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Abstract
In this paper, we study the boundary value problem of a class of nonlinear fractional
q-difference equations with parameter involving the Riemann-Liouville fractional
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obtained. As applications, some examples are presented to illustrate our main results.
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1 Introduction
The q-difference calculus is an interesting and old subject that many researchers devote
their time to studying. The q-difference calculus or quantum calculus were first developed
by Jackson [, ], while basic definitions and properties can be found in the papers [,
]. The q-difference calculus describes many phenomena in various fields of science and
engineering [].
The origin of the fractional q-difference calculus can be traced back to the works in [,

] by Al-Salam and by Agarwal.
The q-difference calculus is a necessary part of discrete mathematics. More recently,

there has been much research activity concerning the fractional q-difference calculus [–
]. Relevant theory about fractional q-difference calculus has been established [], such
as q-analogues of integral and difference fractional operators properties as Mittag-Leffler
function [], q-Laplace transform, q-Taylor’s formula [, ], just to mention some. It is
not only the requirements of the fractional q-difference calculus theory but also its the
broad application.
Apart from this old history of q-difference equations, the subject has received a consid-

erable interest of many mathematicians and frommany aspects, theoretical and practical.
Specifically, q-difference equations have been widely used in mathematical physical prob-
lems, dynamical system and quantummodels [], q-analogues of mathematical physical
problems including heat and wave equations [], sampling theory of signal analysis [,
].What is more, the fractional q-difference calculus plays an important role in quantum
calculus.
As generalizations of integer order q-difference, fractional q-difference can describe

physical phenomenamuch better andmore accurately. Perhaps due to the development of
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fractional differential equations [–], an interest has been observed in studying bound-
ary value problems of fractional q-difference equations, especially about the existence of
solutions for boundary value problems [, , , ].
In , Ferreita [] considered the existence of nontrivial solutions to the fractional

q-difference equation

(
Dα

q y
)
(x) = –f

(
x, y(x)

)
,  < x < ,

subjected to the boundary conditions

y() = , y() = ,

where  < α ≤  and f : [, ]×R→R is a nonnegative continuous function.
In , Ferreita [] went on studying the existence of positive solutions to the fractional

q-difference equation

(
Dα

q y
)
(x) = –f

(
x, y(x)

)
,  < x < ,

subjected to the boundary conditions

y() = (Dqy)() = , (Dqy)() = β ≥ ,

where  < α ≤  and f : [, ]×R→R is a nonnegative continuous function. By construct-
ing a special cone and using Krasnosel’skii fixed point theorem, some existence results of
positive solutions were obtained.
In , El-Shahed and Al-Askar [] studied the existence of a positive solution for a

boundary value problem of the nonlinear factional q-difference equation

cDα
qu + a(t)f (t) = ,  ≤ t ≤ ,  < α ≤ ,

with the boundary conditions

u() =D
qu() = ,

γDqu() + βD
qu() = ,

where γ ,β ≤  and cDα
q is fractional q-derivative of Caputo type.

In , Liang and Zhang [] studied the existence and uniqueness of positive solutions
for the three-point boundary problem of fractional q-differences

(
Dα

qu
)
(t) + f

(
t,u(t)

)
= ,  < t < ,  < α < ,

u() = (Dqu)() = , (Dqu)() = β(Dqu)(η),

where  < βηα– < . By using a fixed-point theorem in partially ordered sets, they got
some sufficient conditions for the existence and uniqueness of positive solutions to the
above boundary problem.
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To the best of our knowledge, there are few papers that consider the boundary value
of nonlinear fractional q-difference equations with parameters. Theories and applications
seem to be just being initiated. In this paperwe investigate the existence of solutions for the
following two-point boundary value problem of nonlinear fractional q-difference equa-
tions

(
Dα

qu
)
(x) + λf

(
u(x)

)
= ,  < x < , (.)

subject to the boundary conditions

u() =Dqu() =Dqu() = , (.)

where  < q < ,  < α < , f : C((, ), (,∞)). We prove the existence of positive solutions
for boundary value problem (.)-(.) by utilizing a fixed point theorem in cones. Several
existence results for positive solutions in terms of different values of the parameter λ are
obtained. This work is motivated by papers [, ].
The paper is organized as follows. In Section , we introduce some definitions of

q-fractional integral and differential operator together with some basic properties and
lemmas to prove our main results. In Section , we investigate the existence of positive
solutions for boundary value problem (.)-(.) by a fixed point theorem in cones. More-
over, some examples are given to illustrate our main results.

2 Preliminaries
In the following section, we collect some definitions and lemmas about fractional
q-integral and fractional q-derivative which are referred to in [].
Let q ∈ (, ) and define

[a]q =
 – qa

 – q
, a ∈R.

The q-analogue of the power function (a – b)n with n ∈N is

(a – b) = , (a – b)n =
n–∏
k=

(
a – bqk

)
, n ∈N,a,b ∈R.

More generally, if α ∈ R, then

(a – b)(α) = aα

∞∏
n=

a – bqn

a – bqα+n .

It is easy to see that [a(t – s)](α) = aα(t – s)(α). And note that if b =  then a(α) = aα .
The q-gamma function is defined by

�q(x) =
( – q)(x–)

( – q)x–
, x ∈R \ {,–,–, . . .},

and satisfies �q(x + ) = [x]q�q(x).
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The q-derivative of a function f is here defined by

(Dqf )(x) =
f (x) – f (qx)
( – q)x

for x �= , (Dqf )() = lim
x→

(Dqf )(x),

and q-derivatives of higher order by

(
D

qf
)
(x) = f (x) and

(
Dn

qf
)
(x) =Dq

(
Dn–

q f
)
(x), n ∈N.

The q-integral of a function f defined on the interval [,b] is given by

(Iqf )(x) =
∫ x


f (t)dqt = x( – q)

∞∑
n=

f
(
xqn

)
qn, x ∈ [,b].

If a ∈ [,b] and f is defined on the interval [,b], its q-integral from a to b is defined by

∫ b

a
f (t)dqt =

∫ b


f (t)dqt –

∫ a


f (t)dqt.

Similarly as done for derivatives, an operator Inq can be defined as

(
Iq f

)
(x) = f (x) and

(
Inq f

)
(x) = Iq

(
In–q f

)
(x), n ∈N.

From the definition of q-integral and the properties of series, we can get the following
results concerning q-integral, which are helpful in the proofs of our main results.

Lemma . () If f and g are q-integral on the interval [a,b], α ∈R, c ∈ [a,b], then
(i)

∫ b
a (f (t) + g(t))dqt =

∫ b
a f (t)dqt +

∫ b
a g(t)dqt;

(ii)
∫ b
a αf (t)dqt = α

∫ a
b f (t)dqt;

(iii)
∫ b
a f (t)dqt =

∫ c
a f (t)dqt +

∫ b
c f (t)dqt;

() If |f | is q-integral on the interval [,x], then | ∫ x
 f (t)dqt| ≤

∫ x
 |f (t)|dqt;

() If f and g are q-integral on the interval [,x], f (t) ≤ g(t) for all t ∈ [,x], then∫ x
 f (t)dqt ≤ ∫ x

 g(t)dqt.

The fundamental theorem of calculus applies to these operators Iq and Dq, i.e.,

(DqIqf )(x) = f (x),

and if f is continuous at x = , then

(IqDqf )(x) = f (x) – f ().

Basic properties of q-integral operator and q-differential operator can be found in the
book [].

http://www.advancesindifferenceequations.com/content/2013/1/260
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We now point out three formulas that will be used later (iDq denotes the derivative with
respect to variable i)

tDq(t – s)(α) = [α]q(t – s)(α–),(
xDq

∫ x


f (x, t)dqt

)
(x) =

∫ x


xDqf (x, t)dqt + f (qx,x).

Remark . We note that if α >  and a≤ b ≤ t, then (t – a)(α) ≥ (t – b)(α).

Definition . [] Let α ≥  and f be a function defined on [, ]. The fractional q-integral
of the Riemann-Liouville type is (Iq f )(x) = f (x) and

(
Iαq f

)
(x) =


�q(α)

∫ x


(x – qt)(α–)f (t)dqt, α > ,x ∈ [, ].

Definition . [] The fractional q-derivative of the Riemann-Liouville type of order
α ≥  is defined by (D

qf )(x) = f (x) and

(
Dα

q f
)
(x) =

(
Dp

qI
p–α
q f

)
(x), α > ,

where p is the smallest integer greater than or equal to α.

Next, we list some properties about q-derivative and q-integral that are already known
in the literature.

Lemma . [, ] Let α,β ≥  and f be a function defined on [, ]. Then the following
formulas hold:

(i) (Iβq Iαq f )(x) = (Iα+β
q f )(x);

(ii) (Dα
q Iαq f ) = f (x).

Lemma . [] Let α >  and p be a positive integer. Then the following equality holds:

(
Iαq D

p
qf

)
(x) =

(
Dp

qI
α
q f

)
(x) –

p–∑
k=

xα–p+k

�q(α + k – p + )
(
Dk

qf
)
().

Lemma . [] Let X be a Banach space and P ⊆ X be a cone. Suppose that � and �

are bounded open sets contained in X such that  ∈ � ⊆ � ⊆ �. Suppose further that
S : P ∩ (� \ �) → P is a completely continuous operator. If either

(i) ‖Su‖ ≤ ‖u‖ for u ∈ P ∩ ∂� and ‖Su‖ ≥ ‖u‖ for u ∈ P ∩ ∂�, or
(ii) ‖Su‖ ≥ ‖u‖ for u ∈ P ∩ ∂� and ‖Su‖ ≤ ‖u‖ for u ∈ P ∩ ∂�, then S has at least one

fixed point in P ∩ (� \ �).

The next result is important in the sequel.

Lemma . [] Let f (u(x)) ∈ C[, ] be a given function.Then the boundary value problem

(
Dα

qu
)
(x) + f

(
u(x)

)
= ,  < x < , (.)

u() =Dqu() =Dqu() = , (.)

http://www.advancesindifferenceequations.com/content/2013/1/260
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has a unique solution

u(x) =
∫ 


G(x,qt)f

(
u(t)

)
dqt,

where

G(x,qt) =


�q(α)

⎧⎨
⎩( – qt)(α–)xα– – (x – qt)α–,  ≤ qt ≤ x≤ ,

( – qt)(α–)xα–,  ≤ x ≤ qt ≤ ,

is the Green function of boundary value problem (.)-(.).

The following properties of the Green function play important roles in this paper.

Lemma . [] Function G defined above satisfies the following conditions:

() G(x,qt) ≥  and G(x,qt) ≤ G(,qt) for all  ≤ x, t ≤ .
() G(x,qt) ≥ g(x)G(,qt) for all  ≤ x, t ≤  with g(x) = xα–.

(.)

3 Main results
We are now in a position to state and prove our main results in this paper.
Let the Banach space B = C[, ] be endowed with the norm ‖u‖ = supx∈[,] |u(x)|. Let

τ be a real constant with  < τ <  and define the cone P ⊂ B by P = {u ∈ C[, ] | u(x) ≥
,minx∈[τ ,] u(x)≥ τα–‖u‖}.
Suppose that u is a solution of boundary value problem (.)-(.). Then

u(x) = λ

∫ 


G(x,qt)f

(
u(t)

)
dqt, t ∈ [, ]. (.)

Define the operator Aλ : P → B by

Aλu(x) = λ

∫ 


G(x,qt)f

(
u(t)

)
dqt.

Then we have the following results.

Lemma . Aλ : P → P is completely continuous.

Proof It is easy to see that the operator Aλ : P → P is continuous in view of continuity of
G and f .
By Lemmas . and ., we have

min
x∈[τ ,]

Aλ

(
u(x)

)
= min

x∈[τ ,]
λ

∫ 


G(x,qt)f

(
u(t)

)
dqt

≥ τα–
(

λ

∫ 

τ

G(,qt)f
(
u(t)

)
dqt

)

= τα–‖Aλu‖.

Thus, Aλ(P) ⊂ P.

http://www.advancesindifferenceequations.com/content/2013/1/260
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Now, let� ⊂ P be bounded, i.e., there exists a positive constantM >  such that ‖u‖ ≤ M
for all u ∈ �. Let L =max‖u‖≤M |f (u(x))|+ . Then, for u ∈ �, from Lemmas . and ., we
have

∣∣Aλu(x)
∣∣ ≤ λ

∫ 



∣∣G(x,qt)f (u(t))∣∣dt ≤ λL
∫ 


G(,qt)dqt.

Hence, Aλ(�) is bounded.
On the other hand, for any given ε > , setting

δ =min

{


,
ε�q(α)
Lλ

}
,

then for each u ∈ �,  ≤ x ≤ x ≤  and |x – x| < δ, one has |Aλu(x) –Aλu(x)| < ε, that
is to say, Aλ(�) is equicontinuous. In fact,

∣∣Aλu(x) –Aλu(x)
∣∣

=
∣∣∣∣λ

∫ 


G(x,qt)f

(
u(t)

)
dqt – λ

∫ 


G(x,qt)f

(
u(t)

)
dqt

∣∣∣∣
≤ λ

∫ 



∣∣G(x,qt) –G(x,qt)f
(
u(t)

)∣∣dqtλL
∫ 



∣∣G(x,qt) –G(x,qt)
∣∣dqt

= λL
(∫ x



∣∣G(x,qt) –G(x,qt)
∣∣dqt +

∫ x

x

∣∣G(x,qt) –G(x,qt)
∣∣dqt

+
∫ 

x

∣∣G(x,qt) –G(x,qt)
∣∣dqt

)

= λL
(∫ x




�q(α)

[
( – qt)(α–)

(
xα–
 – xα–


)
– (x – qt)(α–) + (x – qt)(α–)

]
dqt

+
∫ x

x


�q(α)

[
( – qt)(α–)xα–

 – (x – qt)(α–) – ( – qt)(α–)xα–


]
dqt

+
∫ 

x


�q(α)

[
( – qt)(α–)

(
xα–
 – xα–


)]
dqt

)
.

Now we rearrange the above equation as follows, and from the properties of q-integral,
we get

∣∣Aλu(x) –Aλu(x)
∣∣

= λL


�q(α)

{∫ 


( – qt)(α–)

(
xα–
 – xα–


)
dqt

+
∫ x


(x – qt)(α–) dqt –

∫ x


(x – qt)(α–) dqt

}

≤ λL


�q(α)

{∫ 



(
xα–
 – xα–


)
dqt +

∫ x


(x – qt)(α–) dqt –

∫ x


(x – qt)(α–) dqt

}

≤ λL


�q(α)

{∫ 



(
xα–
 – xα–


)
dqt + xα



∫ 


( – qt)(α–) dqt – xα



∫ 


( – qt)(α–) dqt

}

= λL


�q(α)

{(
xα–
 – xα–


)∫ 


dqt +

(
xα
 – xα


)∫ 


( – qt)(α–) dqt

}

http://www.advancesindifferenceequations.com/content/2013/1/260
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= λL


�q(α)

{(
xα–
 – xα–


)
( – q)

∞∑
n=

qn +
(
xα
 – xα


)
( – q)

∞∑
n=

(
 – qn+

)(α–)qn
}

≤ λL


�q(α)
((
xα–
 – xα–


)
+

(
xα
 – xα


))
( – q)

∞∑
n=

qn

= λL


�q(α)
{(
xα–
 – xα–


)
+

(
xα
 – xα


)}

≤ λL


�q(α)
(
xα–
 – xα–


)
.

Now, we estimate xα–
 – xα–

 :
() for  ≤ x < δ, δ ≤ x < δ, xα–

 – xα–
 ≤ xα–

 < (δ)α– ≤ δ;
() for  ≤ x < x ≤ δ, xα–

 – xα–
 ≤ xα–

 < δα– ≤ δ;
() for δ ≤ x < x ≤ , from the mean value theorem of differentiation, we have

xα–
 – xα–

 ≤ (α – )(x – x) ≤ δ.
Thus, we have that

∣∣Aλu(x) –Aλu(x)
∣∣ < λLδ

�q(α)
< ε.

By means of the Arzela-Ascoli theorem, Aλ : P → P is completely continuous. The proof
is completed. �

For convenience, we define

F = lim sup
u→+

f (u)
u

, F∞ = lim sup
u→+∞

f (u)
u

,

f = lim inf
u→+

f (u)
u

, f∞ = lim inf
u→+∞

f (u)
u

,

C =
∫ 


G(,qt)dqt, C =

∫ 

τ

τ α–G(,qt)dqt.

The main results of the paper are as follows.

Theorem . If f∞C > FC holds, then for each

λ ∈ (
(f∞C)–, (FC)–

)
, (.)

boundary value problem (.)-(.) has at least one positive solution. Here we impose
(f∞C)– =  if f∞ = +∞ and (FC)– = +∞ if F = .

Proof Let λ satisfy (.) and ε >  be such that

(
(f∞ – ε)C

)– ≤ λ ≤ (
(F + ε)C

)–. (.)

By the definition of F, we can know that there exists r >  such that

f (u) ≤ (F + ε)u for  ≤ u ≤ r, (.)

http://www.advancesindifferenceequations.com/content/2013/1/260
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so if u ∈ P with ‖u‖ = r, then by (.) and (.), we have

‖Aλu‖ ≤ λ

∫ 


G(,qt)f

(
u(t)

)
dqt

≤ λ

∫ 


G(,qt)(F + ε)r dqt

≤ λ(F + ε)rC ≤ r

= ‖u‖.

Hence, if we choose � = {u ∈ B : ‖u‖ < r}, then

‖Aλ‖ ≤ ‖u‖ for u ∈ P ∩ ∂�. (.)

Let r >  be such that

f (u) ≥ (f∞ – ε)u for u≥ r. (.)

If u ∈ P with ‖u‖ = r =max{r, τ –αr}, then by (.) and (.) we have

‖Aλu‖ ≥ Aλ

(
u(t)

)
= λ

∫ 


G(x,qt)f

(
u(t)

)
dqt

≥ λ

∫ 

τ

G(x,qt)f
(
u(t)

)
dqt

≥ λ

∫ 

τ

τ α–G(,qt)(f∞ – ε)u(t)dqt

≥ λ

∫ 

τ

τ α–G(,qt)(f∞ – ε)‖u‖dqt

= λC(f∞ – ε)‖u‖
≥ ‖u‖. (.)

Thus, if we set

� =
{
u ∈ B : ‖u‖ < r

}
, (.)

then

‖Aλu‖ ≥ ‖u‖ for u ∈ P ∈ ∂�. (.)

Now, from (.), (.) and Lemma ., we conclude that Aλ has a fixed point u ∈ P ∩
(� \ �) with r ≤ ‖u‖ ≤ r, and it is clear that u is a positive solution of (.)-(.). The
proof is completed. �

Theorem . If fC > F∞C holds, then for each

λ ∈ (
(fC)–, (F∞C)–

)
, (.)

http://www.advancesindifferenceequations.com/content/2013/1/260


Li et al. Advances in Difference Equations 2013, 2013:260 Page 10 of 13
http://www.advancesindifferenceequations.com/content/2013/1/260

boundary value problem (.)-(.) has at least one positive solution. Here we impose
(fC)– =  if f = +∞ and (F∞C)– = +∞ if F∞ = .

Proof Let λ satisfy (.) and ε >  be given such that

(
(f – ε)C

)– ≤ λ ≤ (
(F∞ + ε)C

)–. (.)

From the definition of f, we can see that there exists r >  such that

f (u) ≥ (f – ε)u,  < u ≤ r. (.)

Further, if u ∈ P, ‖u‖ = r, then the flowing is similar to the second part of Theorem .:

‖Aλu‖ ≥ λ

∫ 


G(x,qt)f

(
u(t)

)
dqt

≥ λ

∫ 

τ

G(x,qt)f
(
u(t)

)
dt

≥ λ

∫ 

τ

τ α–G(,qt)f
(
u(t)

)
dqt

≥ λ

∫ 

τ

τ α–G(,qt)(f – ε)u(t)dqt

≥ λ

∫ 

τ

τ α–G(,qt)(f – ε)‖u‖dqt

= λC(f – ε)‖u‖ ≥ ‖u‖.

We can obtain that ‖Aλu‖ ≥ ‖u‖. Thus, if we choose � = {u ∈ B : ‖u‖ < r}, then

‖Aλu‖ ≥ ‖u‖ for u ∈ P ∩ ∂�. (.)

Next, we may choose R >  such that

f (u) ≤ (F∞ + ε)u for u≥ R. (.)

We consider two cases.
Case . Suppose that f is bounded. Then there exists someM >  such that f (u) ≤ M for

u ∈ (, +∞). Define r =max{r,λMC}. Then if u ∈ P with ‖u‖ = r, we have

‖Aλu‖ ≤ λ

∫ 


G(,qt)f

(
u(t)

)
dqt ≤ λM

∫ 


G(,qt)dqt ≤ λMC ≤ r = ‖u‖.

Hence,

‖Aλu‖ ≤ ‖u‖ for u ∈ (, +∞). (.)

Case . Suppose f is unbounded. Then there exists some r >max{r, τ –αR} such that

f (u) ≤ f (r) for  < u≤ r. (.)

http://www.advancesindifferenceequations.com/content/2013/1/260
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Let u ∈ P with ‖u‖ = r. Then by (.) and (.) we get

‖Aλu‖ ≤ λ

∫ 


G(,qt)f

(
u(t)

)
dqt ≤ λ

∫ 


G(,qt)(F∞ + ε)udqt

= λC(F∞ + ε)‖u‖ ≤ ‖u‖.

Thus, (.) is also true.
In both Cases  and , if we set � = {u ∈ B : ‖u‖ < r}, where r =max{r, r}, then

‖Aλ‖ ≤ ‖u‖ for u ∈ P ∩ ∂�. (.)

Now that we have obtained (.) and (.), it follows from Lemma . that Aλ has a
fixed point u ∈ P ∩ (� \ �) with r ≤ ‖u‖ ≤ r. It is clear that u is a positive solution of
(.)-(.). The proof is completed. �

Theorem . If there exist k > k >  such that

max
≤u≤k

f (u) ≤ k
λC

, min
τ≤u≤k

f (u) ≥ k
λC

,

then boundary value problem (.)-(.) has a positive solution u ∈ P with k ≤ ‖u‖ ≤ k.

Proof Choose � = {u ∈ B : ‖u‖ < k}. Then, for u ∈ P ∩ ∂�, we have

‖Aλu‖ ≥ Aλu(t) = λ

∫ 


G(x,qt)f

(
u(t)

)
dqt

≥ λ

∫ 

τ

G(,qt)f
(
u(t)

)
dqt

≥ λ

∫ 

τ

τ α–G(,qt) min
τ≤u≤k

f
(
u(t)

)
dqt

≥ λ

∫ 

τ

τ α–G(,qt)
k

λC
dqt

= λC
k

λC
= k = ‖u‖. (.)

For another thing, choose � = {u ∈ B : ‖u‖ < k}, then, for u ∈ P ∩ ∂�, we have

‖Aλu‖ ≤ λ

∫ 


G(,qt)f

(
u(t)

)
dqt ≤ λ

∫ 


G(,qt) max

≤u≤k
f
(
u(t)

)
dqt

≤ λ

∫ 


G(,qt)

k
λC

dqt = k = ‖u‖. (.)

Now that we have obtained (.) and (.), it follows from Lemma . that Aλ has a
fixed point u ∈ P ∩ (� \ �) with k ≤ ‖u‖ ≤ k. It is clear that u is a positive solution of
(.)-(.). The proof is completed. �
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4 Examples
In this section, we present some examples to illustrate our main results.

Example . Consider the following boundary value problem:

(
D





u
)
(x) + λu = ,  < t < , (.)

u() =D 

() =D 


() = . (.)

Let q = τ = 
 , α = 

 and f (u) = u. Then

f∞ = +∞, F = , C =
∫ 


G(,qt)dqt, C =

∫ 

τ

τ α–G(,qt)dqt,

and so f∞C > FC. By Theorem ., boundary value problem (.)-(.) has a positive
solution for each λ ∈ (, +∞).

Example . Consider the following boundary value problem:

(
D





u
)
(x) + λ( + sinu) = ,  < t < , (.)

u() =D 

() =D 


() = . (.)

Let q = 
 , α = 

 and f (u) =  + sinu. Then f = ∞, F∞ = ,

C =
∫ 


G(,qt)dqt, C =

∫ 

τ

τ α–G(,qt)dqt.

It is clear that F∞C < fC. By Theorem ., boundary value problem (.)-(.) has a
positive solution for each λ ∈ (, +∞).

Example . We can still consider the example that has been given in Example .,

(
D





u
)
(x) + λ( + sinu) = ,  < t < , (.)

u() =D 

() =D 


() = . (.)

Here q = 
 , α = 

 , f (u) =  + sinu. Take  < τ < . Then

C =
∫ 


G(,qt)dqt, C =

∫ 

τ

τ α–G(,qt)dqt.

Set k = λC, k = λC with λ > τ
c
. Then k > k, and

max
≤u≤k

f (u) ≤ ≤ k
λC

, min
τ≤u≤k

f (u) ≥  ≥ k
λC

.

Thus all the conditions in Theorem . hold. Hence, by Theorem ., boundary value
problem (.)-(.) has a positive solution with k ≤ ‖u‖ ≤ k.
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