proof consists of the following steps.
Firstly, we show that the operator S : X → X maps bounded sets into bounded sets. Let

Br = {x ∈ X : ‖x‖∗ ≤ r} be a bounded set in X. Then for each x ∈ Br , we have

|Sx| ≤
∫ t



(t – s)α–

�(α)
∣∣(Nx)(s)∣∣ds + (|c| + |b| ∫ 


(–s)α–

�(α) |(Nx)(s)|ds)
| aη+γ

�(γ+) + b|

+
|a| ∫ η


(η–s)α+γ–

�(α+γ ) |(Nx)(s)|ds
| aη+γ

�(γ+) + b|

≤ ρ(r) + ρ(r)
�(α)

∫ t


(t – s)α–m(s)ds +

|c|
| aη+γ

�(γ+) + b|

+
(ρ(r) + ρ(r))(|a|

∫ η


(η–s)α+γ–

�(α+γ ) m(s)ds + |b| ∫ 


(–s)α–
�(α) m(s)ds)

| aη+γ

�(γ+) + b|
.

By using the Hölder inequality, we have

|Sx| ≤ ‖m‖(ρ(r) + ρ(r))( –τ
α–τ

)–τ

�(α)

(
 +

|b|
| aη+γ

�(γ+) + b|

)
+

|c|
| aη+γ

�(γ+) + b|

+
|a|‖m‖ηα+γ–τ (ρ(r) + ρ(r))

�(α + γ )| aη+γ

�(γ+) + b|

(
 – τ

α + γ – τ

)–τ

.

Similarly, we can obtain that

∣∣(cDβSx
)
(t)

∣∣
≤ ∣∣(Iα–βNx

)
(t)

∣∣ + |k|
�( – β)

http://www.advancesindifferenceequations.com/content/2013/1/257
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≤ ‖m‖(ρ(r) + ρ(r))
�(α – β)

(
 – τ

α – β – τ

)–τ

+
|b|‖m‖(ρ(r) + ρ(r))

�( – β)�(α)| aη+γ

�(γ+) + b|

(
 – τ

α – τ

)–τ

+
|a|‖m‖ηα+γ–τ (ρ(r) + ρ(r))
�( – β)�(α + γ )| aη+γ

�(γ+) + b|

(
 – τ

α + γ – τ

)–τ

+
|c|

�( – β)| aη+γ

�(γ+) + b|
.

Therefore, we have

∥∥(Sx)(t)∥∥∗

≤ ‖m‖(ρ(r) + ρ(r))( –τ
α–τ

)–τ

�(α)

(
 +

|b|
| aη+γ

�(γ+) + b|
+

|b|
�( – β)| aη+γ

�(γ+) + b|

)

+
‖m‖(ρ(r) + ρ(r))

�(α – β)

(
 – τ

α – β – τ

)–τ

+
|c|

| aη+γ

�(γ+) + b|

(
 +


�( – β)

)

+
|a|‖m‖ηα+γ–τ (ρ(r) + ρ(r))

�(α + γ )| aη+γ

�(γ+) + b|

(
 +


�( – β)

)(
 – τ

α + γ – τ

)–τ

.

That is to say, we have

∥∥(Sx)(t)∥∥∗ ≤ |c|( + �( – β))
�( – β)| aη+γ

�(γ+) + b|
+ ‖m‖W(

ρ(r) + ρ(r)
)
.

Secondly, by a discussion similar to that of Theorem ., we can get

∣∣(Sx)(t) – (Sx)(t)
∣∣ → ,∣∣(cDβSx

)
(t) –

(cDβSx
)
(t)(t)

∣∣ → 

as t → t. This implies that

∥∥(Sx)(t) – (Sx)(t)
∥∥∗ →  as t → t.

Finally, we let x = λSx for λ ∈ (, ). Then for each t ∈ [, ], we have

‖x‖∗ = ‖λSx‖∗ ≤ |c|( + �( – β))
�( – β)| aη+γ

�(γ+) + b|
+ ‖m‖W(

ρ
(‖x‖∗

)
+ ρ

(‖x‖∗
))
.

That is to say,

‖x‖∗
|c|(+�(–β))

�(–β)| aη+γ

�(γ+) +b|
+ ‖m‖W (ρ(‖x‖∗) + ρ(‖x‖∗))

≤ .

By the assumptions and a discussion similar to the one in the proof of Theorem ., we
can deduce that S has a fixed point in X. So the proof of this theorem is completed. �

5 Examples
In this section, we give two examples to illustrate the main results.

http://www.advancesindifferenceequations.com/content/2013/1/257


Fu Advances in Difference Equations 2013, 2013:257 Page 14 of 15
http://www.advancesindifferenceequations.com/content/2013/1/257

Example  Consider the boundary value problem

{
cD 

 x(t) = (t – t)e–x(t) + 
π |x(t)|  , t ∈ [, ],

x() + 
x() = , cD 

 x(  ) +

 (

cD 
 x()) = – 

 .
()

Here α = 
 , γ = 

 , a = , b = 
 , c = , a = , b = 

 , c = – 
 , T =  and

f (t,x) =
(
t – t

)
e–x

(t) +

π

∣∣x(t)∣∣ 
 .

Since

∣∣f (t,x)∣∣ ≤ ∣∣t – t
∣∣ + 

π
|x|  ,

let d = 
π , ρ = 

 andm(t) = |t – t|. Thus, by Theorem ., problem () has at least one
solution on [, ].

Example  Consider the following fractional differential equation

⎧⎨
⎩

cD 
 x(t) = e–x

(t)

(+t)
|x(t)|

+|x(t)| +
|cD 

 x(t)|
(+sin x(t)) , t ∈ [, ],

x() = ,
√
[I 

 x](  ) + x() = .
()

In this case α = 
 , β = 

 , γ = 
 , a =

√
, b = , c = , η = 

 and

f
(
t,x, cD


 x

)
=

e–x

( + t)
|x|

 + |x| +
cD 

 x
( + sin x)

.

Since

∣∣f (t,x, cD 
 x

)
– f

(
t, y, cD


 y

)∣∣ ≤ 


(|x – y| + ∣∣cD 
 x – cD


 y

∣∣),
let τ = 

 , we have

� +� ≈ . < .

By Theorem ., we know that problem () has at least one solution.
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